Quick, Unconstrained, Approximate L-Shape Method

K. Edum-Fotwe1,2, P. Shepherd1, M. Brown1, D. Harper2, R. Dinnis2
1University of Bath 2Cityscape Digital

Abstract

This simple paper describes an intuitive data-driven approach to reconstructing architectural building-footprints from structured or unstructured 2D pointsets. The function is fast, accurate and unconstrained. Further unlike the prevalent L-Shape detectors predicated on a shape’s skeletal descriptor [Szeliski 2010], the method is robust to sensing noise at the boundary of a 2D pointset.

Keywords: Shape Detection, Hough Transform, Eat-Away Hull

Concepts: Computing methodologies → Shape modeling

1 Introduction and Motivation

The context of this work is the automatic recovery of clean (sparse) architectural geometry from various types of laser scan. In particular this operator aims to recover compact building footprints - that can be used for updating 2D-maps and for 3D urban modelling.

The method applies a simple observation about the nature of common rectilinear forms, in order to ‘eat-away’ at a minimal-area bounding box of a cluster of 2D points. One of the key benefits is determinism. Each ‘eat-away’ hull represents a repeatable product of the input-points. Another key benefit is resolution independence, since the method does not constrain the point-spacing of the input.

The approach executes in two stages (illustrated in fig.1). First it computes the minimal area bounding box (MABB) of the input 2D points. It then refactors each corner of the MABB by approximating the maximal inset edge-lengths, and injecting a corresponding ‘eaten-away’ right-angled corner in place of the MABB vertex. The appendix contains the implementation of the technique.

Measuring Geometric Error - Since this is a heuristic shape approximation method, it is vital to be able to measure the accuracy of each generated polygon relative to the input-points. For this two measures are considered. A discrete maximum point-to-edge distance and a continuous normalised shape-to-shape-overlap ratio. They enable an automatic algorithm to quantify the geometric fit.

The Discrete Hausdorff-Distance Error Measure

\[
f(A, B) = \max(\|A_i - (B_j, B_{j+1})\|) \quad \forall i \in A : \forall j \in B
\]

The Continuous Intersect-over-Union Error Measure

\[
(A \cap B) / (A \cup B) > \omega : \omega \in [0 : 1]
\]

2 Results

Figure 2: an example from the 50cm point-spacing London dataset illustrating (from left to right) input-range-points, normals, difference of elevation building segment, resulting automatic l-shape footprint (scan-converted boundary in gray, eat-away hull in blue)

Figure 3: Building footprints automatically recovered from 1m point-spacing airborne range scans of the city of Bath, UK

Figure 4: Building footprints automatically recovered from 25cm point-spacing airborne range scans of the city of Manchester, UK
This page presents the implemented 'eat-away' function - used to automatically recover the building footprints illustrated in the results section.

function QUALM (points, hull, min_dist) → Quick Unconstrained Approximate L-Shape Method

- **points** - a set of unstructured or structured 2D points
- **hull** - an optional dense extremal boundary hull for the input pointset (to speed up the hough-transform)
- **min_dist** - the minimum length of an edge in an eat-away-corner (a positive scalar to control the minimum inset size)
- **return value** - a 2D polygon : a sequence of vertices representing the detected L-Shape, T-Shape or S-Shape (0-4 refactored corners)

```
ret ← {}
quad ← hough_transform_minimal_area_quad(hull ? hull : points)
for i ← 0 : i < 4 do
  min_distance ← minimum_distance_between_point_and_polygon(quad[i], hull ? hull : points)
  if min_distance > min_dist then
    prev ← quad[i > 0 ? i - 1 : 3]
    pos ← quad[i]
    next ← quad[i < 3 ? i + 1 : 0]
    prev_dx ← pos_x - prev_x
    prev_dy ← pos_y - prev_y
    next_dx ← next_x - pos_x
    next_dy ← next_y - pos_y
    prev_len ← sqrt(prev_dx × prev_dx + prev_dy × prev_dy)
    next_len ← sqrt(next_dx × next_dx + next_dy × next_dy)
    prev_ext ← (prev_len - min_distance)/prev_len
    next_ext ← min_distance/next_len
    prev_half_quad ← {
      prev,
      pos,
      vec2D(pos_x + next_dx × next_ext × 0.5, pos_y + next_dy × next_ext × 0.5),
      vec2D(prev_x + next_dx × next_ext × 0.5, prev_y + next_dy × next_ext × 0.5)
    }
    next_half_quad ← {
      pos,
      next,
      vec2D(next_x - prev_dx × (1 - prev_ext) × 0.5, next_y - prev_dy × (1 - prev_ext) × 0.5),
      vec2D(pos_x - prev_dx × (1 - prev_ext) × 0.5, pos_y - prev_dy × (1 - prev_ext) × 0.5)
    }
    prev_points_in_half ← points_inside_polygon(points, prev_half_quad)
    next_points_in_half ← points_inside_polygon(points, next_half_quad)
    prev_min_distance ← distance_to_closest_neighbour(pos, prev_points_in_half)
    next_min_distance ← distance_to_closest_neighbour(pos, next_points_in_half)
    if prev_min_distance > next_min_distance then
      prev_ext ← (prev_len - prev_min_distance)/prev_len
    else
      next_ext ← next_min_distance/next_len
    end if
    new_prev ← vec2D(prev_x + prev_dx × prev_ext, prev_y + prev_dy × prev_ext)
    add(new_prev, ret) ▷ new prev
    add(vec2D(new_prev_x + next_dx × next_ext, new_prev_y + next_dy × next_ext), ret) ▷ new pos
    add(vec2D(pos_x + next_dx × next_ext, pos_y + next_dy × next_ext), ret) ▷ new next
  end if
  add(quad[i], ret)
end if
i + +
end for
return ret
end function
```