Design of I_2-II-IV-VI$_4$ Semiconductors through Element-substitution: the Thermodynamic Stability Limit and Chemical Trend

Congcong Wang1, Shiyou Chen1,2, J. H. Yang1, L. Lang1, H. J. Xiang1, Xin-Gao Gong1, Aron Walsh3, and Su-Huai Wei4

[1] Key Laboratory for Computational Physical Sciences (MOE), State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China

[2] Key Laboratory of Polar Materials and Devices (MOE), East China Normal University, Shanghai 200241, China

[3] Center for Sustainable Chemical Technologies and Department of Chemistry, University of Bath, Bath BA2 7AY, UK

ABSTRACT:

Through element substitution in Cu$_2$ZnSnS$_4$, a class of I_2-II-IV-VI$_4$ semiconductors can be designed as novel functional materials. Using the first-principles calculations, we show that this element-substitution design is thermodynamically limited, i.e., although I_2-II-IV-VI$_4$ with $I=\text{Cu, Ag}$, $\text{II}=\text{Zn, Cd, Hg}$, $\text{IV}=\text{Si, Ge, Sn}$ and $\text{VI}=\text{S, Se, Te}$ are stable quaternary compounds, those with $\text{II}=\text{Mg, Ca, Sr, Ba}$, $\text{IV}=\text{Ti, Zr, Hf}$, and $\text{VI}=\text{O}$ are unstable against the phase-separation into the competing binary and ternary compounds. Three main phase-separation pathways are revealed. In general, we show that if the secondary II-VI or I_2-II-IV-VI$_3$ phases prefer to have non-tetrahedral structures, then the I_2-II-IV-VI$_4$ semiconductors tend to phase separate. This finding can be used as a guideline for future design of new quaternary semiconductors.

I. INTRODUCTION

Because all component elements are earth-abundant and environment-friendly, the quaternary semiconductors Cu$_2$ZnSnS$_4$ (CZTS), Cu$_2$ZnSnSe$_4$ (CZTSe) and their alloys with band gaps between 1.0-1.5 eV have been intensively studied as low-cost and sustainable solar cell absorber materials during the last five years$^{1-5}$. Through substituting Cu by other group I (+1 valence) cations, Zn by group II (+2 valence) cations, Sn by group IV (+4 valence) cations, and S or Se by group VI anions (-2 valence), a class of I_2-II-IV-VI$_4$ quaternary semiconductors, such as Cu$_2$ZnGeS$_4$4,6, Ag$_2$CdSnSe$_4$7 and Cu$_2$CdGeSe$_4$8, can be designed. These quaternary semiconductors have tetrahedrally coordinated crystal structures (derived from zincblende or wurtzite structure) and electronic structure (s-p band gap) similar to the binary II-VI semiconductors (ZnS, CdTe)9, but their properties are much more diverse given the increased number of elements, so they may have wide applications in electronic, optoelectronic, photovoltaics, or photocatalytic applications$^{10-13}$.

This element-substitution design had been proposed as early as 1960s14,15, and a
series of quaternary semiconductors had been synthesized, e.g., I_2-II-IV-VI_4 with I=Cu, Ag, II=Zn, Cd, IV=Si, Ge, Sn, Pb, and VI=S, Se, as listed in the semiconductor handbooks. Recently, new design goes beyond these conventional elements, e.g., Cu_2ZnTiS_4, Cu_2MgSiS_4, and Cu_2MgGeS_4 were proposed theoretically as new functional materials, and Cu_2MgGeS_4 had even been synthesized, which shows X-ray diffraction pattern in good agreement with that of the theoretically proposed structure. The synthesis of some other I_2-II-IV-VI_4 compounds had also been reported. For example, Cu_2ZnSn(S,O)_4 (alloy of Cu_2ZnSnS_4 and Cu_2ZnSnO_4) was synthesized using chemical vapor deposition method by Washio et al., and Cu_2BaSnS_4, Ag_2BaSnS_4 and Cu_2SrSnS_4 were synthesized from a mixture of three binary sulfides by Teske et al. Since there are many elements with +1, +2, +4 and -2 valences, e.g., II=Mg, Ca, Sr, Ba (group II A), IV=Ti, Zr, Hf (group IV B) and VI=O, Te, their combination can lead to a large number of potential I_2-II-IV-VI_4 compounds.

