Citation for published version:
Wenk, J, Eustis, SN, McNeill, K & Canonica, S 2013, 'Quenching of excited triplet states by dissolved natural
https://doi.org/10.1021/es402668h

DOI:
10.1021/es402668h

Publication date:
2013

Document Version
Peer reviewed version

Link to publication

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Quenching of excited triplet states by dissolved natural organic matter

Jannis Wenk, Soren N Eustis, Kristopher McNeill, and Silvio Canonica

Environ. Sci. Technol., Just Accepted Manuscript • DOI: 10.1021/es402668h • Publication Date (Web): 01 Oct 2013

Downloaded from http://pubs.acs.org on October 5, 2013
Quenching of excited triplet states by dissolved natural organic matter

Jannis Wenk†‡§∥, Soren N. Eustis†⊥, Kristopher McNeill*‡ and Silvio Canonica*†

†Eawag, Swiss Federal Institute of Aquatic Science and Technology
 CH-8600, Dübendorf, Switzerland
‡Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich,
 CH-8092, Zürich, Switzerland
§Present address: Department of Civil & Environmental Engineering,
 University of California at Berkeley
 Berkeley, CA 94720, USA
∥Present address: ReNUWIt Engineering Research Center
⊥Present address: Department of Chemistry, Bowdoin College, 6600 College Station,
 Brunswick, ME 04011, USA

*To whom correspondence should be addressed.
E-mail: silvio.canonica@eawag.ch and kristopher.mcneill@env.ethz.ch
Phone: +41-58-765-5453 (SC) and +41-44-632-4755 (KM)
Fax: +41-58-765-5028 (SC) and +41-44-633-1122 (KM)
Abstract

Excited triplet states of aromatic ketones and quinones are used as proxies to assess the reactivity of excited triplet states of the dissolved organic matter (³DOM*) in natural waters. ³DOM* are crucial transients in environmental photochemistry responsible for contaminant transformation, production of reactive oxygen species and potentially photobleaching of DOM. In recent photochemical studies aimed at clarifying the role of DOM as an inhibitor of triplet-induced oxidations of organic contaminants, aromatic ketones have been used in the presence of DOM, and the question of a possible interaction between their excited triplet states and DOM has emerged. To clarify this issue, time resolved laser spectroscopy was applied to measure the excited triplet state quenching of four different model triplet photosensitizers induced by a suite of DOM from various aquatic and terrestrial sources. While no quenching for the anionic triplet sensitizers 4-carboxybenzophenone (CBBP) and 9,10-anthraquinone-2,6-disulfonic acid (2,6-AQDS) was detected, second-order quenching rate constants with DOM for the triplets of 2-acetonaphthone (2AN) and 3-methoxyacetophenone (3MAP) in the range of $1.30 - 3.85 \times 10^7\,\text{L}\,\text{mol}_C^{-1}\,\text{s}^{-1}$ were determined. Based on the average molecular weight of DOM molecules the quenching for these uncharged excited triplet molecules is nearly diffusion-controlled, but significant quenching (>10%) in aerated water is not expected to occur below DOM concentrations of 22 – 72 mg$_C$ L$^{-1}$.

Excited triplet states are important intermediates in the photochemistry of organic molecules.1,2 The photophysical processes leading to their deactivation and the eventual restoration of the ground electronic state of the parent molecule are generally much slower than those affecting their precursors, the excited singlet states. The relatively long lifetimes of excited triplet states is a direct result of the fact that triplet to singlet transitions are spin-forbidden. Thus, once the triplet state is populated, it has sufficient time (typically on the order of microseconds in solution) to undergo bimolecular reactions. In contrast, molecules in their excited singlet state are deactivated on the nanosecond timescale and therefore have little chance of having a fruitful encounter with a reaction partner.

Besides being involved in direct phototransformation reactions of aquatic contaminants,3 excited triplet states are pivotal players in the aquatic photochemistry of dissolved natural organic matter (DOM).4,5 Such triplet states, termed here as $^{3}\text{DOM}^*$, are considered to be the main precursors of singlet molecular oxygen photoproduced in surface waters,6,7 but may also react directly with various substances present in natural waters. While the first studied reaction directly induced by $^{3}\text{DOM}^*$ was a photoisomerization following triplet–triplet energy transfer,8 later studies focused on the capability of $^{3}\text{DOM}^*$ to induce the transformation of organic contaminants by oxidation.9-12 The variety of aquatic contaminants and natural compounds shown to undergo transformation induced by $^{3}\text{DOM}^*$ has continued to increase in recent years.13-21

