Very High Numerical Aperture Fibres

William J. Wadsworth, R. Mike Percival, Geraud Bouwmans, Jonathan C. Knight, Tim A. Birks, Tom D. Hedley, and Philip St.J. Russell Member, IEEE

Abstract—Air-silica microstructured fibres are designed and fabricated to yield numerical aperture greater than 0.9. A model is presented which accurately predicts the structural parameters required in order to realize high numerical apertures. Such fibres have application in lasers and laser-induced-fluorescence systems.

Index Terms—Optical fibers, fiber lasers.

I. INTRODUCTION

HIGH numerical aperture (NA) optical fibres have many uses, for example in the efficient collection of light in multimode structures, for fluorescence monitoring and for double-clad fibre lasers. In high power fibre lasers, low brightness high power laser diodes are coupled into the high NA inner cladding of a double-clad fibre with a doped core. Raising the NA of the inner cladding allows the same pump power to be coupled into a smaller diameter inner cladding. This improves the pump absorption by increasing the overlap of the pump light with the doped core. For collection of light from diffuse sources and transmission to remote detection equipment, increasing the NA increases the amount of light captured for a certain fibre diameter.

In order to achieve a large NA, one must arrange for a core and cladding material of widely differing indices. Unfortunately the range of indices available in transparent solids (including glass and plastics) is relatively small, the lowest attainable value being approximately 1.3. For a core of silica glass this yields a maximum NA of the order of 0.6. In practice, NAs above 0.4 are extremely uncommon in silica fibres.

It has previously been postulated that a photonic crystal fibre (PCF) cladding with high air-filling fraction[1] would provide a low effective index, and thus a high NA when coupled with a solid or PCF inner cladding[2,3,4]. However with air filling fractions of up to 65 %, the measured NA was low – less than 0.5 even for relatively short lengths, when the average index of the cladding would suggest an NA of greater than 0.85. In this paper we analyse theoretically and experimentally the features required in an air-silica structure in order to yield a high NA fibre, in particular the requirement for silica structures thinner than \(\lambda/2 \). Measured NA as high as 0.9 over 41 m of fibre is demonstrated. These high NA PCF structures have recently been used for high power fibre lasers[5].

II. PHYSICAL MODEL OF HIGH NA CLADDING STRUCTURES

The ‘modal sievet model explains endlessly single mode[6,7,8] guidance in PCF through the leakage of high order modes along the bridges of silica between the holes. In the same way, the rather low NA of many air-clad structures is explained by leakage of the high NA modes along the silica bridges connecting the high NA core to the outer jacket. If we consider a high air-filling fraction PCF cladding as an interconnected network of thin silica webs, then it is clear that when the width of the webs is greater than, or of the order of, the wavelength, light will be well confined to the silica and will not penetrate much into the air. Thus the effective index of the silica bridges will be close to silica. In order to lower the effective index it is necessary to have silica webs substantially thinner than the wavelength of light, which is around 1 \(\mu \text{m} \) in the case of cladding pumped lasers, and may be 0.5 \(\mu \text{m} \) in fluorescence collection systems.

Modelling the high air filling fraction PCF cladding as a network of interconnected but independent silica webs, the modal index of the structure is the modal index, \(n_w \), of fundamental mode of the individual silica webs, width \(w \), and is given by standard slab waveguide equations (1-3).

\[
W = U \tan(U) \tag{1}
\]

\[
U^2 = \left(\frac{w}{2} \right)^2 \left(k_z^2 n_1^2 - \beta^2 \right), \quad W^2 = \left(\frac{w}{2} \right)^2 \left(\beta^2 - k_z^2 n_1^2 \right) \tag{2}
\]

re-written as

\[
U^2 = (2\pi\rho)^2 (n_1^2 - n_2^2), \quad W^2 = (2\pi\rho)^2 (n_2^2 - n_1^2) \tag{3}
\]

Where \(n_1 \) is the index of the slab (silica, \(n_1 = 1.456 \)), \(n_2 \) is the index of the cladding of the slab waveguide (air, \(n_2 = 1 \)), \(\lambda \) is the free-space wavelength, \(\beta \) is the propagation constant of the fundamental mode, \(n_w = \beta k = \beta \lambda/2\pi \) is the modal index, \(2\rho = w/\lambda \) is the normalised width of the slab and \(U \) and \(W \) are dimensionless fibre parameters.

Solving (1) and (3) for \(n_w \), we obtain the modal indices of the fundamental modes of the silica webs, and hence the numerical aperture.
of a solid silica inner cladding surrounded by these webs, (fig. 1 solid line). The associated mode profiles are shown in fig. 2.

From these calculations it is immediately apparent that the width of the suspending webs is of paramount importance for achieving a low index cladding. In previously reported structures[2,3] the webs are approximately 1 µm wide, yielding the low measured NA. On Fig. 1 the solid line shows that the real benefit of a silica-air structure is only gained when the supporting webs are half the wavelength or less.

In order to apply this model to real structures we need first to consider whether an isolated slab model is appropriate, or whether the field from one slab will overlap with the next. Even for very thin webs, \(w/\lambda = 0.1 \), the field only spreads out by approximately 2 µm for near IR light (fig. 2). In a typical PCF the pitch is a few micrometers, so adjacent waveguides will indeed be essentially uncoupled.

