A prototype personalised liner for lower limb amputees: design, manufacture and preliminary test results

E. Seminati1-2*, D. Canepa Talamas3, V. Dhokia3, M. Young2, M. Twiste4,5 and J. Bilzon1,2
1University of Bath, Department for Health, 2University of Bath, CAMERA Centre, 3University of Bath, Department of Mechanical Engineering, 4University of Salford, School of Health Sciences, 5United National Institute for Prosthetics & Orthotics Development (UNIPOD), University of Salford

Summary
Despite the development of complex and robotic prostheses, the inner liner remains a critical component of the prosthesis. This study presents a novel data driven design and manufacture methodology that enables the creation of fully personalised residuum liner for a transtibial amputee, able to reduce the stress on residuum up to 50%.

Introduction
- A prosthetic liner is the interface between the residuum and the prosthesis, to enable correct fitting, reduce friction and compensate for residuum volume changes post amputation.
- The liner comfort determines the daily duration for which patients use their artificial limbs and prevents further pathological issues (1).

This study presents the design, manufacture and preliminary tests of a fully personalised prototype residuum liner for a transtibial amputee.

Methodology

1. A transtibial residuum model was 3D scanned to create a residuum digital model.
2. The liner was designed with a uniform thickness applied to the outside perimeter of the model.
3. Using the cryogenic Computer Numeric Control methods (2), the liner was machined in 3 components. Physical alteration of neoprene foam enabled the precise and rapid generation of the personalised liner.
4. The liner encapsulated the residuum model.

Results

<table>
<thead>
<tr>
<th>Max pressure in Static conditions in kPa (mean ± SD)</th>
<th>Liner</th>
<th>Socks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibula Head</td>
<td>82.1 ± 4.9</td>
<td>89.9 ± 4.4</td>
</tr>
<tr>
<td>Tibia Crest</td>
<td>28.8 ± 2.8</td>
<td>35.1 ± 3.0</td>
</tr>
<tr>
<td>Cut end of the tibia</td>
<td>81.9 ± 1.1</td>
<td>198.9 ± 1.6*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Max pressure in Dynamic conditions in kPa (mean ± SD)</th>
<th>Liner</th>
<th>Socks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibula Head</td>
<td>31.3 ± 1.5</td>
<td>42.4 ± 1.2*</td>
</tr>
<tr>
<td>Tibia Crest</td>
<td>9.7 ± 0.4</td>
<td>17.2 ± 0.4*</td>
</tr>
<tr>
<td>Cut end of the tibia</td>
<td>39.4 ± 1.7</td>
<td>91.1 ± 1.3*</td>
</tr>
</tbody>
</table>

indicates statistical differences (from paired t-test) between the pressure measured with the liner and the socks.

Conclusions
- During both conditions, all pressures were lower with the liner than the sock, which highlights the importance for cushioning the residuum.
- Designs based on scanning and data driven methods for multiple material thicknesses and densities may further reduce pressures.

Further works
- New liners will be machined using different materials and different thicknesses.

REFERENCES