Under the conditions generally encountered in sunlit surface waters, the lifetime of excited triplet states is expected to be controlled either by intramolecular radiationless deactivation or by quenching with dissolved molecular oxygen. The latter situation was shown to occur for the
triplet states of three aromatic ketones, which exhibited lifetimes in the range of 1.2 – 1.6 µs in aerated water. The lifetimes of 3DOM* are expected to be highly variable, owing to the complexity of DOM and the presence of various moieties within the same macromolecule, which might be efficient triplet quenchers and accelerate the decay of some 3DOM*. However, in aerated conditions, there is an upper limit to the triplet lifetime, which is imposed by quenching due to molecular oxygen and should generally not exceed a few microseconds. Some attempts were made to detect transients resulting from laser flash photolysis of DOM, but very limited information could be obtained regarding 3DOM*. The obvious reason is that DOM is too a complex mixture of chromophores to allow the extraction of detailed transient absorption and kinetic data related to its triplet states. An indirect approach using the yield of singlet oxygen production and its dependence on oxygen concentration has recently led to the identification of at least two distinct pools of 3DOM* having natural lifetimes (i.e. lifetimes in the absence of oxygen) in water in the range of $\approx 20 – 80$ µs.

Direct determination of triplet quenching rate constants has been possible for more than half a century by now, but extensive data sets for organic quenchers in nearly pure aqueous solution (with organic co-solvent amount $\leq 2\% \text{ vol/vol}$) are still quite sporadic in comparison to those obtained in organic solvents. Aqueous second-order quenching rate constants are available for several compounds of biological relevance, substituted phenols10 and phenylurea herbicides.12 Maximum rate constants obtained were typically in the range of $\approx 2 – 6 \times 10^9 \text{ M}^{-1}\text{s}^{-1}$, which may be considered to be close to the diffusion limit for water as a solvent at room temperature. To date there is no quantitative information about the triplet quenching ability of DOM, although quenching appears to be a realistic possibility owing to the variety of molecular moieties that constitute DOM. There are various timely issues in aquatic photochemistry for which an advance
in knowledge on this topic is critical. A first motivation is derived from our recent studies,31-33 in
which DOM has been shown, for various organic substances, especially aromatic nitrogen
compounds, to reduce their rates of transformation induced by excited triplet aromatic ketones.
Based on various considerations31, 34 triplet quenching by DOM was excluded as a reason for the
observed inhibited transformation, but a direct measurement would add strong evidence for or
against this hypothesis. Second, the use of photosensitizers is a possible option for the
elimination of chemical and biological contaminants from surface waters and wastewaters. To
evaluate the effectiveness of such treatment processes and to estimate its possible impact on the
transformation of DOM, the extent of quenching of the excited triplet photosensitizer by DOM is
an important piece of knowledge. Third, there is an interest in clarifying the role of DOM itself as
a quencher of 3DOM* and in assessing to what extent self-photosensitization may contribute to
the transformation of DOM.

The objective of this study is to possibly detect and quantify the DOM-induced quenching of the
excited triplet states of a few photosensitizers. Aqueous solutions containing the aromatic ketones
benzophenone-4-carboxylate, 2-acetonaphthone and 3-methoxyacetophenone, and the aromatic
quinone 9,10-anthraquinone-2,6-disulfonate, were submitted to laser flash photolysis in the
presence and absence of several dissolved DOM extracts. The selected photosensitizers, chosen
mainly based on our previous studies, have oxidizing excited triplet states and triplet energies in
the range of 249 – 303 kJ mol$^{-1}$ (2.6 – 3.2 eV).35 Their possible interactions with DOM include
oxidative quenching of (mainly phenolic) antioxidant moieties as well as triplet–triplet energy
transfer to chromophoric moieties.
Experimental Section

Chemicals and preparation of solutions. All chemicals were from commercial sources and used as received. Excited triplet state sensitizers: 2-acetonaphthone (2AN) [CAS 93-08-3] >99%, 3-methoxyacetophenone (3MAP) [586-37-8] 97%, 4-carboxybenzophenone (CBBP) [611-95-0] >99%, 9,10-anthraquinone-2,6-disulfonic acid disodium salt (2,6-AQDS) [853-68-9] ≥97%, all Sigma-Aldrich. Excited triplet state model quencher: 2,4,6-trimethylphenol (TMP) [527-60-6] (EGA Chemie, 99%).

Humic and fulvic acid isolates: Leonardite humic acid standard (Catalog number 1S104H, LHA), Nordic aquatic fulvic acid reference (1R105F, NAFA), Nordic reservoir NOM (1R108N, NRNOM), Pahokee Peat humic acid reference (1R103H, PPHAR), Pahokee Peat humic acid standard (1S103H, PPHAS), Pony Lake fulvic acid reference (1R109F, PLFA), Suwannee River fulvic acid standard II (2S101F, SRFA), Suwannee River humic acid standard (2S101H, SRHA), Suwannee River NOM (1R101N, SRNOM), Waskish Peat humic acid reference (WPHAR), were obtained from the International Humic Substances Society (IHSS).