As more and more I_2-II-IV-VI_4 semiconductors are designed or reported, one fundamental issue is whether the proposed I_2-II-IV-VI_4 semiconductors are thermodynamically stable. Currently, this question is not yet systematically addressed. Furthermore, the possible factors or mechanism that may cause the instability are also unclear. The answer to these questions is important for theoretical design and experimental synthesis of novel and stable I_2-II-IV-VI_4 compounds.

In this work, a series of I_2-II-IV-VI_4 semiconductors are studied through the first-principles calculations. Based on the analysis of the calculated results, the thermodynamic limiting mechanism to the stability of I_2-II-IV-VI_4 semiconductors is revealed. The results show that although the substitution of II by Zn, Cd, Hg, IV by Si, Ge, Sn and VI by S, Se, Te can lead to stable quaternary compound semiconductors, the substitution of II by Mg, Ca, Sr, Ba, IV by Ti, Zr, Hf, and VI by O has limited thermodynamic stability because the phase-separated competing binary and ternary compounds are more stable in different local environment than that in the tetrahedral environment of the I_2-II-IV-VI_4 compounds. When an I_2-II-IV-VI_4 compound is unstable, the corresponding elements can only be incorporated into a stable I_2-II-IV-VI_4 with low concentration, thus their contribution to tuning the material properties is limited.

II. COMPUTATIONAL DETAILS

The crystal and electronic structure calculations are performed based on the density functional theory as implemented in the Vienna ab initio simulation package (VASP) code. For the exchange correlation potential, we use the generalized gradient approximation (GGA) of Perdew and Wang. The projector augmented-wave pseudopotentials and the plane-wave basis functions are used with an energy cutoff of 400 eV in the study of all sulfide, selenide and telluride compounds and an energy cutoff of 500 eV in the study of oxide compounds. For the Brillouin zone integration,
an \(8 \times 8 \times 4\) Monkhorst–Pack or equivalent k-point meshes are used. All lattice vectors and atomic positions are fully relaxed by minimizing the quantum-mechanical stresses and forces. The total energies used for assessing the heats of formation are converged to within 0.001 eV / atom. No temperature dependent effects are considered.

III. RESULTS AND DISCUSSION

3.1. Element-substitution Design of I\(_2\)-II-IV-VI\(_4\)

The quaternary I\(_2\)-II-IV-VI\(_4\) semiconductors can be taken as derived from binary II-VI semiconductors\(^{25}\), e.g., Cu\(_2\)ZnSnS\(_4\) from ZnS, as shown schematically in Figure 1. In zincblende ZnS, the S\(^2^-\) anion is tetrahedrally bonded with four Zn\(^{2+}\) cations. If the four Zn\(^{2+}\) are replaced by two Cu\(^+\) and two Ga\(^{3+}\) cations, the ternary CuGaS\(_2\) semiconductor can be derived, and if the two Ga\(^{3+}\) cations are further replaced by one Zn\(^{2+}\) and one Sn\(^{4+}\) cation, quaternary Cu\(_2\)ZnSnS\(_4\) can be derived. The elements of Cu\(_2\)ZnSnS\(_4\) can also be replaced by other isovalent elements, such as Zn by Mg, Sn by Ti, and S by Se, then a series of I\(_2\)-II-IV-VI\(_4\) semiconductors (such as Cu\(_2\)MgTiS\(_4\)) can be derived, as shown in Fig. 1. In this study, we focus on the following series of component elements:

- **I**: Cu
- **II**: Zn, Cd, Hg; Mg, Ca, Sr
- **IV**: Si, Ge, Sn, Pb; Ti, Zr, Hf
- **VI**: O, S, Se, Te

![Figure 1](image)

Figure 1. A schematic plot of the derivation of I\(_2\)-II-IV-VI\(_4\) semiconductors from binary II-VI and ternary I-III-VI\(_2\) parent compounds.
During the replacement of the component elements, the local charge around each anion always satisfies the octet rule, so the tetrahedrally-coordinated lattice framework of zincblende or wurtzite is kept when it mutates into quaternary structures, despite they have different symmetries depending on the ordering of the cations25. Among these quaternary crystal structures, five fundamental structures have been found with the smallest primitive cells and the lowest energy25, 26, including kesterite, stannite, primitive-mixed CuAu (PMCA), wurtzite-kesterite, and wurtzite-stannite. Two of those structures are shown in Figure 2. Their total energy difference is usually less than 0.01 eV/atom, so their differences in the compound formation energies are small24, 25. Therefore, in our following study, we will use only the representative kesterite structure [Fig. 2(a)] to study the phase stability.

