SYSTEMATIC DESIGN OF DISSIPATIVE AND REGENERATIVE SNUBBERS

F.V.P. Robinson, FWM Drives Ltd., London, U.K.

B.W. Williams, Heriot-Watt University, Edinburgh, U.K.

ABSTRACT

Current commutation between diodes and switches is possible in hard-switching power-stages over a wide di/dt range, (10-1000+ A/µs) with modern power-devices and hardware practice. Yet, a definitive procedure does not exist for setting di/dt at diode reverse-recovery. Diode turn-off performance is therefore examined, using IGBT's to switch diode-current, to establish if an optimal di/dt exists which minimizes energy-loss associated with diode recovery, when simple snubber-inductance reset circuits are used. Destructive parasitic-oscillation, induced in inverse-parallel IGBT's across reverse recovering freewheel-diodes in IGBT modules, were obtained during experimentation. The origin and cure are presented.

INTRODUCTION

Device manufacturers and users are promoting the view that hard-switching power-stages, using the latest power devices, are best operated with virtually no snubbers [1], i.e. with little current or voltage transient control, other than 'active' snubbing or clamping through switch-drive control, or by device avalanche, or by tailoring device-response (soft-recovery diodes) at turn-off; and devices are being examined to quantify snubberless operating regions [2,3]. However, while this may be desirable from a manufacturer's standpoint, because snubberless designs are generally less forgiving of device-type variation, from a user's point-of-view it is less so, as it represents the removal rather than gradual lowering of a safety-net. Device switching-transitions are heavily dependent upon a host of device, component and hardware characteristics, subject to production-spread and voltage, current and temperature variation. Therefore, with no snubbing or clamping, bracketing emi-emission and power-stage reliability on a sampling basis, must be compounded by loss of consistency in device-stress and magnitude and frequency of voltage and current overshoot and ringing at transitions. With modern devices, snubbers are used more to clamp turn-off voltage overshoot due to energy transfer between series-inductance, and effective device-capacitance at turn-off \(V=Vdoff \text{Lseries} \) and to clamp turn-on current due to energy transfer between freewheel-diode (reverse-recovery) capacitance and series-inductance \(I=I_{dV} \text{Cdiode/Lseries} \). Conflicting requirements, therefore, exist for minimal current and voltage overshoot; and it is worth noting that transient magnitude and damping (with RC-snubber \(C=\frac{\text{Vdoff}}{\text{Lseries} \text{I}_{dV}} \)) are set by the ratio of effective energy-storage components rather than their absolute value, resulting in such paradoxes as transient amplitude and damping may worsen, and noise amplitude coupled into control circuits may increase, when faster devices and tighter hardware-layout are used: reduced circuit-geometry increases parasitic resonant-circuit frequency (30-500 MHz later shown) and initial di/dt and dv/dt; and, so, reduced overlapping conductor loops and plates are required for the same degree of electromagnetic or electro-static coupling. The advantage of smaller resonant-circuits, of course, is reduced energy-loss in their damping, but the small RC-snubbers required to realize it may be overlooked if their is a headlong rush to be snubberless, or to have snubberless devices. Small RC-snubbers, although difficult to design [4], attenuate switching-noise at source, reducing filtering and screening below that required by a snubberless design. Also, apart from greater noise generation, and reduced flexibility in accommodating modification, upgrading and device variation, snubberless power-stages using active-snubbing by gate or drive control, are fundamentally less thermally efficient than snubbed power-stages using the best forms of passive-component snubbing [1]. However, whether active or passive snubbing is used, a procedure for optimizing freewheel-diode reverse-recovery di/dt for minimal power-loss does not seem to exist. An examination of the energy-loss associated with diode-recovery under various switching conditions is, therefore, presented.

COMPARISON OF ACTIVE AND PASSIVE SNUBBING

Idealized waveforms for active and passive turn-on snubbing are given in fig.1. In fig.1A the gate-drive is assumed to produce the same turn-on di/dt and peak diode reverse-recovery current as the series-snubber inductance of fig.1B. Instantaneous-power plots show that passive-snubber energy is transferred from Leeries to the load and the remainder dissipated in voltage clamps, whereas in active-snubbing, no energy transfer occurs and greater energy-loss is concentrated in the switch at turn-on. Nactive/Passive (fig.2) gives a maximum of 2 when \(Tm=0 \). In practice, stray-inductance lowers switch-voltage in active-snubber circuits, reducing switch energy-loss (fig.9), and dynamic-saturation-type effects raise switch-voltage, increasing energy-loss (fig.11 & 12) in passive-snubber circuits at turn-on.

