Citation for published version:

DOI:
10.1109/VTCFall.2012.6399244

Publication date:
2012

Document Version
Peer reviewed version

Link to publication

(c) 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works. Published version available via: http://dx.doi.org/10.1109/VTCFall.2012.6399244

University of Bath

Alternative formats
If you require this document in an alternative format, please contact: openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Social-Aware Routing for Wireless Mesh Networks

Shadi Saleh Basurra¹, Yusheng Ji², Marina De Vos³, Julian Padget, Tim Lewis, Simon Armour

¹Dept. of Computer Science, University of Bath, UK
²Information Systems Architecture Science Research Division, National Institute of Informatics, Tokyo, Japan
³Toshiba Research Europe Ltd, Bristol, UK

Email: {S.S.A.Basurra,mdv,jap}@cs.bath.ac.uk,Tim.Lewis@toshiba-trel.com, kei@nii.ac.jp, Simon.Armour@bristol.ac.uk

Abstract—In wireless mesh networks (WMN), most routing algorithms apply broadcasting at some stages of the path discovery process. They thereby consume large chunks of the network throughput. Intelligent rebroadcast algorithms aim to reduce this overhead by calculating the usefulness of a rebroadcast and the likelihood of collisions. Unfortunately, this introduces latency and too far this may break the rebroadcast chain and critical intermediate nodes do not receive rebroadcasts, resulting in reduced reachability. In this paper we present our Social-aware Routing Protocol with Parallel Collision Guidance Broadcasting for WMN (SCG). It reduces rebroadcasting without a loss in reachability and without a significant increase in latency. Our claims are validated through simulations comparing our algorithm with existing protocols.

I. INTRODUCTION

Wireless Mesh Networks (WMN) [4] consist of heterogeneous wireless devices acting as mesh routers (MR) or mesh clients (MC). The former, mainly stationary nodes with unlimited power supply, are responsible for establishing a network backbone of self-configuring and self-healing links. They are usually equipped with multiple wireless interfaces to provide connectivity to MC’s and neighbouring MR’s. The MCs on the other hand have a single interface and establish connectivity to remote nodes in an ad-hoc fashion.

WMNs are of academic and industrial interest due to their rapid deployment, scalability and low cost. However, WMNs main bottleneck is the path discovery for routing. With nodes joining, leaving and moving in the network, the paths need constant recalculation. Most existing routing protocols use broadcast as some stage to find routes taking up large proportion of bandwidth, cause loops and can introduce network delay [1].

In this paper we propose the Social-aware Routing Protocol with Parallel Collision Guidance Broadcasting for WMN (SCG). Routing is established using a new parallel collision guidance broadcasting technique, initiated by the network MRs. MRs allocate social tie labels to MC nodes to divide the network into communities. These labels denote long term social relationships that can be identified from contact frequency and duration between nodes. The concept of associating social ties to mobile nodes is not new in itself, but the purpose to which we put them here is novel. Pan Hui et al [5], used a labelling concept to design a social forwarding schemes in Delay-Tolerant Networking (DTN) to determine the node’s future mobility pattern. The authors demonstrated a significant improvement in forwarding performance in terms of both delivery ratio and cost. We use social ties and their footprints as a mechanism to minimise control overheads in WMN. This is described in detail in Section III-D. Through simulation we show that our protocol provides fast routing with in most cases a reduction in control overheads.

II. BACKGROUND AND RELATED WORK

Most routing protocols designed for mobile ad hoc networks (MANET) can also be applied to WMN because they have many features in common e.g. node mobility and a dynamic connection model etc. Yet, these protocols do not take full advantage of MR capabilities. MRs are typically more reliable and have more processing power and energy capacity and are static, whereas MCs do minimal routing to save energy[4]. Therefore, any routing algorithm for WMN needs to account for the capability and capacity differences of MRs and MCs. Two approaches that extend existing ad hoc routing protocols to allow for this are Multi-Radio AODV [11] and field-based routing (FBR) [12].