All aqueous solutions were prepared from ultrapure water (resistivity >18 MΩ cm) obtained from Milli-Q (Millipore) or Barnstead water purification systems. Humic and fulvic acid stock solution (~200 mg C L⁻¹) were prepared in phosphate buffer (10mM, pH7). The DOM concentration of the stock solutions was determined, after appropriate dilution, as organic carbon using a Shimadzu V-CPH TOC analyzer (Kyoto, Japan). Prior to spectroscopic measurements DOM solutions were diluted with phosphate buffered water (10 mM, pH 6-10, majority of measurements pH 7) to 0.5 – 35 mg C L⁻¹ (0.041 – 2.92 mmol C L⁻¹) and spiked with triplet sensitizers from methanol (2AN, CBBP, 3MAP, all 0.1M) or aqueous (2,6-AQDS) stock solutions to yield final concentrations of 300 µM (2AN) and 500µM (2,6-AQDS, CBBP, 3MAP), respectively. The presence of methanol
in the aerated aqueous sample solutions at a maximum concentration of 0.5 % vol/vol was previously shown not to affect the triplet lifetimes of the studied ketones.10 A blank sample without DOM containing the respective sensitizer in buffered water only was measured for every series of each DOM. pH measurements were carried out at room temperature on a Metrohm pH meter model 632 (Herisau, Switzerland) or a portable device HANNA HI 99104 (HANNA instruments, Smithfield, RI).

\textbf{Laser spectroscopy.} Time-resolved measurements were obtained via pump-probe transient absorption spectroscopy. The pump laser pulse was generated by a SolsticT amplified Ti:Sapphire ultrafast laser (Newport Spectra-Physics, Darmstadt, Germany). 795 nm pulses (3.2 watt, 80 fs fwhm) were directed into a Topas optical parametric amplifier for wavelength conversion (Light Conversion, Vilnius, Lithuania). The output was tuned to generate an optimal pump wavelength for excitation of the selected sensitizer (CBBP @ 300 nm, 2AN @ 350 nm and @ 325 nm in quenching experiments with TMP, 3-MAP and 2,6-AQDS @ 325 nm). The modified laser pulse was then steered into an EOS transient absorption spectrometer (Ultrafast Systems, Sarasota, Florida) where it was collimated and focused (\sim 1 mm spot size) onto a 1 cm quartz cuvette (Starna Scientific Ltd, Essex, UK). The pump and probe beams converge at the cuvette at a shallow angle to maximum pump-probe overlap, maximizing the effective path length (\sim 5 mm). The probe beam consists of a Nd:YAG laser directed into an optical fiber waveguide to generate a supercontinuum pulse (\sim 365 – 1700 nm, \sim 1 ns fwhm). The probe beam is triggered via TTL pulses from the EOS software to sample different time slices past time zero. The probe beam is split into a signal and reference beam to automatically compensate for intensity variation in the probe. The signal and reference beams are then focused into separate fiber optic inputs each connected to a CCD array spectrometer (365 – 800 nm working range). The inherent time resolution of the instrument is in the sub-nanosecond range, however the \Delta t time window can be
optimized for the collection of short-lived excited singlet species, or longer-lived triplet states. For this study we optimized both the time window and resolution to provide the highest quality data for the target triplet state lifetimes. Thus, although the kinetic traces of the singlet precursors can be obtained with this instrument, we did not focus on these species. The resulting data consists of a three dimensional array of wavelength, \(\Delta \text{Abs} \) and \(\Delta t \). Data analysis was performed with the Surface Xplorer software package (Ultrafast Systems, Sarasota, Florida) and Origin 8.5 (OriginLab, Northampton, MA). The spectroscopic array data was first corrected for any background and scattered laser light present. Then individual transient decays were extracted and fit to a single exponential function to determine relaxation times. Triplet decays for the sensitizers were determined at the following wavelengths: 2AN (440 nm), CBBP (415 nm and 550 nm), 3-MAP (395nm), 2,6-AQDS (390nm and 610nm). The data for the 2,6-AQDS samples was especially complicated and difficult to fit following the procedure outlined above. For these samples the data was processed using a three component singular value decomposition algorithm. The data was then reconstructed from these extracted components and fit to a biexponential decay.

All samples were purged with synthetic air (80% \(\text{N}_2 \), 20% \(\text{O}_2 \); Carbagas, Zurich, Switzerland) before and during measurements and were stirred continuously using a magnetic stirring system (Ultrafast Systems, Sarasota, Florida). For measurements in absence of oxygen samples were purged with argon (purity 5.0, Carbagas).