![Figure 2](image)

Figure 2. The unit cells of (a) zincblende-derived kesterite, (b) wurtzite-derived wurtzite-kesterite I\textsubscript{2}-II-IV-VI\textsubscript{4} crystal structures. Blue, purple, green and yellow balls show the I, II, IV, and VI atoms, respectively.

3.2. Thermodynamic Stability Limit

Although the charge-neutrality condition around each anion is satisfied in the element-substitution design of I\textsubscript{2}-II-IV-VI\textsubscript{4} semiconductors, whether they can be synthesized under equilibrium conditions (thermodynamically stable) is a question. The formation of the quaternary compounds is limited, since these component elements can also form other elemental, binary and ternary phases, which are competing with the quaternary phases.5, 27, 28 To study the competition quantitatively,
we use the chemical potentials of the component elements to describe the richness of these elements in the synthesis environment. If the I$_2$-II-IV-VI$_4$ is stable, the chemical potential of the component elements under the equilibrium condition should satisfy,

\[2\mu_I + \mu_{II} + \mu_{IV} + 4\mu_{VI} = \Delta H_f(I_2 - II - IV - VI_4), \]

(1)

where $\Delta H_f(I_2 - II - IV - VI_4)$ is the calculated formation energy of I$_2$-II-IV-VI$_4$, i.e., the energy change of the reaction $2I+II+IV+4VI \rightarrow I_2-II-IV-VI_4$, and μ_I, μ_{II}, μ_{IV} and μ_{VI} are the chemical potentials of the group I, II, IV and VI elements, which are referenced to their respective most stable elemental phases. $\mu_I=0$, $\mu_{II}=0$, $\mu_{IV}=0$, and $\mu_{VI}=0$ mean these elements are so rich that their pure elemental phases can start to form.

To avoid the precipitation of these elemental phases, it is required that $\mu_I<0$ and similarly $\mu_{II} < 0$, $\mu_{IV} < 0$, $\mu_{VI} < 0$. On the other hand, to avoid the formation of secondary phases such as binary I-VI (e.g., CuS), I$_2$-VI (Cu$_2$S), II-VI (ZnS), IV-VI (SnS), IV-VI$_2$ (SnS$_2$) and ternary I$_2$-IV-VI$_3$ (Cu$_2$SnS$_3$), as well as any phases that deviate from the stoichiometry (2:1:1:4) of the I$_2$-II-IV-VI$_4$ compound, the following conditions must be satisfied too,

\[\mu_I + \mu_{VI} < \Delta H_f(I - VI) \]

(e.g., $\mu_{Cu} + \mu_S < \Delta H_f(CuS)$)

(2a)

\[2\mu_I + \mu_{VI} < \Delta H_f(I_2 - VI) \]

(e.g., $2\mu_{Cu} + \mu_S < \Delta H_f(Cu_2S)$)

(2b)

\[\mu_{II} + \mu_{VI} < \Delta H_f(II - VI) \]

(e.g., $\mu_{Zn} + \mu_S < \Delta H_f(ZnS)$)

(2c)

\[\mu_{IV} + \mu_{VI} < \Delta H_f(IV - VI) \]

(e.g., $\mu_{Sn} + \mu_S < \Delta H_f(SnS)$)

(2d)

\[\mu_{IV} + 2\mu_{VI} < \Delta H_f(IV - VI_2) \]

(e.g., $\mu_{Sn} + 2\mu_S < \Delta H_f(SnS_2)$)

(2e)

\[2\mu_I + \mu_{IV} + 3\mu_{VI} < \Delta H_f(I_2 - IV - VI_3) \]

(e.g., $2\mu_{Cu} + \mu_{Sn} + 3\mu_S < \Delta H_f(Cu_2SnS_3)$).

