Biofilm reactor staging influences microbial community composition and diversity of under denitrifying conditions - Implications for pharmaceutical removal

Elena Torresi¹,²,**, Arda Gulay¹, Fabio Polesel¹, Marlene M. Jensen¹, Magnus Christensson², Barth F. Smets¹*, Benedek Gy. Plósz¹,³

¹DTU Environment, Technical University of Denmark, Bygningstorvet B115, 2800 Kongens Lyngby, Denmark
²Veolia Water Technologies AB, AnoxKaldnes, Klosterängsvägen 11A, SE-226 47 Lund, Sweden
³Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK

*Corresponding authors: elto@env.dtu.dk, bfsm@env.dtu.dk
Abstract

The subdivision of biofilm reactor in two or more stages (i.e., reactor staging) could represent an option for process optimisation of biological treatment. The biofilm exposure to different influent organic carbon (induced by the staging) can influence microbial activity and, above all, diversity, likely resulting in positive implications on removal of micropollutants. In this study, we investigated the microbial composition and diversity of denitrifying Moving Bed Biofilm Reactors (MBBRs) operated under a three- (S) and single-stage (U) system configuration, while also evaluating denitrification and removal of pharmaceuticals. The effect of long-term exposure (471 days) on microbial community to varying organic carbon type and loading of influent wastewater was assessed through (i) 16S rRNA amplicon libraries and (ii) quantitative PCR (qPCR) targeting relevant denitrifying genes. Significantly higher microbial richness was measured in the staged MBBR (at 99% sequence similarity) compared to single-stage MBBR. A more even and diverse microbial community was selected in the last stage of S (S3), likely due to carbon limitation exposure during continuous-flow operation. Additionally, MBBR staging selected for specific taxa (i.e., Candidate division WS6 and Deinococcales) and higher abundance of atypical nosZ in S3. While the staged system consistently achieved higher denitrification rates (up to 30%) during continuous-flow operation, no major differences between staged- and single-stage configurations were observed in terms of removal efficiency or rate constants of targeted pharmaceuticals (e.g., sulfamethoxazole, atenolol, citalopram). A positive correlation (p<0.05) between removal rate constants of several pharmaceuticals with denitrification rates and abundance of relevant denitrifying genes was observed, but not with biodiversity. Despite the previously suggested positive relationship between microbial diversity and functionality in macrobial and microbial ecosystems, this relationship was not observed in the current study.
Keywords: Moving Bed Biofilm Reactors, micropollutant removal, organic carbon, structure-function relationships; heterotrophic denitrification
1. Introduction

The presence of micropollutants (e.g., pharmaceutical and personal care products) in municipal wastewater effluent is well documented (Barbosa et al., 2016; Dickenson et al., 2011) and has been associated to several environmental risks (Jobling et al., 1998; Painter et al., 2009).

Existing processes in conventional wastewater treatment plants (WWTPs) do not represent a complete barrier for the release of micropollutants with effluent wastewater streams (Carballa et al., 2004). Hence, a number of engineering solutions are being explored to optimize removal of micropollutants via biological wastewater treatment (Falás et al., 2016; Petrie et al., 2014; Torresi et al., 2017, 2016b).

The subdivision of biological reactors in two or more stages (i.e. reactor staging) has recently been proposed to enhance the removal of conventional pollutants (i.e., organic carbon, nitrogen) and pharmaceuticals in biofilm systems such as Moving Bed Biofilm Reactors (MBBRs) (Escolà Casas et al., 2015; Polesel et al., 2017). In MBBRs, biofilms grow on specifically designed plastic carriers, which are suspended and retained in the system (Ødegaard, 1999).