Results and Discussion

Transient absorption spectroscopy. Figure 1 shows normalized data matrices of laser beam-excited photosensitizers in aqueous solution. Time-resolved spectral data were recorded for
solutions containing no additional component and DOM (SRHA or SRFA) as a possible quencher, respectively. For all employed photosensitizers, clear transient absorption signals in the microsecond time range were obtained. Both photo-excited 2AN (Figure 1a) and 3MAP (Figure 1b) exhibit a single band spectrum with an absorption maximum at 440 nm and 400 nm, respectively, in agreement with published triplet-triplet absorption spectral data.37, 38 The presence of DOM (at a concentration of 27 \text{-} 33 \text{mg}_C \text{L}^{-1}) slightly affects the shape of the spectral bands (in the case of 3MAP, a small red shift and the formation of a shoulder at \(\approx 430 \text{ nm} \) are observed). These spectral changes are too small to allow an assignment to possible transients formed upon triplet quenching. Moreover, they cannot be compared to the clear changes obtained in the presence of TMP, a well-known phenolic quencher (see Figure 2). For the two other photosensitizers, spectra are more complex but appear to be unaffected by the presence of DOM. The spectrum of CBBP (Figure 1c) reveals two maxima at 415 nm and 550 nm and can also be assigned exclusively to the absorption of excited triplet CBBP. The position of the first maximum is affected by the reduced intensity of the probe beam source in the UV range (the actual band maximum is clearly below 390 nm).39, 40 However, this is irrelevant for the measurement of the decay kinetics of the triplet state. Spectra and decay curves for 2,6-AQDS (Figure 1d) possess an initial fast decaying component and a longer-lived species (half-life longer than the observation time). Moreover for 2,6-AQDS, concomitantly with the decay of the component with absorption maximum at 390 nm, an additional band with a maximum absorption at 610 nm appeared. Such a component was assigned previously to 2,6-AQDS-water adducts formed from excited triplet 2,6-AQDS.41, 42 As expected by the choice of the observation time frame (see Experimental Section) no excited singlet states evolving from the ground state were observed. For the sensitizers used here these
Singlet states are very short-lived (e.g. 2AN, 0.19 ns43). The extremely short lifetimes and high triplet yields of the sensitizers (see \(\phi_{\text{ISC}}\) Table 1) effectively rule out possible interactions between DOM and the sensitizers in the singlet state, unless they were associated prior to excitation.

Triplet lifetimes for all sensitizers were determined by exponential fitting as described above and are given in Table 1. Differences between lifetimes reported here and those reported in the literature for both synthetic air and argon purged samples are generally within the uncertainty of the measurements and are likely due to different \([\text{O}_2]\) (i.e. in open cells where ambient conditions might affect oxygen levels) or impurities of the sensitizers and buffer solutions employed. However, the critical issue for this work is the consistency of the experiment between samples within the same series. Careful attention to this factor was paid and variations in triplet lifetimes among measurements performed at different days during the data collection period were found to be negligible indicating that quenching values do not suffer from external influences.
Table 1. Lifetimes and rate constants for the excited triplet photosensitizers