(2f)

Only when all of these conditions are satisfied, the pure I$_2$-II-IV-VI$_4$ phase can be stable thermodynamically. These constraints limit the values of μ_I, μ_{II}, μ_{IV}, μ_{VI}. Considering Eq. (1), only three of the four chemical potentials are variables, and the other one can be determined, e.g., μ_{VI} can be determined if we take μ_I, μ_{II}, μ_{IV} as variables. Under the established constraints, the range of the three variables is bound in a polyhedron in the three-dimensional (μ_I, μ_{II}, μ_{IV}) space27, which defines the chemical potential range that stabilizes the I$_2$-II-IV-VI$_4$ compounds. In Fig. 3, we plot the slices of the polyhedron in $\mu_{Cu}=-0.2$ eV plane for four representative I$_2$-II-IV-VI$_4$ compounds, Cu$_2$CdSnS$_4$, Cu$_2$MgSnS$_4$, Cu$_2$ZnTiS$_4$, and Cu$_2$CdSnO$_4$.

3.2.1. Stability of Cu$_2$-II-SnS$_4$ (II=Zn, Cd, Hg, and Mg, Ca, Sr, Ba)

In Fig. 3(a), the black region shows the chemical potential range that stabilizes Cu$_2$CdSnS$_4$. Six competing secondary compounds, i.e., binary Cu$_2$S, CuS, CdS, SnS,
SnS$_2$ and ternary Cu$_2$SnS$_3$ are considered, and their limit to the stable region is shown by the boundary lines with the same color as their labels. When the chemical potential crosses the line and goes beyond the black region, the corresponding secondary compounds can form, and thus the quaternary phase Cu$_2$CdSnS$_4$ becomes unstable. Besides the $\mu_{\text{Cu}}=-0.2$ eV plane, we also studied the limit to the stable region in other planes with different μ_{Cu}, which shows that single-phase Cu$_2$CdSnS$_4$ can be stabilized in a narrow chemical potential region, so it can be synthesized and is thermodynamically stable, which is consistent with the experimental observation that Cu$_2$CdSnS$_4$ had been synthesized by many groups$^{29-31}$.

Besides Cu$_2$CdSnS$_4$, we also calculate the stable region for other Cu$_2$-II-SnS$_4$ compounds with II=Zn, Hg, and they all have a narrow stable region in the chemical potential space, which is also consistent with the widely reported experimental synthesis$^{32-36}$. The stable regions for all the three compounds are narrow, indicating that the composition control is very important for synthesizing these single-phase materials. The most stringent constraints come from CdS and Cu$_2$SnS$_3$, i.e., when Cd is relatively poor (left side of the black region) in the synthesis environment, Cu$_2$SnS$_3$.

Figure. 3. The limit to the chemical potential regions that stabilize single-phase I$_2$-II-IV-VI$_4$. Here the limit is imposed by a series of competing compounds, and the plot is in the $\mu_{\text{Cu}}=-0.2$ eV plane. The plot in other planes are also considered, but not shown here.
will coexist in the samples, while when Cd is relatively rich (right side of the black region), CdS will coexist. This highlights the necessity to detect these secondary phases in the synthesized samples before the characterization of their properties, otherwise the properties may not be intrinsic to the quaternary I$_2$-II-IV-VI$_4$.