Modern medium-current (10-100 A) power devices are quite tolerant of high turn-off dv/dt, and it is usually only necessary to clamp voltage transients to uphold voltage or repetitive-avalanche ratings, particularly with parallel-connected devices or multiple-dice switches where energy-loss would be concentrated in the first device to breakover. Like current-transient control at turn-on, voltage transient at turn-off is controllable with active or passive snubbing, or clamping. A more complete active/passive comparison is given in [1]. Here, fig.3 gives energy-loss for true and artificial device-avalanche, defined to constitute active snubbing or clamping, and for passive snubbing with an RC-snubber or soft voltage-clamp. With active-clamping or RC-snubbing a multiple of the trapped energy, Leeries\(^{2}/2\), is dissipated \((1+2/X^2)\) or \((1+6C/VosI)\), whereas the best passive clamp, soft voltage-clamp, dissipates trapped-energy without multiplication, and also clamps at the prevailing dc-rail value, and gives relatively constant Leeries and Cclamp reset-time, irrespective of switched current or dc-rail voltage (fig.5C & 6). With idealized turn-on and turn-off waveforms and usual current or voltage modulation, it is apparent that passive-snubbing is more efficient. In practice, active and passive snubbing take place together to some extent, because, in either, Leeries
or switch-voltage is not zero; and it is less obvious that passive snubbing is still fundamentally more efficient than active snubbing. From measured \(I_{rm}, \frac{dI}{dt}, V_{switch} \) and switch energy-loss, measured at IGBT (Toshiba MG25H2YS1) turn-off, with between 4 and 10 clamp-diode-legs in series. It is evident that an energy-loss saving of up to 40% is obtained with passive snubbing over the 25A current range and although measured Wavon is significantly higher (fig.15 & 16) than that calculated from measured parameters, the true difference between active and passive snubbing energy-loss is likely to be higher than shown in fig.17, because estimation of active energy-loss is particularly low. The reason is the greater non-linearity, variation of switch-voltage and sustained current \(I_{rm-peak} \) and switch voltage-fall obtained with active snubbing.

RESETTING SERIES-SNUBBERS

Optimization of soft voltage-clamps (fig.7A) to rapidly reset Laseries is important at high chopping-frequency. Clamp-capacitor voltage, and inductor and resistor current waveforms (fig.5C & 6) show the relatively constant Laseries and clamp reset times and well defined current reset envelope of optimized clamps, at 150V, 250V and 400V for 10 to 100A. Fig.5B gives responses for clamp resistance either side of the optimum \(R \). For higher \(R \), clamp or series reset times are extended. Also, slight circuit overdamping prevents the oscillation seen at clamp-diode recovery with the fastest current reset, but slowest voltage reset, when \(R>\frac{V_s}{I_{rm}} \). Soft voltage-clamp optimization is performed on the curves of fig.4C and 4D for optimised Laseries reset-times. From the normalised overshoot above the dc-rail, \(V_{Cap} \), and capacitor reset-time, \(tr, \) graph (fig.4C), \(tr \) is seen to pass through a minimum as \(V_{Cap} \) decreases. Normalized Laseries reset-time, \(tr \), increases rapidly above \(2\mu s \) (fig.4D). The improvement (fig.4D) is evident from computed waveforms (fig.4A & B). Minimal total reset-time is obtained with \(trn \) (fig.4D) set above the minimum. At high \(\alpha \), a small parallel-connected RC-snubber is required across switch/diode pairs to limit fast initial voltage-transients on clamp parasitic series-inductance (fig.5A). Waveforms fig.5D give diode and switch voltage for a bridge-leg (fig.7B), where switch clamps double as diode clamps. With integrated switch and diode pairs (e.g. IGBT and MOSFET bridge-leg modules) fig.7B is usable, but alternative circuits do exist (fig.7C & 6). Fig.7D has significant disadvantages: Devices are clamped by three diodes in series in the clamp capacitor and observation of device-voltage is made difficult by clamping voltage. Series-diode number is reduced to two in fig.7C, which proves adequate when small RC-snubbers are used to suppress fast initial transients on clamp inductance [4]. A more accessible equivalent circuit is given for fig.7D (fig.7E). Direct connection of clamps across inverse-parallel device pairs (fig.7B) provides the hardest initial clamping with fast switches. Having to overcome three diode forward-recovery and parasitic inductance effects (fig.7D) is avoided, and observation of device voltage is uncomplicated. The same argument applies to regenerative snubbers, fig.8A and fig.8B, and, yet, fig.8A is more commonly examined, [6] and [7], which has more disadvantages than fig.7D because stray inductance is not clamped as part of the series-snubbers. Hence greater RC-snubber capacity is required.