<table>
<thead>
<tr>
<th></th>
<th>2-AN</th>
<th>CBBP</th>
<th>3MAP</th>
<th>AQDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS-RN</td>
<td>93-08-3</td>
<td>2215-77-2</td>
<td>586-37-8</td>
<td>853-68-9</td>
</tr>
<tr>
<td>E_T (kJ/mol)a</td>
<td>24944</td>
<td>28640</td>
<td>30344</td>
<td>25935</td>
</tr>
<tr>
<td>$E^{0'}_{red}$ (V vs. NHE)b</td>
<td>-1.7243</td>
<td>-1.1340</td>
<td>-1.8146</td>
<td>-0.535$^{4/}$</td>
</tr>
<tr>
<td>$E^{0'}_{red}(triplet)$ (V vs. NHE)c</td>
<td>1.10</td>
<td>1.83</td>
<td>1.57</td>
<td>2.39</td>
</tr>
<tr>
<td>ϕ_{ISC}</td>
<td>0.8448</td>
<td>140</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>τ_{TD} (aerated, µs, literature)</td>
<td>1.55 ± 0.0310</td>
<td>349</td>
<td>1.19 ± 0.0810</td>
<td>0.3641</td>
</tr>
<tr>
<td>τ_{TD} (de aerated, µs, literature)</td>
<td>18.450</td>
<td>12 ± 240</td>
<td>3.138</td>
<td></td>
</tr>
<tr>
<td>τ_{TD} (aerated, µs, this work)</td>
<td>1.588 ± 0.095e</td>
<td>2.153 ± 0.030f</td>
<td>1.315 ± 0.007g</td>
<td>0.600 ± 0.054 ; 2.030 ± 0.273h</td>
</tr>
<tr>
<td>τ_{TD} (de aerated, µs, this work)</td>
<td>10.93 ± 0.98i</td>
<td>15.54 ± 2.32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>**k_{DOM}^{DQ}$ (L mol$^{-1}$ s$^{-1}$)j,k</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMP (literature)10</td>
<td>(7.2 ± 0.1) × 108</td>
<td>(2.6 ± 0.3) × 109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TMP (this work)</td>
<td>(6.17 ± 0.16) × 108</td>
<td>(1.88 ± 0.21) × 109</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRFA</td>
<td>(3.47 ± 0.50) × 107</td>
<td>< 1 × 107</td>
<td>(2.47 ± 0.59) × 107</td>
<td>ndl</td>
</tr>
<tr>
<td>NAFA</td>
<td>(1.60 ± 0.29) × 107</td>
<td>nd</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>PLFA</td>
<td>(1.97 ± 0.24) × 107</td>
<td>nd</td>
<td>(1.41 ± 0.37) × 107</td>
<td>nd</td>
</tr>
<tr>
<td>WPHAR</td>
<td>(3.85 ± 0.20) × 107</td>
<td>nd</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>LHA</td>
<td>(1.44 ± 0.20) × 107</td>
<td>nd</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>PPHAS</td>
<td>(2.09 ± 0.42) × 107</td>
<td>nd</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>SRNOM</td>
<td>(1.92 ± 0.25) × 107</td>
<td>nd</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>NAHA</td>
<td>(2.25 ± 0.16) × 107</td>
<td>nd</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>PPHAR</td>
<td>(1.90 ± 0.17) × 107</td>
<td>nd</td>
<td>nd</td>
<td></td>
</tr>
<tr>
<td>SRHA</td>
<td>(1.30 ± 0.63) × 107</td>
<td>nd</td>
<td>nd</td>
<td></td>
</tr>
</tbody>
</table>

aEnergy of the excited triplet state relative to the electronic ground-state. bStandard one-electron reduction potential of the electronic ground-state (unit: V vs. normal hydrogen electrode (NHE)). cStandard one-electron reduction potential of the excited triplet state calculated as $E^{0'}_{red} + E_r/F$; F: Faraday constant (9.6485 × 104 A s mol$^{-1}$). dExcited singlet–triplet intersystem crossing quantum yield. eStandard deviation of 15 measurements at 440 nm. fStandard deviation of 6 measurements at 550 nm. gStandard deviation of 2
measurements at 395 nm. Standard deviation of 5 measurements at 390 nm; AQDS shows biexponential decay kinetics. Standard deviation of 2 measurements at 440 nm. Obtained from measurements in aerated solution (see text). For TMP: k_{TQ}^{TMP} (M$^{-1}$s$^{-1}$). Quenching not detected above the level of uncertainty.
Signal disturbances by DOM are expected to be little (for effects of light attenuation by DOM see next sub-section). Preliminary experiments with several DOM revealed the occurrence of a broad absorption band with maximum between 600 and 700 nm, probably due to the formation of solvated electrons. However, these experiments, conducted with the aim to detect any transient formed from DOM, were performed at much higher energy density (tightly focused pump beam (~ 0.5 mm) and pulse energy > 10 mW) than quenching experiments. Under the conditions used for quenching experiments, only a very low maximum ΔAbs was recorded for DOM blanks (e.g., 0.0020 for WPHAR, 0.0025 for PLFA, 0.004 for NAHA, see also SI Figure S1), and we can safely assume that effects from these weak transients can be ignored in the analysis of the data.

In contrast to DOM, addition of TMP, which is a well-known and effective quencher of excited triplet states, leads to a significant change of the signal pattern obtained for 2AN and 3MAP (Figure 2). In both cases the triplet signal is strongly decreased at short time delays after the pulse and formation of transient species with absorption maxima at 390-400 nm is observed. Such species potentially correspond to the ketyl radical of the photosensitizer and the phenoxy radical of TMP, which are believed to be formed during oxidation of TMP by the excited triplet. While the ketyl radical should be depleted by reacting with O₂ to give the superoxide anion on a time scale of a few µs (e.g. 1.7 µs for benzophenone in aerated solution), the phenoxy radical should be much longer lived. For 2AN the observed lifetime of the feature at 390 nm was 96 ± 10 µs (Ar-purged) and 2.88 ± 0.37 µs (synthetic air), indicating the ketyl radical. For 3MAP the observed lifetime of such a species at 400 nm was 1.82 ± 1.06 µs (synthetic air). However, this measurement was hampered by the overlap with the parent sensitizer triplet signal.
Figure 1. Normalized 2-D contour plots of representative transient absorption data in 10 mM phosphate buffered water at pH 7 (left hand side each figure) and in presence of DOM (right-hand side each figure). Colors indicate the scale of differential absorbance, ΔAbs (normalized independently for each plot).
Figure 2. Normalized 2-D contour plots of transient absorption data in 10 mM phosphate buffered water at pH 7 (left hand side each figure) and in presence of TMP (right-hand side each figure). Colors indicate the scale of differential absorbance, ΔAbs (normalized independently for each plot).