TABLE I: The calculated energy change ΔE (in eV) of different phase-separation reactions of Cu$_2$-II-SnS$_4$ (II=Zn, Cd, Hg, and Mg, Ca, Sr, Ba). If the compound has been synthesized, the references are listed in the Ref. column.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Phase Separation</th>
<th>ΔE</th>
<th>Ref.</th>
<th>Compound</th>
<th>Phase Separation</th>
<th>ΔE</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu$_2$ZnSnS$_4$</td>
<td>Cu$_2$S+ZnS+SnS$_2$</td>
<td>0.56</td>
<td>37</td>
<td>Cu$_2$MgSnS$_4$</td>
<td>Cu$_2$S+MgS+SnS$_2$</td>
<td>0.47</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2CuS+ZnS+SnS</td>
<td>0.40</td>
<td>33</td>
<td></td>
<td>2CuS+MgS+SnS</td>
<td>0.31</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Cu$_2$SnS$_3$+ZnS</td>
<td>0.08</td>
<td>32</td>
<td></td>
<td>Cu$_2$SnS$_3$+MgS</td>
<td>-0.01</td>
<td>-</td>
</tr>
<tr>
<td>Cu$_2$CdSnS$_4$</td>
<td>Cu$_2$S+CdS+SnS$_2$</td>
<td>0.51</td>
<td>29</td>
<td>Cu$_2$CaSnS$_4$</td>
<td>Cu$_2$S+CaS+SnS$_2$</td>
<td>-0.23</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2CuS+CdS+SnS</td>
<td>0.35</td>
<td>30</td>
<td></td>
<td>2CuS+CaS+SnS</td>
<td>-0.39</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Cu$_2$SnS$_3$+CdS</td>
<td>0.03</td>
<td>38</td>
<td></td>
<td>Cu$_2$SnS$_3$+CaS</td>
<td>-0.71</td>
<td>-</td>
</tr>
<tr>
<td>Cu$_2$HgSnS$_4$</td>
<td>Cu$_2$S+HgS+SnS$_2$</td>
<td>0.56</td>
<td>35</td>
<td>Cu$_2$SrSnS$_4$</td>
<td>Cu$_2$S+SrS+SnS$_2$</td>
<td>-0.35</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2CuS+HgS+SnS</td>
<td>0.37</td>
<td>36</td>
<td></td>
<td>2CuS+SrS+SnS</td>
<td>-0.51</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Cu$_2$SnS$_3$+HgS</td>
<td>0.08</td>
<td></td>
<td></td>
<td>Cu$_2$SnS$_3$+SrS</td>
<td>-0.83</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cu$_2$BaSnS$_4$</td>
<td>Cu$_2$S+BaS+SnS$_2$</td>
<td>-0.48</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2CuS+BaS+SnS</td>
<td>-0.64</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cu$_2$SnS$_3$+BaS</td>
<td>-0.97</td>
<td>-</td>
</tr>
</tbody>
</table>

In contrast to I$_2$-II-IV-VI$_4$ with II=Zn, Cd, Hg, those with II= Mg, Ca, Sr, Ba do not have a stable region in the chemical potential space, indicating that they cannot be synthesized and stable from a thermodynamic perspective. For example, Cu$_2$MgSnS$_4$ does not have a stable (black) region in the μ_{Cu}=-0.2 eV plane (see Fig. 3(b)), as well as in other planes with different μ_{Cu} which are not shown here. The main reason for the disappearing of the stable region is from the constraint of MgS and Cu$_2$SnS$_3$, i.e., the MgS line is on the left side of the Cu$_2$SnS$_3$ line in Fig. 3(b). This constraint can be described by the following phase-separation reaction,

$$\text{Cu}_2\text{MgSnS}_4 \rightarrow \text{MgS} + \text{Cu}_2\text{SnS}_3$$ \hspace{1cm} (3).

The calculated energy change of this reaction is exothermic ($\Delta E < 0$ in Table I), meaning that the phase separation of Cu$_2$MgSnS$_4$ will proceed spontaneously, in accordance with the disappearance of the stable region in the chemical potential space. Similarly, for Cu$_2$CaSnS$_4$, Cu$_2$SrSnS$_4$, Cu$_2$BaSnS$_4$, they do not form stable regions either, and their phase-separation reactions corresponding to Eq. (3) are exothermic.
Furthermore, these three compounds also have other phase-separation pathways,
\[
\begin{align*}
\text{Cu}_2\text{II-SnS}_4 & \rightarrow \text{Cu}_2\text{S} + \text{II-S} + \text{SnS}_2 \quad (4) \\
\text{Cu}_2\text{II-SnS}_4 & \rightarrow 2\text{CuS} + \text{II-S} + \text{SnS} \quad (5)
\end{align*}
\]
which are also exothermic (Table I) and can proceed spontaneously. Our analysis showing that the instability for these compounds are directly related to the fact that for group IIA elements, they are more stable in the ionic rocksalt structure with S than in the more covalent tetrahedral environment as in kesterite. The instability increases (ΔE becomes more negative) when the ionicity increases as the II changes from Mg to Ca to Sr to Ba. According to the calculated results, we predict that II=Zn, Cu, Sr, Ba are not thermodynamically stable, and their synthesis and application in real devices are questionable. However, we noticed that there are several experimental reports about the synthesis of Cu$_2$MgGeS$_4$17, Cu$_2$SrSnS$_4$ and Cu$_2$CaSnS$_4$20. We suggest that these samples are only metastable and secondary phases may exist in these samples. More experimental study on these samples is needed.