Most ad-hoc routing algorithms regardless of their degree of compatibility with WMN networks, use broadcasting at some stage to establish routes. Pure flooding guarantees high reachability and good routing time latency in low density networks. However, it also uses a lot of network capacity through redundant rebroadcasts. Smart routing algorithms aim to reduce the number of redundant rebroadcasts, but taken too far this may break the rebroadcast chain and critical intermediate nodes do not receive rebroadcasts, resulting in reduced reachability [1].

Many schemes, e.g. OLSR[6] and FBR[12], have been proposed for nodes to estimate neighbourhood density and trade off low broadcast redundancy with reachability, which in turn leads to the best possible network throughput, reachability levels and low broadcast latency. Most routing protocols designed for WMN see lowering broadcasting latency as a result of efficient broadcasting [13], but not as a protocol design objective. Our view is that both can be reduced by addressing them in the protocol design phase, especially in WMN networks with highly mobile MCs where communications among nodes are short and moderately frequent.
To validate our protocol we compare it to four popular existing protocols: Temporally-ordered routing algorithm (TORA), Dynamic Source Routing (DSR), Optimized Link State Routing Protocol (OLSR) and Ad hoc on-demand distance vector (AODV), which we now briefly describe.

TORA’s [9] main idea is to discover and build a directed acyclic graph (DAG) from sources to destinations, with edges indicating direct communication. TORA promises distributed loop-free and multipath routing. But, node convergence time can be lengthy and can produce temporary invalid routes which further delays the routing. TORA is designed to operate on the top of the Internet MANET Encapsulation Protocol (IMEP)[3]. IMEP incorporates many of ad-hoc network mechanisms by encapsulating routing packets into larger IMEP packets to improve the network performance.

The DSR protocol [7] uses broadcasting combined with local caches of existing routes. A major advantage in DSR is that route discovery and maintenance are performed on-demand since DSR does not broadcast hello message to sense neighbours. However since all packets carry the road map to their destination, this can cause delay and consume large bandwidth in network with large network diameter.

OLSR[6] is a point to point state routing protocol, with lower overheads than pure link state protocols. This is achieved by selecting and using a subset of neighbour nodes called multipoint relays (MPRs) to rebroadcast packets. However, MPR redundancy is needed to obtain reasonable synchronisation between link state databases to prevent loops, generating overheads that reduce the overall network performance.

AODV [10] reduces the routing overheads by creating routes on-demand unlike table-driven protocols that keep lists of routes, like TORA and OLSR. AODV can cope with dynamic networks, but frequent broadcasting can take up bandwidth and cause delay.

III. THE SCG NETWORK ROUTING PROTOCOL

In our protocol we assume that MRs are equipped with multiple wireless interfaces. One of the MR’s non-overlapping radio channels is used to establish connectivity for self-configuring, self-healing links between themselves, forming the backbone channel. The other channels provide connectivity for the MCs and neighbouring MRs. Using the backbone wireless links, MRs pro-actively unicast/multicast MC IP lists with their associated MR addresses to maintain a partial network view. This partial network knowledge at MRs is based on the MC’s social ties (explained in Section III-C) to limit MR’s proactive behaviour, hence reducing overheads. The frequency of proactive data exchange is further constrained to only take place when a MC joins or leaves a MR.