This section is mainly about turn-off passive snubbers or clamps to show that resetting Laseries, without trapped energy multiplication, is straightforward, practically. Most soft voltage-clamp circuits are reducible to the simplest configuration (fig.9) for design, the minuscule of which is more fully covered in [1] [4] and [8]. Generally clamp development effort is related to the speed of response and capacity required, with fast high-capacity clamps being more demanding. Also, re-iterating introductory remarks: design is complicated by conflict between optimum turn-on and turn-off conditions. Minimising Laseries facilitates switch turn-off clamping, but complicates diode clamping through potentially higher more abrupt \(I_{rm} \) turn-on and turn-off influences are now considered in the optimization of Laseries to minimise total energy-loss.

NON-LINEAR SERIES SNUBBING

Good soft-voltage-clamp efficiency arises from clamping and resetting to the dc-rail voltage, rather than \(0\). The turn-on corollary of this for minimal reset-loss, is that series snubbing is only required after switch current exceeds freewheeling load-current when diode recovery begins (fig.1F). Energy-loss associated with four current-rise types, relative to that of linear-inductor series-snubbing, is given in fig.1. For saturable-reactor type rises (fig.1D & E) \(WI/Wb \) increases from 1.1 to 2 to 5, and is confirmed by \(WI/Wb \) plots (fig.14). The ideal current-rise, a current dual of the soft voltage-clamp voltage response at turn-off (fig.1F), is equivalent to fig.1E with \(1/L2=0 \) and gives the lowest curve in fig.14. For \(1/L2<0 \) (fig.1E) a family of higher curves is produced showing reduced energy-loss saving. A notable advantage of fig.1B and 1F type rises, over that produced by saturable reactors in bridge-legs (fig.1D), is reduced fall-off in energy-loss reduction with increasing \(K \) (fig.14). Energy-loss reduction for fig.1D falls off sharply at \(V_{rm} \) and the \(1 \) region is reduced. Saturable reactors, also, by lowering load-current \(dI/dt \) rather than just \(dI/dt \) significantly reduce current-loop bandwidth when \(I_{dc} \) is edgeclamped, which exacerbates lower-current distortion and current-loop stability. A true current dual to the soft voltage-clamp would eliminate these problems. Most current duals to voltage snubbers (fig.13) are well known. Although, with constant load current, the RL-snubber (fig.13B) gives the required current rise, after diode recovery Laseries takes up \(I_{dc} \) and no energy-loss saving results. The principle of a voltage-clamp dual is illustrated by fig.13C which is only valid for constant or slowly changing load-current, \(I_{dc} \), because duality requires that \(I_{dc} \) is kept circulating in a higher than normal snubber inductance, \(L_1 \), and rapidly commutated to and from the switch at turn-on and turn-off. Diode-recovery losses are reduced by \(L_2 \). In principle, \(L_1 \) and \(R \) are only required to prevent \(I_{rm} \) staircasing in \(L_2 \). Energy-loss is related to \(L_2 \), although \(L_2 \) sets diode recovery \(dI/dt \). In practice, \(D \) is as imperfect as \(D \), making realization difficult. Saturable reactors, therefore, seem the only feasible method of synthesizing non-linear current-rise, apart from using the current limiting property of switches, i.e. returning to active-snubbing with its greater loss than linear inductance. Greater flexibility, more consistent turn-on stress, and ease of design and testing make a strong case for sticking with linear inductors, by maximising their utilisation.

LINEAR SERIES SNUBBERS

With linear series snubbers, Laseries total reset energy-loss is given by, eqn.1, if load current,
Io, is assumed constant and switch voltage is assumed negligible.

\[W_{tp} = \frac{1}{2} L_{series} \left(I_{rm}^2 + I_{o}^2 \right) \]

At low \(\frac{di}{dt} \) \(W_{tp} \) is predominantly due to \(I_o \) at turn-off. As \(\frac{di}{dt} \) is increased, by reducing \(L_{series} \), associated loss reduction is counteracted by increasing \(I_{rm} \) associated loss, and \(W_{tp} \) passes through a minimum. The minimum for Siemens HIP103 diode (fig.11) at 100°C is near 600 A/µs, but faster lower voltage diodes have minima at higher \(\frac{di}{dt} \). A minimum is not obtained with active snubbing (fig.18) in the examined \(\frac{di}{dt} \) range, when \(L_{series}=0 \) and \(W_{tp} \) is given by eqn.2.

\[W_{ta} = \frac{1}{2} \frac{d^2 c}{dt^2} \left(I_{rm} + I_{o} \right)^2 \]

In practice, ideal active and passive snubbing conditions are virtually impossible to obtain and \(L_{series}>0 \) and \(W_{ta} \) and \(W_{tp} \) apply in both. \(W_{ta} \) and \(W_{tp} \) (eqn.4 & 6) give the increased energy-loss shown in fig.19; where maximum \(V_{switch} \), \(VA \) (scale in fig.20), and \(L_{series} \)-range for passive and active snubbing, respectively, are based on measurements. Pronounced minima are now obtained in both sets of curves. With active snubbing, energy-loss at turn-on is reduced, but \(L_{series} \) avalanches the freewheel-diode and switch, when either turns off while conducting \(I_{rm} \) or \(I_o \); and trapped energy undergoes high multiplication (fig.23) during reset. No further examination is made of passive snubbing because of the distinct energy-loss advantage of passive snubbing.

Considering additional sources of energy-loss imposed by high \(\frac{di}{dt} \) lowers optimal \(\frac{di}{dt} \) even further. Small RC-snubbers are essential to compensate which are not significantly assistant, in practice. Optimum \(\frac{di}{dt} \) will vary between diodes, and \(L_{series} \)-range for passive and active snubbing, respectively, are based on measurements. Pronounced minima are now obtained in both sets of curves. With active snubbing, energy-loss at turn-on is reduced, but \(L_{series} \) avalanches the freewheel-diode and switch, when either turns off while conducting \(I_{rm} \) or \(I_o \); and trapped energy undergoes high multiplication (fig.23) during reset. No further examination is made of passive snubbing because of the distinct energy-loss advantage of passive snubbing.

Considered energy-loss advantage results from operating near optimum \(\frac{di}{dt} \) (ie. below 400A/µs) rather than at the highest possible value. Similar graphs for 400V and 600V diodes give minima centred on higher \(\frac{di}{dt} \). It is the objective here to determine optimum \(\frac{di}{dt} \) precisely, but to show that one exists and the factors influencing it. Optimum \(\frac{di}{dt} \) will vary between diodes of similar rating, as seen by \(W_{tp} \) curves (fig.25) for four 30A, 1000-1200V diodes, for which \(I_{rm} \) was measured (fig.24) under the same operating conditions. Diode switching-loss was, also, measured by integrating turn-off crossover waveforms (fig.25). The relatively flat curves do not influence optimum \(\frac{di}{dt} \) significantly.

With slower soft-recovery diodes turn-off (fig.27A & C), as with IGBT turn-off (fig.28), RC-snubbers seem unnecessary with voltage-clamps. However, it is difficult to know if a good device will have a turn-off like fig.27B, where initial \(\frac{di}{dt} \) approaches that of an abrupt diode. It would, also, be useful to know how consistent is the tendency for less abrupt current-fall at higher \(\frac{di}{dt} \), which also alleviates RC-snubber requirement.
The BRT30P-1000 data-sheet specifies I_{RM} to vary according to (13). I_{RM} of the BY103 is assumed to have a similar temperature dependency for fig.23.

$\begin{align*}
I_{\text{RM}}(T) &= 0.64t+4.8t^3 \times 10^{-3}(T-25)I_{\text{RM}}[100^\circ C] \\
&= I_{\text{RM}}(T) = 0.64t+4.8t^3 \times 10^{-3}(T-25)I_{\text{RM}}[25^\circ C]/0.64
\end{align*}$

REFERENCES