3.2.2. Stability of Cu$_2$Zn-IV-S$_4$ (IV=Si, Ge, Sn, Pb, and Ti, Zr, Hf)

Besides the substitution of the group II elements, the substitution of the group IV elements also leads to a series of I$_2$-II-IV-VI$_4$ semiconductors. Here we take Cu$_2$Zn-IV-S$_4$ with IV=Si, Ge, Sn, Pb, and Ti, Zr, Hf as examples, to see whether these element substitutions are limited by the thermodynamic stability.

Table II lists the calculated energy change for the possible phase-separation reactions of these compounds. Obviously, Cu$_2$ZnSiS$_4$, Cu$_2$ZnGeS$_4$ and Cu$_2$ZnSnS$_4$ are stable against all the studied phase-separation pathways, consistent with the wide report of their synthesis. However, when IV=Pb, Ti, Zr, Hf all the Cu$_2$Zn-IV-S$_4$ compounds prefer phase-separation to binary or ternary compounds, because at least one of their phase-separation reactions have negative energy change. This indicates that the chemical binding in the binary and ternary compounds is stronger (thus lower formation energy) than in the quaternary ones. Two trends can be found in the energy change ΔE: (i) for the reaction corresponding to Eq. (5), Cu$_2$Zn-IV-S$_4$ → 2CuS+ZnS+IV-S, ΔE decreases from Si to Ge to Sn, and turning to be negative for IV=Pb. This is because for the heavy element Pb, due to relativistic effects, it prefers to be in the 2+ ionization state as in the rocksalt PbS instead to be in the 4+ ionization state as in the tetrahedral environment associated with kesterite structure; (ii) for the reaction corresponding to Eq. (4), Cu$_2$Zn-IV-S$_4$ → Cu$_2$S+ZnS+IV-S$_2$, ΔE decreases from positive to negative as IV changes from Ti to Zr to Hf, indicating that for Hf with more delocalized 5d valence orbital, it prefers to form more ionic binary HfS$_2$ structure rather than the tetragonal Hf-S bond in quaternary Cu$_2$ZnHfS$_4$. (iii) for Cu$_2$Zn-IV-S$_4$ → Cu$_2$-IV-S$_4$ + ZnS, the stability of Cu$_2$Zn-IV-S$_4$ increases slightly when group IV elements change from Ti to Zr to Hf due to increased strain relaxation in the quaternary compounds than in the ternary Cu$_2$-IV-S$_3$ when the size of group IV
elements increase. Considering these trends, we predict that it should be more difficult to form I_2-II-IV-VI_4 compounds when group IV elements become heavy due to the separation to the binary and ternary competing compounds.