Quenching rate constants

For an exact quantification of the quenching effect on excited triplet states, series of transient absorption measurements using various DOM concentrations were conducted. A representative series of decay curves at 440 nm for the couple 2AN/SRFA is shown in Figure 3a. With increasing DOM concentration a decline in signal quality due to intrinsic light absorption by DOM (decreasing maximum ΔAbs, increasing scattering and limiting the investigable concentrations for most of DOM to ~3 mmol C L⁻¹, i.e., ~36 mg C L⁻¹) was observed that depends on the type of DOM (Absorption: PLFA < NAFA < NRNOM < SRFA < SRNOM < SRHA < PPHAR < PPHAS < WPHAR < LHA). Visual inspection of the decay curves indicated that the
lifetime of excited triplet states remains unchanged or decreased only marginally with DOM concentration.

The relaxation of an excited triplet state in solution may be described by the following equation (in analogy to the formalism used by Wilkinson and coworkers52):

\[k_{TD} = k_{TD}^0 + k_{TQ}^{O_2}[O_2] + k_{TQ}^{DOM}[DOM] \]

(1)

\(k_{TD} \) (s\(^{-1}\)) is the first-order relaxation rate constant of the excited triplet state and includes the contributions of all unimolecular and solvent-induced relaxation channels, summarized by \(k_{TD}^0 \), as well as the bimolecular contributions induced by quenchers, in the present case molecular oxygen and DOM, \(k_{TQ}^{O_2} \) and \(k_{TQ}^{DOM} \) being the corresponding second-order quenching rate constants, respectively. Note that the triplet lifetime corresponds to the inverse of the relaxation rate constant: \(\tau_{TD} = \left(k_{TD}\right)^{-1} \). Results for various quenching experiments are shown in Figure 3b – d as simple Stern-Volmer-plots of \(\left(\tau_{TD}\right)^{-1} \) vs. the concentration of DOM, while the concentration of the other quencher, i.e. molecular oxygen, is kept constant during the individual experimental series. Figure 3b shows plots for 2AN and CBBP in aerated and deaerated solutions. Linear regression analysis of the Stern-Volmer plots yields the desired second-order quenching rate constant, \(k_{TQ}^{DOM} \), as the slope, and the relaxation rate constant in the absence of DOM, \(k_{TD}^0 + k_{TQ}^{O_2}[O_2] \), as the intercept of the regression line.

A summary of the determined rate constants is given in Table 1. We first consider the triplet lifetimes obtained in the absence of DOM. As expected according to equation 1, lifetimes are higher (and first-order relaxation rate constants lower) in oxygen-poor solutions (Ar-purged) than in aerated solutions. To determine second-order quenching rate constants by DOM, series in both aerated and Ar-purged solutions were performed (and yielded comparable rate constants), with
the initial expectation of an improved quantification in the latter case owing to higher fractional changes in lifetime upon DOM addition. However, measurements in aerated solutions turned out to be more robust due to a lesser interference by secondary transients, and so the majority of measurements were conducted in aerated solutions. Among the four tested sensitizers we were able to determine a set of second-order quenching rate constants for 2AN and 3MAP. Constants are in the range of $(1.30 - 3.85) \times 10^7$ L mol$^{-1}$ s$^{-1}$ for 2AN and of $(1.41 - 2.47) \times 10^7$ L mol$^{-1}$ s$^{-1}$ for 3MAP, respectively. Considering the relatively high molecular weight of DOM, these values have to be multiplied by about two orders of magnitude to give second-order rate constants on a molar base (for instance, SRFA contains 52% carbon and has an average molecular weight of 2310 g mol$^{-1}$, which means that an SRFA molecule consists of 100 carbon atoms on average). Such estimated rate constants ($\approx (1.3 - 3.9) \times 10^9$ M$^{-1}$ s$^{-1}$) are not far from the apparent diffusion limit of $\approx 5 \times 10^9$ M$^{-1}$ s$^{-1}$ obtained for electron transfer reactions to excited triplet states of aromatic ketones in aqueous solution10,12 and thus similar to (or, in the case of 2AN even higher than) the second-order quenching rate constants for TMP. One can conclude that DOM is indeed a very effective quencher of excited triplet 2AN and 3MAP on a molar basis, but, owing to the high average size of its molecules, a high amount of it (in terms of weight) is required to produce significant quenching (see next sub-section). Another important observation is that the DOM quenching rate constants for 2AN and 3MAP are not very different, while one would expect a higher quenching rate with 3MAP due to its higher triplet energy and one-electron reduction potential (the latter explains why TMP quenches excited triplet 3MAP more efficiently than excited triplet 2AN10, see also Table 1 and SI, Figure S2). This fact, together with the almost diffusion-controlled rates, suggests that within a single DOM (macro)molecule very efficient triplet quencher moieties are present, which may react through other quenching mechanisms than
electron-rich phenols. Candidates for such additional quenching moieties are chromophoric components of the DOM acting as acceptors of electronic excitation energy in triplet–triplet energy transfer processes. The barely measurable quenching of excited triplet CBBP and the absence of quenching in the case of 2,6-AQDS are probably amenable to the negative electric charge borne by the photosensitizer molecules and the consequent repulsion against the negatively charged DOM molecules. This repulsion is expected to hinder the encounter of these anionic excited triplet photosensitizers with quenching moieties of DOM molecules. By inspecting the parameters given in Table 1 it is clear that neither the energy nor the reduction potential of the excited triplet state can account for the strongly reduced quenching rates of the negatively charged species. To account for the pH range occurring in natural waters and to potentially gain some mechanistic insights into the quenching process, we performed a series of pH-dependent experiments (Figure 3 d). Within the uncertainty of measurements the quenching effect shows independence from pH for both 2AN and CBBP. These data suggest that the quenching rates are unaffected by the protonation state of the DOM molecules and supports the just mentioned suggestion that phenolic moieties are not the main triplet quenchers in the DOM.
Figure 3. (a) Transient absorption decay curves of $^32\text{AN}^*$ at 440 nm with increasing DOM (SRFA) concentration ($\Delta\text{Abs}\,(t) = \text{Abs}\,(t)_{\text{sample}} - \text{Abs}\,(t)_{\text{blank}}$). (b) Inverse lifetimes of $^32\text{AN}^*$ and $^3\text{CBBP}^*$ vs. DOM (NAFA) concentration in synthetic air and argon purged aqueous solutions (10 mM phosphate buffer, pH 7). (c) Inverse lifetimes of the excited triplet state of four different sensitizers with increasing DOM (PLFA) concentration. (d) Inverse lifetimes of $^32\text{AN}^*$ and $^3\text{CBBP}^*$ vs. DOM (SRFA) concentration at pH 6 – 10. Error bars indicate 95% confidence intervals of data fits. In some cases error bars are smaller than data points.
Implications for aquatic photochemistry

The quenching of the excited triplet states of the selected photosensitizers brought about by DOM may be considered as relatively small under the conditions of aerated water, which is prevalent for most sunlit surface waters. To be noted is that under steady-state irradiation, as is the case for solar illumination, a reduction in excited triplet state lifetime quantitatively corresponds to a reduction in excited triplet state concentration, and consequently in the rate constant for triplet-induced transformation of a hypothetical trace contaminant. In this study, the quenching of the triplet states of anionic photosensitizers (CBBP and 2,6-AQDS) could not be quantified owing to its small extent. In contrast, the two photosensitizers present as neutral species (2AN and 3MAP) exhibited a measurable quenching. Using the second-order rate constants given in Table 1, one can assess the DOM concentration needed, for each DOM and each photosensitizer, to reduce the excited triplet lifetime by, for instance, 10%. For such a case, one can write the following equation:

\[
\frac{k_{TD}^0 + k_{TQ}^0 [O_2]}{k_{TD}^0 + k_{TQ}^0 [O_2] + k_{QQ}^{DOM} [DOM]} = 0.9
\]

(2)

Solving for the DOM concentration one obtains:

\[
[DOM]_{-10\%} = \frac{k_{TD}^0 + k_{TQ}^0 [O_2]}{9k_{TT}^{DOM}}
\]

(3)

For all second-order quenching rate constants determined in this study, corresponding \([DOM]_{-10\%}\) values are gathered in SI Table S1. They vary from 1.8 to 6.0 mmolC L\(^{-1}\), corresponding to 22 – 72 mgC L\(^{-1}\). From these calculations one can immediately conclude that below such DOM concentrations no significant quenching of the excited triplet states of the photosensitizers occurs. This was a basic assumption, backed by various pieces of indirect evidence, that we proposed in the frame of our previous works on the DOM-induced inhibition of
triplet-induced transformation of organic contaminants.31,32,34 This assumption is now reinforced based on experimental facts: Dynamic quenching of excited triplet states does not occur significantly at DOM concentrations of a few mg\text{C L}^{-1}. For the studied photosensitizers we exclude static quenching, possibly resulting from formation of photosensitizer–DOM complexes in the ground electronic state, because of their low hydrophobicity and the absence of a positive charge.

With the above calculations and the very reduced amount of quenching observed for anionic photosensitizers in mind, it appears very unlikely that intermolecular reactions involving 3DOM* may play a role in the photoinduced chemical modification of DOM (often referred to as photobleaching54). On the other hand, reactions between 3DOM* and a quencher within the same DOM molecule should be possible, but their importance is still unknown.

The application of photosensitizers for water disinfection and contaminant removal has attracted the interest of various scientists for many decades.55-62 From the results of the present study one can conclude that anionic or neutral hydrophilic photosensitizers will hardly be affected by excited triplet state quenching in the presence of DOM. Thus, reactions induced directly or indirectly (as in the case of singlet molecular oxygen) by the excited triplet states of these photosensitizers are not expected to be attenuated by the presence of DOM, except for the cases in which competition for light absorption (inner filter effect) plays a role. Clearly, cationic and neutral hydrophobic photosensitizers will tend to associate with DOM, and the influence of DOM on their effectiveness cannot be predicted from the results of this study.
Acknowledgements

Authors J.W. and S.N.E. contributed equally to this work. This study was supported by the Swiss National Science Foundation (Beiträge 200021-117911 and 200020-134801).

Notes

The authors declare no competing financial interests.

Supporting Information Available

2 figures and 1 table address additional data. This information is available free of charge via the Internet at http://pubs.acs.org.

References

24. Sharpless, C. M. Lifetimes of triplet dissolved natural organic matter (DOM) and the
effect of NaBH\textsubscript{4} reduction on singlet oxygen quantum yields: Implications for DOM

26. Encinas, M. V.; Lissi, E. A.; Olea, A. F. Quenching of triplet benzophenone by vitamins
347-352.

27. Encinas, M. V.; Lissi, E. A.; Vasquez, M.; Olea, A. F.; Silva, E. Photointeraction of

photooxidation of sulfur-containing amino acids – Nanosecond laser flash photolysis and pulse

transfer between sulfur-containing carboxylic acids and the 4-carboxybenzophenone triplet state
in aqueous solution. 1994, 98 (18), 4854-4860.

81-88.

31. Canonica, S.; Laubscher, H. U. Inhibitory effect of dissolved organic matter on triplet-

32. Wenk, J.; von Gunten, U.; Canonica, S. Effect of dissolved organic matter on the
transformation of contaminants induced by excited triplet states and the hydroxyl radical. Environ.

33. Wenk, J.; Canonica, S. Phenolic antioxidants inhibit the triplet-induced transformation of
5455-5462.

34. Canonica, S.; von Gunten, U.; Wenk, J. Reply to comment on "Effect of dissolved organic
matter on the transformation of contaminants induced by excited triplet states and the hydroxyl

35. Loeff, I.; Rabani, J.; Treinin, A.; Linschitz, H. Charge-transfer and reactivity of nπ* and
ππ* organic triplets, including anthraquinonesulfonates, in interactions with inorganic anions: A
comparative study based on classical Marcus theory. J. Am. Chem. Soc. 1993, 115 (20), 8933-
8942.

37. Treinin, A.; Hayon, E. Quenching of triplet states by inorganic ions. Energy transfer and

38. Shizuka, H.; Obuchi, H. Anion-induced triplet quenching of aromatic ketones by

45. Gorman, A. A.; Parekh, C. T.; Rodgers, M. A. J.; Smith, P. G. The quenching of the triplet states of aromatic carbonyl compounds by triethylamine: Solvent effects on correlations with the function \(\langle 3\Delta E_{O,O} + E(A^*/A) \rangle \). *J. Photochem.* 1978, 9 (1), 11-17.

533 53. Chin, Y. P.; Aiken, G.; Oloughlin, E. Molecular-weight, polydispersity, and spectroscopic

535 54. Del Vecchio, R.; Blough, N. V. Photobleaching of chromophoric dissolved organic matter

537 55. Hiatt, C. W.; Kaufman, E.; Helprin, J. J.; Baron, S. Inactivation of viruses by the

539 56. Gerba, C. P.; Wallis, C.; Melnick, J. L. Disinfection of wastewater by photodynamic
oxidation. Journal Water Pollution Control Federation 1977, 49 (4), 575-583.

541 57. Gerba, C. P.; Wallis, C.; Melnick, J. L. Application of photodynamic oxidation to
disinfection of tapwater, seawater, and sewage contaminated with poliovirus. Photochem.

544 58. Acher, A. J.; Juven, B. J. Destruction of coliforms in water and sewage water by dye-

548 60. Rejto, M.; Saltzman, S.; Acher, A. J.; Muszkat, L. Identification of sensitized
138-142.

192-197.

554 62. Remucal, C. K.; McNeill, K. Photosensitized amino acid degradation in the presence of