To further verify the applicability of the simple web theory, the results of complete calculations of the modal indices for several PCF structures (see fig. 3(a),(b),(c)) are also plotted on fig. 1 (open symbols). All of the structures have a minimum wall thickness of \(w = 0.05 \lambda \), and are calculated for different values of \(\Lambda/\lambda \). There is close agreement between the simple model and full calculations for hexagonal hole PCF. The other regular PCF structures (circular holes and Kagomé lattice) have sufficient extra silica to increase the modal index (and lower the NA) substantially compared with independent slab waveguides. From practical experience \(w = 0.05 \lambda \) is an ambitious lower limit for periodic PCF, as this corresponds to extremely thin-walled tubes in the PCF preform stack[6,7]. This then places a limit on the fibre scale as we also require \(w < \lambda/2 \) (for high NA > 0.6, fig. 1), so \(\Lambda < 10 \mu m \) at a wavelength of 1 µm. This has dramatic implications for implementing large mode area, high NA double-clad fibre lasers as it means that high NA and large mode area are not compatible in a regular array PCF. This practical restriction is lifted by using true web structures (fig. 3(d)).

III. EXPERIMENTAL MEASUREMENTS OF NA

We have concentrated on fabrication and measurement of fibres such as those in fig. 3(d), examples of which are shown in figs 4 and 5, with suspending web widths substantially less than 1 µm. This type of structure has the advantage that it may be designed largely independently of the form of the inner cladding, which may be a PCF with large or small pitch (fig. 5), or a solid rod, or conventional step-index fibre (fig. 4). The number and spacing of the webs need only fulfill the requirement that the webs should be uncoupled waveguides.

Measurements of the numerical apertures of several fibres at different wavelengths were made by launching white light from an incandescent bulb into a length of fibre and observing the output pattern at different wavelengths. High NA microscope objective lenses were used to couple light into the fibres, as the output NA observed will be restricted if too low an input NA is used. For most cases a 0.85 NA x60 lens was sufficient, but this was found to give errors when used for fibres with NA > 0.8, so a x100 lens, NA > 0.9 was used in these cases. The output was detected using a small area photodiode (1 mm diameter) which was scanned in an arc at a fixed distance of 50 cm from the end of the fibre. Phase-sensitive detection was used to obtain a signal with wavelength

![Fig. 1. Calculated and measured NA for varying normalized web width, \(2 \rho = w/\lambda \). Isolated slab waveguide model; Full eigenmode calculations for PCF cladding structures fig. 3 (a),(b),(c), with minimum wall thickness \(w = 0.05 \lambda \); Measured NA for three air-clad fibres, PCF core fibre similar to fig. 5 (length 16 m, \(w = 360 \) nm) and two different solid core fibres similar to fig. 4, (lengths 41 and 94 m, both \(w = 220 \) nm).

\[NA = \sqrt{n_i^2 - n_w^2}, \]

![Fig. 2. Mode profiles for slab waveguides of normalised width, \(2 \rho = w/\lambda = 1 \) to 0.1 (inner to outer solid curves) in steps of 0.1. Dotted line represents the dimensions of the slab waveguide.

![Fig. 3. Diagram of generic PCF inner-outer cladding structures; I, inner cladding; O, outer cladding; J, jacket (a) regular circular hole PCF; (b) hexagonal hole PCF; (c) Kagomé lattice PCF; (d) PCF suspended by webs.

![Fig. 4. Experimental NA measurement set-up.

![Fig. 5. Example of a commercial PCF.](image-url)
selection by a 10 nm bandwidth interference filter placed in front of the detector. The NA was taken as the 5% point of the measured angular intensity profile (fig. 6).

Measured NA values for several fibres at different wavelengths are compared with the model in fig. 1. In these measurements there is a clear wavelength dependence of the NA, in accordance with the model. The absolute values fit well with the predicted values for long lengths (20–90 m) of fibres with either a solid core (as fig. 4) or a PCF core (as fig. 5). The suspending web widths are 220 nm and 360 nm for the two types of fibre, with $w/\lambda = 0.20$ and 0.33 at 1.1 µm, giving a measured NA of 0.88 and 0.76 respectively. At visible wavelengths w/λ is greatly increased, but the NA is still high, 0.65 at $\lambda = 450$ nm ($w/\lambda = 0.49$) for the fibres with thin webs. At longer wavelengths the measured NA rises until it is limited by the NA of the launch optics at 0.9. For short fibre lengths (2 m or less) the measured NA is generally higher than predicted. For example the measured NA (fig 1) of solid core fibre A (as in fig 4a) at 600 nm is 0.74 for 41 m length, but 0.81 for 1.5 m length. This gives some indication of the transient length over which modes of higher NA leak from the inner cladding before the steady state is reached.

The higher NA at longer wavelengths (small w/λ) is also visible as a red-coloured fringe to the diverging output beam under white light illumination. This is in marked contrast to the uncoloured profile observed from a multimode step-index fibre where there is only weak dependence of NA on wavelength.

Fig. 4. Doubleclad fibre with a conventional solid silica fibre core and inner cladding, suspended in air. Inner cladding diameter 140 µm. 76 suspending webs of width 220 nm.

Fig. 5. Doubleclad fibre with a PCF core for LIF/TPF. OD 200 µm, inner cladding 60 µm across the hexagonal flats, 48 suspending webs of width 230 nm, inner cladding $\Lambda = 3.8$ µm, $d/\Lambda = 0.4$, core diameter 6.3 µm (endlessly single mode).

Fig. 6. Output signal vs angular divergence for 16 m of doubleclad fibre with Yb$^{3+}$-doped PCF core. Measurements are shown at four different wavelengths.

IV. CONCLUSION

A physical model of air-silica high NA fibres is presented which demonstrates the importance of minimising the width of silica bridges in order to obtain a low cladding index. Several such fibres have been fabricated and the measured properties as a function of wavelength and web thickness follow the predictions well. These fibres show the highest NAs reported of 0.88 over a 41 m length at a wavelength of 1.1 µm, rising to NA > 0.9 at 1.54 µm and decreasing to NA 0.65 at 450 nm. Such structures will lead to performance improvements for cladding-pumped lasers and increased sensitivity in collection of incoherent light.

REFERENCES