Simple Oxazolidine Chiral Diene Ligands for Enantioselective Rh-Catalyzed Conjugate Additions.

Nathan W. G. Fairhurst, a Rachel H. Munday, b David R. Carbery, a•

a Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
b AstraZeneca, Pharmaceutical Development, Silk Road Business Park, Charter Way, Macclesfield, Cheshire, SK10 2NA

E-mail: d.carbery@bath.ac.uk.

Received: The date will be inserted once the manuscript is accepted.

Abstract: Simple oxazolidine-based chiral diene ligands, ultimately derived from serine, have been synthesized using the Seebach self-regeneration of stereocentres strategy. The ligands have been used in the enantioselective Rh-catalyzed conjugate-addition of aryl boronic acids to cyclohexeneone. An efficient “in vacuo” reaction protocol has been developed as part of this study.

Key words: Diene, Chiral, Enantioselective, Rhodium, Oxazolidine

In recent years, there has been a pronounced level of interest in the design, synthesis and evaluation of chiral diene ligands for enantioselective transition metal-catalyzed transformations. Originally, Hayashi reported that rigid bicyclic dienes, such as 1 (Figure 1), acted as excellent chiral ligands for Rh(I)-catalyzed processes. Whilst ligand 1 is clearly a very effective ligand for asymmetric synthesis, accessing 1 is somewhat involved, including resolution of the racemic diene ligand. The report of 1 prompted the exploration of new areas of chemical space, and other laboratories accordingly sought to design efficient syntheses of new diene ligands avoiding the requirement for resolution. For example, the Carreira laboratory synthesized 2 from readily available chiral pool sources.

Figure 1 Representative chiral diene ligands.

The rigid bicyclic scaffold of ligands 1 and 2 is arguably the key to their success in asymmetric synthesis contexts, therefore it is perhaps surprising that chiral diene ligands which offer much greater levels of conformational flexibility should act as competent ligands. Du has extensively reported on the synthesis and application of “simpler” ligand structures, for example, ligand 3 (Figure 1). Recently, the groups of Trost and Yu have reported asymmetric syntheses of ligands 4 and 5 respectively using transition-metal catalysis, however, in the case of 5, this ligand was not accessed as a single enantiomer. We felt that a significant level of structural scope existed to examine new ligand structures with syntheses offering diversity and if possible, both enantiomers accessible from inexpensive enantiopure chiral pool sources.

As part of our interest in synthesizing biologically relevant α- and β-amino acids,5 we have recently reported the use of serine-derived oxazolidines as highly stereoselective motifs for Ireland-Claisen rearrangements.9 The products from this rearrangement were unsaturated derivatives of biologically important unsaturated β,β′-dihydroxy α-amino acid products, offering large levels of structural diversity of alkyl- and allyl-allyl ethers, with allyl ethers 6a-b being representative (Scheme 1). We anticipated that ethers such as 6, derived from serine,10 could be readily transformed to diene ligands 7a-b as depicted in Scheme 1.

Scheme 1 Design principle for oxazolidinyl chiral diene ligands.

Prior to synthesizing 7a-b, esters 6a-b were complemented by three additional esters (6c-e) formed by the alkylation of 8 (Scheme 2). These additional ligands would offer the ability to probe steric and electronic sensitivity of the ligands in addition to being potentially simpler to synthesize. Accordingly, LHMDS-mediated enolization and subsequent reaction with electrophile formed oxazolidines 6c-e in excellent yield.11,12
Oxazolidines 6a-e have been converted to diene ligands 7a-e through a synthetic sequence comprising of LiAlH₄-mediated ester reduction, Swern oxidation and Wittig olefination (Table 1). It is worth noting that this three-step sequence was synthetically amenable, with only a single chromatographic purification required after the final Wittig methylenation reaction.

Scheme 2 Oxazolidine alkylations

With five diene ligands synthesized, we sought to determine their efficacy in an enantioselective transformation. The Rh-catalyzed addition of phenylboronic acid (11a) to 2-cyclohexenone (10) was chosen as this reaction arguably acts as the benchmarking evaluation in the area of chiral diene ligand design. The conditions reported by Yu were chosen as this reaction arguably acts as the optimum temperature to allow catalyst/ligand exchange. However, utilizing our in vacuo conditions, it can be seen that this can be done at room temperature with no loss in yield, and a slight increase in enantioselectivity (entries 1 & 2). Moreover, this removes the need to allow the reaction mixture to cool prior to addition of 10. Under normal reaction conditions (that is, stirring under an inert atmosphere), the reactions proceed sluggishly, even with extended reaction times (entries 3 and 4). However, on heating to 100 °C, it is driven to completion, and a near quantitative yield is obtained (entry 5). Unfortunately, the enantioselectivity is lower than that seen under rotary evaporation.