TABLE II: The calculated energy change ΔE (in eV) of Cu$_2$Zn-IV-VI_4 (IV=Si, Ge, Sn, Pb, and Ti, Zr, Hf, VI=O, S, Se, Te), through different phase-separation reactions. If the compound has been synthesized, the references are listed in the Ref. column. Because SiS, PbS$_2$, SnTe$_2$, Cu$_2$TiS$_3$, Cu$_2$ZrS$_3$, Cu$_2$HfS$_3$ and Cu$_2$SnO$_3$ have not yet been synthesized or their structures have not been reported, we assume that they take the corresponding structures of SnS, SnS$_2$ and Cu$_2$SnS$_3$ when calculating ΔE of the possible phase-separation reactions.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Phase Separation</th>
<th>ΔE</th>
<th>Ref.</th>
<th>Compound</th>
<th>Phase Separation</th>
<th>ΔE</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu$_2$ZnSiS$_4$</td>
<td>Cu$_2$S+ZnS+SiS$_2$</td>
<td>0.48</td>
<td></td>
<td>Cu$_2$ZnTiS$_4$</td>
<td>Cu$_2$S+ZnS+TiS$_2$</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2CuS+ZnS+SiS</td>
<td>1.89</td>
<td></td>
<td></td>
<td>2CuS+ZnS+TiS</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu$_3$SiS$_3$+ZnS</td>
<td>0.16</td>
<td></td>
<td></td>
<td>Cu$_3$TiS$_3$+ZnS</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td>Cu$_2$ZnGeS$_4$</td>
<td>Cu$_2$S+ZnS+GeS$_2$</td>
<td>0.73</td>
<td></td>
<td>Cu$_2$ZnZrS$_4$</td>
<td>Cu$_2$S+ZnS+ZrS$_2$</td>
<td>-0.27</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2CuS+ZnS+GeS</td>
<td>0.79</td>
<td></td>
<td></td>
<td>2CuS+ZnS+ZrS</td>
<td>1.20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu$_3$GeS$_3$+ZnS</td>
<td>0.08</td>
<td></td>
<td></td>
<td>Cu$_3$ZrS$_3$+ZnS</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>Cu$_2$ZnSnS$_4$</td>
<td>Cu$_2$S+ZnS+SnS$_2$</td>
<td>0.56</td>
<td></td>
<td></td>
<td>Cu$_2$ZnHfS$_4$</td>
<td>Cu$_2$S+ZnS+HfS$_2$</td>
<td>-0.40</td>
</tr>
<tr>
<td></td>
<td>2CuS+ZnS+SnS</td>
<td>0.40</td>
<td></td>
<td></td>
<td>2CuS+ZnS+HfS</td>
<td>1.73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu$_3$SnS$_3$+ZnS</td>
<td>0.08</td>
<td></td>
<td></td>
<td>Cu$_3$HfS$_3$+ZnS</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Cu$_2$ZnPbS$_4$</td>
<td>Cu$_2$S+ZnS+PbS$_2$</td>
<td>1.00</td>
<td></td>
<td></td>
<td>Cu$_2$ZnSnO$_4$</td>
<td>Cu$_2$O+ZnO+SnO$_2$</td>
<td>-1.71</td>
</tr>
<tr>
<td></td>
<td>2CuS+ZnS+PbS</td>
<td>-0.60</td>
<td></td>
<td></td>
<td>2CuO+ZnO+SnO</td>
<td>-0.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu$_3$PbS$_3$+ZnS</td>
<td>-0.11</td>
<td></td>
<td></td>
<td>Cu$_3$SnO$_3$+ZnO</td>
<td>-0.07</td>
<td></td>
</tr>
<tr>
<td>Cu$_2$ZnSnSe$_4$</td>
<td>Cu$_2$Se+ZnSe+SnSe$_2$</td>
<td>0.76</td>
<td></td>
<td>Cu$_2$ZnSnTe$_4$</td>
<td>Cu$_2$Te+ZnTe+SnTe$_2$</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2CuSe+ZnSe+SnSe</td>
<td>0.38</td>
<td></td>
<td></td>
<td>2CuTe+ZnTe+SnTe</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cu$_3$SnSe$_3$+ZnSe</td>
<td>0.05</td>
<td></td>
<td></td>
<td>Cu$_3$SnTe$_3$+ZnTe</td>
<td>0.03</td>
<td></td>
</tr>
</tbody>
</table>

The above discussed instability is reflected by the absence of favorable regions in chemical potential space for the formation of Cu$_2$Zn-IV-S_4 with IV=Pb, Ti, Zr, Hf. In Fig. 3(c), the limits are plotted for Cu$_2$ZnTiS$_4$, where no stable (black) region exists, because of the relative stability of Cu$_2$TiS$_3$. Experimentally Cu$_2$TiS$_3$ has not yet been synthesized, and appears to be unstable with respect to further phase-separation into Cu$_4$TiS$_4$ and TiS$_2$, indicating that the energy change of the phase-separation reaction 2Cu$_2$ZnTiS$_4$ \rightarrow 2ZnS+Cu$_4$TiS$_4$+TiS$_2$ can have even larger value (more negative). Recently Cu$_2$ZnTiS$_4$ (Cu$_2$ZnTiSe$_4$) had been designed and proposed as candidate solar
cell absorber materials for their band gaps comparable with Cu₂ZnSnS₄ (Cu₂ZnSnSe₄) and higher absorption coefficient. However, the present calculation of their thermodynamic stability shows that the two quaternary compounds with Ti are only metastable, which is a serious challenge to their real application besides other issue related to this compound such as poor transport property.