A. Route discovery in SCG (parallel collision guidance [2])

The basic idea behind SCG is that the source MR sends out path discovery commands to the source and destination MCs which then fire off path discovery broadcasts at the same time to find one another. As these messages propagate through the network, they mark the path they take so that when they collided, they can return to the originating node establishing the forwarding route as they go along. To examine this in more detail, consider the scenario in Fig 1. A MC_s in MR_4 wants to send data to MC_d in MR_3. If MC_s does not have a fresh route to MC_d, it contacts MR_4 to request the start of a path discovery process. Thanks to the event driven data exchange between MRs, which is performed efficiently by the footprint mechanism (explained in Section III-C), MR_4 knows that MC_d is hosted by MR_3, and will also know the estimated end-to-end delay time to reach MR_3. This helps MR_4 to calculate the approximate timing to send the path discovery command (PDC) via the backbone and common wireless channels to ensure they arrive at MC_s and MC_d at the same time. The PDC message contains (i) the target IP address, (ii) the MRTL value (see III-B), (iii) the broadcast sequence number and (iv) the broadcast initiation time. Upon PDC receipt, MC_s and MC_d broadcast PDB messages in order to find one another. PDB rebroadcast continues at intermediate nodes (MRs and MCs via the common communication channel) until a positive routing collision occurs, that is when an intermediate node receives PDBs generated from both ends with identical broadcast sequence number and the source IP address of one PDB is the same as the destination IP of the other. This “positive” routing collision occurred at MC_e in Fig 1. if a unidirectional route was required, only one RREP is generated and traverses back via intermediate nodes to MC_s to set half of the newly discovered forwarding path $MC_s \rightarrow MC_e$, while the forwarding path on the nodes $MC_e \rightarrow MC_d$ has been set by PDBs generated from MC_d. On the other hand, If a bidirectional route was required, two route reply messages (RREP) will be generated and forwarded to MC_s and MC_d by the node at which the positive collision had taken place.

B. Reduction of redundant re-broadcasts using MRTL

To further improve the SCG route discovery mechanism between distant nodes of two different MRs, MRs uses a strategy similar to TTL in AODV [10], but instead of hop numbers, we use a MR to live (MRTL) counter. MRTL is the number of MRs a broadcast packet needs to cross before it gets discarded, that is when the MRTL value is zero. MCs act as defence walls to protect their MR zones from rebroadcasting unnecessarily. The MRTL value is maintained during the
proactive data exchange between MR nodes, as MRs can readily identify the number of zones between themselves in the network.

C. Reducing MR backbone control overhead

Unlike routing algorithms that deal with MRs as gateways to forward traffic between nodes, SCG uses MRs to coordinate the parallel collision guidance broadcasting, and encourages ad-hoc multihop/multichannel path set-up. Global knowledge of a MC’s current location is required to implement parallel collision guidance broadcasting. This is prone to scalability issues in large and highly mobile networks. To resolve this, we use a node’s social ties to localize knowledge and distribute it across network nodes. This is achieved by dividing the network into smaller communities based on frequent interactions. Since SCG depends on MRs in coordinating the initiation of path discovery operations for MCs, MRs can easily monitor and detect highly interacting network MCs and label them with a common social tie number. This can also be determined by the MCs themselves.

A social-tie relationship is a unique label that groups nodes with common behaviour. This label represents a long term relationship, and nodes can have multiple social ties. Any changes that occur to social tie members are not circulated through the entire network but just to the MRs of nodes involved. So, no unnecessary data transfers are passed to uninterested groups, and a single point of failure associated with centralised knowledge is avoided.

Each MR can associates a social tie number to MCs which exhibit high communication frequency to form a common social group. Hence, in the event that a MC joins or leaves a MR, only those MRs that host the social group members receive the event notification. ACK messages are used to provide reliable delivery of these notifications. To implement the social tie, we used the concept of a social footprint.

A social footprint represents the social ties of a group of MCs, and consists of the addresses of the MRs that host the social-tie group members. Footprint instances of a particular social tie help the group members to identify all MRs that host them. Only one footprint instance is required at each MR to inform one or more MCs that belong to the same social tie group. All footprint instances that represent a social-tie, distributed across the network MRs, must be consistent at all times i.e. they must hold identical content for the protocol to perform efficiently with minimum redundant rebroadcasts.

Footprints are designed to be volatile by associating a timer with each one. When the timer expires it causes the deletion of its associated footprint, unless it gets reset. Re-setting of a footprint timer occurs when the host MR receives hello from the MCs that belong to the same social-tie as the footprint.

D. Illustrating social-tie and footprint usage

Let us consider the following simple scenario to illustrate the usage of footprints. We use FP_n to mean a footprint of social tie n. Using the mesh network Fig 1, MC_s in MR_4, MC_g and MC_f in MR_1 and MC_d in MR_3 have been recognised and classified by these MRs to share a social tie α due to frequent communication. If the link between MC_s and MR_4 fails due MC_s moving or due to channel interferences etc, MR_4 get triggered and multicasts a notification message to MR_3 and MR_1 about this change. Note that $MR_{2,5}$ do not receive/process this update message because they do not host any MCs with the social tie α. In this case, the traffic is reduced by about 40% of the traffic for pure flooding.

Since MC_s was the last MC to benefit from FP_α stored at MR_4, FP_α never gets refreshed and is eventually deleted from MR_4. During the absence of MC_s, FP_α is kept synchronised and updated at MR_4 until the expiry of its associated timer. We also keep a copy of FP_α at MRs (with the same expiration time) inside the mobile nodes (MC_s in this case). Hence, when that moving node comes in range of a new MR with no FP_α knowledge, the MR uses the stored copy of the newly arrived node if not expired. Else, the new MR uses the expired copy to direct a unicast request to MR_4 for a synchronised copy of FP_α to avoid broadcasting requests for FP_α through the backbone channel. The reason we unicast a request to MR_4 for a copy of FP_α instead of using the one in the arriving node MC_s is that FP_α copy from a mobile node may not be updated due to moving off network.

If FP_α contains multiple MRs, multicast requests can be performed occasionally to request multiple FP_α copies to guarantee a reliable response, and for validation consistency. For protocol efficiency, it is critical to check that FP_α copies received from different MRs are identical. If not, the protocol calls for synchronization between all/some MRs with FP_α.

IV. EXPERIMENTAL PLAN AND SIMULATION RESULTS

We use OPNET [8] to simulate the AODV, TORA, DSR, OLSR and SCG protocols on a 1 km2 grid with 50 nodes, of which about 20% act as mesh routers. For statistical reliability, we performed simulation runs with 5000 random seeds which each lasted 3600 seconds. The MR models were given unlimited battery power, no mobility. They operate two non-overlapping channels via 802.11 interfaces with 11Mbps data rate.
We use the standard Random Waypoint mobility model to handle MC motion. MCs speed values are uniformly distributed between 0-15m/s. In all scenarios a source node generates traffic to five defined MCs. To introduce social awareness, we assumed that each node has a label informing MRs about its group. We fixed the number of social groups into five logical groups each contain 20% of MC, and labels were randomly assigned among MCs at start of each simulation.

The Fig 2 shows the total traffic sent by DSR, SCG, OLSR and TORA protocols for operations such as neighbour sensing and reactive/proactive path discovery procedure etc. Note that for graph visibility, we scaled down the TORA bar by 1/4. To quantify the impact of our footprint, the *CG bars in Fig 2 and 3 respectively represent the total sent/received overheads of SCG when the footprint mechanism is disabled. It shows clearly that TORA has the highest overhead in bits/seconds. In general, however, routing control overheads increase in frequency and size linearly with speed. DSR and AODV show very little increase because their reactive nature. SCG produces slightly higher overheads than AODV. Despite its pro-active behaviour, SCG overheads are lower than expected. This can be attributed to the footprint mechanism and the MRTL mechanism that reduces redundant rebroadcasts during path discovery (See Fig 4).

Fig 3 shows the total average routing traffic received by the various protocols in bits/second, not counting the cost of the unicast data traffic. We scaled the TORA bar by 1/3 in Fig 3 for legibility. DSR, SCG and AODV, in this order, produce less routing traffic, hence deliver the highest throughput, while TORA has the greatest routing overhead. Note that overheads are higher for TORA and OLSR with higher velocities. Due to the reactive nature of DSR, SCG and AODV, overheads are stabilises for different velocities. Interestingly, despite the proactive nature of OLSR and high control overheads, MPRs helped keep overhead consistent over a range of velocities.

The Fig 4 demonstrates that OLSR uses the largest number of pure flooding in the network. Large amount of this rebroadcast generated by OLSR is topology control (TC) messages. For graph visibility, we scaled the OLSR bar by 1/4. The results shows that TORA produced the lowest pure flooding packets, although routes creation process was set during the simulation to be initiated in on-demand. Additionally, large number of routes are discovered and maintained in a proactively distributed fashion by the IMEP on which TORA is designed to operate. The results also demonstrates that DSR is the second highest protocol which forward broadcasts. This was expected since DSR depends only on flooding to find paths. Nodes using SCG forward less broadcasts than AODV due its stochastic overheads control feature and MTL. TORA and OLSR, rebroadcast amount increase while the node velocity raised. However SCG and DSR exhibit the contrary. This presumably caused by physical dis-connectivity due interference in SCG, AODV and DSR.

The experiments resulting in Fig 5 were carried out differently. Instead of varying nodes velocity, we varied the number of nodes (MR and MC) making up routes between a source and a destination starting from 5 until 50 nodes route length. We configured the nodes to remain static. Nodes density was configured to remain approximately the same. This allowed us to test the route discovery delay time (in seconds) in a controlled environment, minimising most issues associated with mobility. Simulated channel conditions and its associative issues, like interference, still exist. Fig 5 indicated that, generally, the route discovery time is proportionate with
path length. TORA suffered from the longest delay in most path lengths, while this delay increased gradually. Our SCG proved to be the lowest in all cases. Interestingly, DSR started low, but later showed a sharp increase in latency. DSR width confidence interval indicates vague prediction of DSR routing delay, and this becomes larger the longer the path it gets.

Fig 6 shows the network delay i.e. the average end-to-end delay for packets sent in the network, while nodes are mobile. Almost similar results obtained to that represented in Fig 5. However, DSR managed to stabilise the route discovery latency over various speeds. On the other hand, TORA proved to introduce the largest latency in highly mobile networks.

V. DISCUSSION

Based on our experiments, we can conclude that only the SCG protocol managed to keep its overhead level and delay reasonably low in most cases. Reducing the time required for routing is an obvious advantage of parallel broadcasting of the source and destination nodes and the usage of social ties. The SCG collision guidance technique can be viewed as a new stochastic broadcast control mechanism.

The DSR protocol performed well in low-mobility environments in term of overheads as shown in Fig 4. This is due to the absence of periodic/proactive behaviour. However, due to DSR’s on-demand nature, it suffered hugely from network latency and path discovery delay. DSR performance degrades rapidly with increasing mobility which cause considerable routing overhead due to the source-routing mechanism, and to the accumulated path information stored in packet headers that need to be processed entirely by intermediate nodes. This routing overhead and latency are directly proportional to the path length. Interestingly, OLSR sent the largest number of pure flooding messages. A large number of the rebroadcasts are topology control (TC) messages. MPRs pro-actively flood TCs to build necessary topology information base, thus using the generated overhead to provide stability and ease of distribution under various network velocities as shown in Fig 3.

TORA’s performance was the worst in most cases. One reason is the redundant invalid routes to destinations due to link failures or network partitioning. Using invalid routes introduces extra delays in discovering and setting valid-directed routes. In addition to that, the IMEP on which TORA is designed to operate is a multi-purpose network layer that was not designed specifically for TORA.

VI. SUMMARY AND FUTURE WORK

The paper presented a Social-aware Routing Protocol with Parallel Collision Guidance Broadcasting (SCG). SCG improved the route discovery mechanism through on-demand parallel collision guidance broadcasting in WMN. Our protocol reduces overhead associated with the mesh clients (MC) related updates exchanged between Mesh routers (MR) via social knowledge and volatile footprints. Moreover, SCG minimises redundant broadcasts via: (i) positive collisions occurring through the parallel broadcast from the source and destination nodes; (ii) the MR to live (MRTL) technique, which is the number of MRs a broadcast need to cross through before it gets discarded by MCs.

We assumed static conceptual clustering of MCs in the network, which can symbolise the long social relationship between nodes. More experiments are needed to study the effect of groups sizes. We are planning to enhance this social tie feature in future by allowing MRs to detect and associate social ties to MCs (in real-time) based on frequency and duration of communications. Also, we plan to test the SCG with various MR mesh topologies to investigate if the topology affects performance.

REFERENCES