The reaction is sensitive to the choice of ligand, both in terms of reaction efficiency and enantioselectivity. The reaction is inhibited when the ligand features the methyallyl fragment (7d, entry 4), and enantioselectivity is reduced when the ligand features the crotyl fragment (7e, entry 4). The best combination was seen when the simple ligand (7c, entry 3) was used.

Table 1 Ligand Synthesis

With five diene ligands synthesized, we sought to determine their efficacy in an enantioselective transformation. The Rh-catalyzed addition of phenylboronic acid (11a) to 2-cyclohexenone (10) was chosen as this reaction arguably acts as the benchmarking evaluation in the area of chiral diene ligand design. The conditions reported by Yu were chosen as a starting point because of the structural similarities of the ligands, i.e. the 5-membered ring skeleton in 5 and 7. In conducting the ligand screen it was observed that the reactions were proceeding sluggishly, and extended reaction times failed to achieve full conversion. Importantly though, on solvent removal at reduced pressure, any residual starting material was consumed. Consequently, a new operationally simple procedure was developed whereby on addition of 10, the reaction mixture was transferred to a rotary evaporator. The results from this ligand screen are presented in Table 2.

Table 2 Ligand Screening
aqueous work-up. Assayed using chiral stationary phase HPLC (Chiralpak AD column). See Supporting Information for details.

Finally, a short study of boronic acid reaction partners has been accomplished (Table 4). In the small sample set presented, ligand 7c is seen to offer good enantioselectivity with the highest observed selectivity observed with 4-fluorobenzeneboronic acid (91% ee, entry 2, Table 4). The isolated yield of the product derived from 4-acetylbenzeneboronic acid (12e) is notably lower, even though the enantioselectivity remains high (entry 5, Table 4).

Table 4 Boronic Acid Scope

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ar</th>
<th>Yield (%)</th>
<th>ee (%) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>100 (12a)</td>
<td>88</td>
</tr>
<tr>
<td>2</td>
<td>4-FCCH₃</td>
<td>95 (12b)</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>4-MeOCCH₃</td>
<td>93 (12c)</td>
<td>84</td>
</tr>
<tr>
<td>4</td>
<td>1-Naphthyl</td>
<td>100 (12d)</td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>4-AC₂H₄</td>
<td>24 (12e)</td>
<td>79</td>
</tr>
<tr>
<td>6</td>
<td>4-CIC₂H₅</td>
<td>87 (12f)</td>
<td>83</td>
</tr>
</tbody>
</table>

* Assayed using chiral stationary phase HPLC. See Supporting Information for details.

In conclusion, simple chiral diene ligands have been synthesized from serine. The optimum ligand in this study (7c) is synthesized via a self-regeneration of stereocenters approach via allylation of a serine-derived oxazolidine. As both enantiomers of serine are commercially available and inexpensive, both enantiomers of these ligands will be accessible.

References
(10) It is important to note that the cost ratio of D-serine to L-serine is only 2:1 based on current Sigma-Aldrich prices for comparable grades of product.
(12) Methyallyl iodide prepared by Finkelstein reaction from the homologous chloride, see: Baughman, T. W.; Sworen, J. C.; Wagener, K. B., Tetrahedron 2004, 60, 10943.
Please place the graphical abstract and short title of the article here. The short title will be used as a running header.

Manuscript submission checklist

- Statement of significance of work.
- Full mailing address, telephone, and fax numbers and e-mail address of the corresponding author.
- Graphical abstract.
- 5 key words.
- Original Word file.
- Word file saved as a PDF file.
- Original graphics files.

Send all materials on this list to the appropriate Regional Editor. Keep the original Word and graphics files for revisions and for final submission after acceptance.

(10) It is important to note that the cost ratio of D-serine to L-serine is only 2:1 based on current Sigma-Aldrich prices for comparable grades of product.

(12) Methallyl iodide prepared by Finkelstein reaction from the homolgous chloride, see: Baughman, T. W.; Sworen, J. C.; Wagener, K. B., Tetrahedron 2004, 60, 10943.