3.2.3. Stability of Cu₂Zn-Sn-VI₄ (VI=O, S, Se, Te)

In Table II, we also listed the phase-separation energy change of Cu₂ZnSn-VI₄ with VI=O, S, Se, Te. We find that when VI = O, the Cu₂ZnSnO₄ compound is not stable. The phase-separations into Cu₂O+ZnO+SnO₂ and 2CuO+ZnO+SnO are both exothermic, which means that the bonding in some of the binary oxides is much stronger than in the quaternary Cu₂ZnSnO₄. Indeed, when bound to oxygen, Cu⁺ tends to favor linear coordination environments as demonstrated in Cu₂O and related delafossite ternary oxides and SnO₂ like to form the rutile structure. In Fig. 3(d), the chemical potential limit is plotted for Cu₂ZnSnO₄, in which the strong stability of SnO₂ makes the stable region disappear. Considering the large negative energy-change of the phase-separation reactions and the strong constraint to the chemical potential range, the synthesis of single-phase Cu₂ZnSnO₄ would be challenging.

Recently, Washio et al. and Yang et al. both reported synthesis of the mixed-anion Cu₂ZnSn(S₁₋ₓOₓ)₄ alloys with the O composition (x) as high as 60% and 27% respectively. They stated that “Oxygen is another group VI element and can replace S in CZTS without disturbing valence. Therefore, Cu₂ZnSnS₄₋ₓOₓ (CZTSO) can also be suitable for thin film solar cells.” However, our calculations show that Cu₂ZnSnO₄ compound is unstable due to the preference of oxides to have different structure and coordination, thus makes this suggestion questionable. Since Cu₂ZnSnS₄ is stable, while Cu₂ZnSnO₄ is unstable with respect to phase separation, there should exist a critical value for the O composition, below which Cu₂ZnSn(S₁₋ₓOₓ)₄ alloys isostructural to Cu₂ZnSnS₄ can be stabilized. When the O composition is higher than the critical value, Cu₂ZnSn(S₁₋ₓOₓ)₄ alloys will be unstable, and the coexistence of secondary compounds – particularly binary metal oxides – are likely to form in the synthesized samples. Based on this, it is necessary to investigate the phase separation in the synthesized samples of these alloys, especially when O composition is high. In contrast to Cu₂ZnSn(S,O)₄, the alloys formed by mixing Cu₂ZnSnS₄, Cu₂ZnSnSe₄, and Cu₂ZnSnTe₄ are stable, e.g., the Cu₂ZnSn(S₁₋ₓSeₓ)₄ alloys have been synthesized with the composition parameter x tunable from 0 to 1, so the properties can be tuned continuously in a wide composition range.

IV. CONCLUSIONS

Using the first-principles calculations, we have studied the thermodynamic stability of three classes of tetrahedral I₂-II-IV-VI₄ compound semiconductors. We show that
only those with II=Zn, Cd, Hg, IV=Si, Ge, Sn and VI=S, Se, Te are stable, but those with II=Mg, Ca, Sr, Ba, IV=Ti, Zr, Hf, and VI=O are unstable because of the phase-separation into the competing binary and ternary compounds. We find that for those unstable compounds, the materials are more ionic and their binary and ternary secondary phases tend to form non-tetrahedral structures such as six-fold rock salt structure. As a result of the limited stability, these elements can only be alloyed into the stable I2-II-IV-VI4 semiconductors with a low composition, and thus their contribution to tuning the material properties such as band gaps is limited. Some unstable I2-II-IV-VI4 compounds have been reportedly synthesized, including Cu2SrSnS4, Cu2BaSnS4, Cu2MgGeS4 and Cu2ZnSn(S1-xOx)4 alloys with a high O composition. We suggest that further study is needed, especially the detection of the secondary compounds in the synthesized samples, which could have similar X-Ray diffraction patterns.49 Our results could provide guideline of understanding the thermodynamic stability limit in the design of new quaternary semiconductors.

Acknowledgements

The work at Fudan University was supported by the Special Funds for Major State Basic Research, National Natural Science Foundation of China (NSFC), International collaboration project, and Program for Professor of Special Appointment (Eastern Scholar). S.C. is supported by NSFC under grant No. 61106087, 10934002 and 91233121. The work at NREL was funded by the U.S Department of Energy (DOE), under Contract No. DE-AC36-08GO28308. The work in Bath was supported by joint CAS/ESPRC Project No. EP/I01330X/1 and EPSRC Project EP/K016288/1.

References:

