Exploring a range of UK seaweed species for the production of fuels and fertiliser

S. Raikovaa, C. Chucka, M. McManusa, M. Allenb, S. Baenac, M. Yallopd

aCentre for Doctoral Training, Centre for Sustainable Chemical Technologies, University of Bath, BA2 7AY, UK.
bPlymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. cAirbus Group Innovations, Pegasus House, Aerospace Avenue, Filton, Bristol, BS34 7PA, UK. dUniversity of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK.

e-mail: s.raikova@bath.ac.uk URL: http://www.bath.ac.uk/csc

1. Macroalgae
- Marine biomass has a higher photosynthetic efficiency (ca. 6–8 %) than terrestrial crops (ca. 1–2 %)1
- Macroalgae are an abundant natural resource, and a promising feedstock for third-generation biofuels
- Promising source of novel fuel crops—no competition with agriculture and less areal constraint
- Numerous methods of processing to fuels: chemical, biological, thermochemical

2. Hydrothermal liquefaction
- Hydrothermal liquefaction (HTL) is an inexpensive and energy-efficient thermochemical route to whole biomass conversion
- HTL is carried out using subcritical water (310–360°C, 100–180 bar) as both a solvent and a reactant for the conversion of biomass to a range of products

3. Biorefinery concept
All products generated via HTL can be used within a biorefinery to create value

4. System optimisation
- HTL was used to process the macroalga Ascophyllum nodosum in a batch system
- A range of temperatures between 300–350 °C was used, as well as a range of heating rates 5–60 °C min\textsuperscripts{-1}
- The composition and properties of each product phase were examined

5. Optimisation of HTL conditions
- Higher heating rates give higher bio-crude oil yields (literature precedent)2
- Higher processing temperatures give higher bio-crude yields
- No notable correlation between temperature and elemental composition or energy recovery in bio-crude oil
- Increasing temperatures improves ammonia recovery in aqueous product, but depletes phosphate

6. Species screening—early findings
- Optimised HTL conditions were used to process a range of South West UK seaweeds
- Trends relating initial biomass composition to product distribution and properties were analysed

7. Further work
- Further investigation of the complex relationship between biomass and product composition to rationalise reactivity
- Based on this, a set of specifications for an ideal biomass for the proposed biorefinery model will be laid out
- A theoretical biorefinery model will be built up, and a Life Cycle Assessment (LCA) carried out

References