Due to presence of different fractions of organic carbon (e.g., from readily to slowly biodegradable) in wastewater (Roeleveld and Van Loosdrecht, 2002), biofilm in staged MBBR systems can be exposed to different substrate availability conditions in the different stages, potentially leading to different microbial activities in each stage (Polesel et al., 2017). Based on long and short-term laboratory experiments, our previous work showed that the first stage of unstaged MBBR system is effectively exposed to higher loadings of easily degradable organic carbon compared to the last stage, leading to a decrease of denitrification and pharmaceutical biotransformation rate constants in the three sub-stages (Polesel et al., 2017). However, it is unclear whether the gradient of degradable organic carbon, induced by the staging, influenced the microbial community structure and diversity of the biofilm in the multi-stage MBBR.
system in comparison to a single stage configuration. Gradients in concentration and composition of
dissolved organic carbon have previously been shown to differently shape the structure and diversity of
field- (Li et al., 2014) and laboratory-scale (Li et al., 2012) aquifer sediment microbial communities, and
influenced the attenuation of several micropollutants in these systems (Alidina et al., 2014). The
microbial communities in sediments receiving more refractory carbon were more diverse and more
capable of micropollutant attenuation (Alidina et al., 2014).
Hence, elucidating the microbial structure and diversity of biofilms and its influence on the overall
microbial activity is fundamental for providing a basis to improve design and operation of MBBR
towards pharmaceuticals removal. Additionally, although denitrification is a widespread process in
biological wastewater treatment, substantial knowledge gaps remain concerning microbial communities
under denitrifying condition (Lu et al., 2014).
Investigating microbial composition and diversity (i.e., alpha-diversity) in biological systems appears
especially important when assessing rare microbial activities, such as biotransformation of
micropolllutants (Helbling et al., 2015; Johnson et al., 2015a). The existence of a relationship between
microbial diversity and activity has been debated but a positive relationship between biodiversity and
ecosystem functionality is commonly accepted (Briones and Raskin, 2003; Cardinale, 2011; Cardinale
et al., 2012). This relationship has been observed with respect to the removal of several micropollutants
in both full-scale (Johnson et al., 2015a) and laboratory- bioreactors (Torresi et al., 2016a; Stadler et al.,
2016), showing that communities with higher diversity are likely to have more functional traits (Johnson
et al., 2015b). Accordingly, biofilms, potentially exhibiting higher microbial niches and thus biodiversity
than conventional activated sludge (Stewart and Franklin, 2008), can represent a valid option to enhance
micropollutant removal. Furthermore, the exposure of the biofilm to varying carbon types and conditions
through bioreactor staging could additionally positively impact their microbial diversity.
In this study we evaluated the long-term effects of three-stage (S=S₁+S₂+S₃) and single-stage configurations (U) of pre-denitrifying MBBR on the biofilm microbial community structure and diversity. High-throughput sequencing of 16S rRNA gene amplicon and quantitative PCR (qPCR) was used to assess microbial alpha-diversity at local (S₁, S₂, S₃) and system (S, U) level and the abundance of relevant denitrifying genes, respectively. Thus, the main objectives of the study were:

1) to investigate the effect of organic carbon availability tiered by staging MBBRs on microbial structure and diversity at local and system level, benchmarked to a single-stage configuration;

2) to assess the dynamics in microbial community composition and denitrifying genes abundance in the two MBBR systems during long term operation;

3) to assess associations between micropollutant biotransformation, local/system diversity and denitrifying functionalities.
2. Methods

2.1. Continuous-flow operation of the MBBRs and batch experiments.

A detailed description of the three- and single stage MBBR systems is reported in Polesel et al. 2017. Briefly, two laboratory scale pre-denitrifying MBBR with K1 carriers (AnoxKaldnes, Lund, Sweden) were operated in parallel under continuous-flow conditions for more than 471 days.

The single-stage system included a single bioreactor (U) with an operating volume of 6 L. The three-stage configuration included three reactors in series (named S1, S2, S3) with a total operating volume of 6 L (1.5 L for S1 and S2 and 3 L for S3). The two configurations were operated under identical conditions (Table S1 in Supplementary Information), i.e. influent flow rate, hydraulic residence time (HRT= 8.9 h), filling ration (33%), ambient temperature, medium characteristics (pre-clarified wastewater from Mølleåværket WWTP, Lundtofte, Denmark), influent nitrate concentration (~103 mgN L⁻¹), sparging of N₂ gas for mechanical mixing and to ensure anoxic conditions in the two systems. The systems were started with MBBR carriers collected from the post-denitrification zone of Sjölunda WWTP (Malmö, Sweden), which had received long-term methanol dosing.

Two batches experiments were performed to assess denitrification rates and biotransformation rate constants of micropollutants at day 100 (Batch 1) and day 471 (Batch 2) of operation. For the batch experiments, the flow to and between reactors was stopped and the reactors were drained. Subsequently, the reactors were filled with pre-clarified wastewater (daily sampled) and carriers from U, S1, S2 and S3 (20% and 10% of filling ratio for Batch 1 and 2, respectively). The experiment lasted for 24 and 49 h for Batch 1 and 2, respectively.
2.2 DNA extraction and quantitative PCR.

To characterize microbial structure and its variation over long term operation of the two MBBR systems, biofilm carriers for each MBBR were collected at day 0 (inoculum sample), 42, 59, 74, 88, 218, 300, 434 and 471 of operation. The highest number of samples was taken during the first 100 days of operation, when the biomass was adapting to the new operational conditions (i.e., staged pre-denitrification without methanol addition). Each time, biomass was detached from one carrier using a sterile brush (Gynobrush, Dutscher Scientific) and sterile-filtered tap water, the sample was centrifuged (10000 rpm for 5 minutes), and the supernatant was removed. The sample was stored in sterilized Eppendorf tubes at -20 °C until further analysis. DNA was extracted from biomass of one carrier using a Fast DNA spin kit for soils (MP Biomedicals, USA) following manufacturer’s instructions. The quantity and quality of extracted biofilm DNA were measured and checked by its 260/280 ratio by NanoDrop (Thermo Scientific™). Quantitative PCR (qPCR) was performed to estimate the abundance of total bacteria (EUB) with non-specific 16S rRNA gene targeted primers, and the abundance of a suite of genes encoding relevant functions: nitrate reductase (narG), cytochrome cd1 and copper nitrite reductases, nirK and nirS, respectively (Philippot and Hallin, 2005), nitrous oxide reductase of the Proteobacteria nosZ variant (nosZ typical) and of the Bacteroidetes nosZ variant (nosZ atypical). Reported total microbial abundances are expressed as number of gene copies per gram of biomass, while ratios were calculated on the absolute copies number per ngDNA. Primers and conditions for quantification of each gene are listed in Table S2.

2.3 16S rRNA gene amplification, sequencing and bioinformatic analysis.

PCR amplification and sequencing were performed at the DTU Multi Assay Core Center (Kgs Lyngby, DK). Briefly, DNA was PCR amplified using 16S rRNA bacterial gene primers PRK341F (5'-CCTAYGGGRBGCASCAG-3') and PRK806R (5'-GGACTACNNGGGGTATCTAA-3')(Yu et al.,
targeting the V3 and V4 region. PCR products were purified using AMPure XP beads (Beckman-Coulter) prior to index PCR (Nextera XT, Illumina) and sequencing by Illumina MiSeq. Paired-end reads were assembled and screening was implemented using mothur (Schloss, 2009). High quality sequences were then transferred to the QIIME environment and OTUs were picked at 93, 95, 97 and 99% sequence similarity using the UCLUST algorithm (Edgar et al., 2011) with default settings, and representative sequences from each were aligned against the Silva123_SSURef reference alignment using SINA algorithm (Quast et al., 2013). Aligned sequences were then used to build phylogenetic trees using the Fast Tree method (Price et al., 2009).

Taxonomy assignment of each representative sequence at all similarity levels was implemented using the BLAST algorithm (Altschul et al., 1997) against the Silva128_SSURef database. Sequences with reference sequence hit below 90% were called unclassified. Subsampling at depth of 14,000 sequences was performed to equalize sample sizes for further analysis.

Meta communities were created by combining OTU libraries of S1, S2 and S3 reactors and adding into the OTU tables of original samples for further subsampling process. Alpha diversity of OTU libraries was measured using the Chao1, Shannon, and ACE metrics as implemented in R using Phyloseq package (McMurdie and Holmes, 2013). Microbial evenness was estimated as H_1/H_0 as described in Johnson et al. (2015a). Distance matrices were constructed using the Bray-Curtis (Bray and Curtis, 1957) algorithms in R. Moving windows analysis were implemented using the microbial community of the inoculum as the reference point as described in Marzorati et al. (2008). Most abundant taxa and enriched taxa in S and U reactors were visualized using the Pheatmap package in R. Top 50 taxa were selected and compared within the samples taken after 200 days of operation.
2.4 Denitrification in continuous-flow and batch experiments

During continuous-flow operation, system denitrification performance in the two MBBR systems was assessed by measuring (i) COD removal rate $r_{\text{COD}} \left(\text{gCOD m}^{-2} \text{d}^{-1} \right)$ normalized per available surface area (Table S1) per reactors calculated from influent and effluent COD concentration at each stage; (ii) denitrification rate normalized per surface area of reactor $r_{\text{NOx-N}} \left(\text{gN m}^{-2} \text{d}^{-1} \right)$ calculated from influent and effluent concentration of NOx-N (accounting for both NO3-N and NO2-N; Sözen et al., 1998) at each stage. Measurements were taken biweekly during the first 100 days operation to ensure stable start-up of the systems and bi-monthly subsequently.

During batch experiments, biomass specific denitrification rates $\bar{k}_{\text{NOx}} \left(\text{mgN g}^{-1} \text{d}^{-1} \right)$ were derived through linear regression of NOx-N utilization curves for each sub-stage MBBR (Polesel et al., 2017).

Specific denitrification rate at system level in S was calculated according to Eq. 1:

$$k_{\text{NOx},S} = \frac{k_{\text{NOx},S1} + k_{\text{NOx},S2} + k_{\text{NOx},S3} + \sum_{SMBBR} \bar{k}_{\text{NOx},S}}{\Sigma_{SMBBR} V_S}$$

(Eq.1)

Where $\bar{k}_{\text{NOx},S1}$, $\bar{k}_{\text{NOx},S2}$, $\bar{k}_{\text{NOx},S3}$ indicate specific denitrification rates in S1, S2 S3 respectively, X (g L$^{-1}$) and V (L) at the nominator the biomass concentration (expressed in g of Total Suspended Solids, TSS) and the volume of each MBBR stage, and X_{SMBBR} (g L$^{-1}$) and V_S (L) at the denominator, the biomass and volume of the staged system as a total MBBR (S).

2.5 Micropollutants in continuous-flow and batch experiments

Only indigenous pharmaceuticals occurring in municipal wastewater were quantified, as no reference pharmaceuticals were spiked during continuous-flow and batch experiments. Twenty-three pharmaceutical, typically present in wastewater influents (Margot et al., 2015), were targeted which
includes six groups of compounds: beta-blocker, sulfonamide antibiotics sulfadiazine, anti-inflammatory, antiepileptic/ antidepressants pharmaceuticals, X-ray contrast media. The complete list of targeted pharmaceuticals is reported in section S1 of the Supplementary Information.

Continuous-flow samples were taken in two separate sampling campaigns (lasting 5 and 3 days, respectively), before the execution of Batch 1 (100 days) and 2 (471 days) experiments. Removal efficiencies were calculated by measuring influent and effluent concentration in the two systems (Polesel et al., 2017).

During batch experiments three main micropollutant removal mechanisms were observed: (1) biotransformation, (2) retransformation to parent compounds (i.e., deconjugation), (3) enantioselective biotransformation (Polesel et al., 2017). Pseudo first-order transformation kinetics k_{Bio} (1, L g$^{-1}$ d$^{-1}$), retransformation rates k_{Dec} (2, L g$^{-1}$ d$^{-1}$), biotransformation rate constant of enantiomer 1 and 2, $k_{\text{bio,1}}$ and $k_{\text{bio,2}}$, (3, L g$^{-1}$ d$^{-1}$) were estimated as described in Polesel et al., 2017 using the Activated Sludge Model framework for Xenobiotics (ASM-X) (Plósz et al., 2012).

Subsequently, the estimated k_{Bio} and k_{Dec} in each sub-reactor of the staged MBBR configuration (Table S3) were used to calculate (i) system-level biotransformation/retransformation rate for S for each micropollutant and (ii) collective rate constants of multiple pharmaceuticals.

(i) As described for specific denitrification rate (Eq. 1), system-level $k_{\text{Bio,S}}$ (and similarly $k_{\text{Dec,S}}$) were calculated according to Eq. 2:

$$k_{\text{Bio,S}} = \frac{k_{\text{Bio,S1}} \cdot \Sigma_{S1} + k_{\text{Bio,S2}} \cdot \Sigma_{S2} + k_{\text{Bio,S3}} \cdot \Sigma_{S3}}{\Sigma_{\text{SMBBR}} \cdot V_S}$$

(Eq.2)

(ii) Additionally, to compare the performance of each sub-stage of S MBBR with U MBBR in terms of micropollutant biotransformation, we assessed the collective rate constants of
multiple pharmaceuticals biotransformation and retransformation (\(\text{collective } k_{\text{BioS1}}/k_{\text{DecS1}}, k_{\text{BioS2}}/k_{\text{DecS2}}, k_{\text{BioS3}}/k_{\text{DecS3}}, k_{\text{BioU}}/k_{\text{DecU}}\)). The rates were calculated by scaling each compound’s normalized rate (mean of 0, standard deviation of 1) and averaging of the scaled rates, as previously considered (Johnson et al., 2015a; Zavaleta et al., 2010).

2.6 Analytical methods

All the samples taken for analysis of conventional pollutants i.e., NO\(_3\)-N, NO\(_2\)-N, NH\(_4\)-N, soluble COD (sCOD) and biomass concentration in both continuous operation and batch experiments were previously described in Polesel et al., 2017. Wastewater fractionation to assess, e.g., biodegradable COD and the two fractions, readily biodegradable COD and slowly biodegradable COD was performed according to Roeleveld and Van Loosdrecht (2002).

Samples for micropollutants were frozen at -20 °C prior analysis and analyzed using HPLC-MS/MS as described in Escolà Casas et al. (2015). Information regarding targeted micropollutants, HPLC-MS/MS and mass spectrometry conditions, limit of quantification and detection are shown in Escolà Casas et al. (2015).

2.7 Statistical analysis.

Correlation between \(k_{\text{Bio}}, k_{\text{Dec}}, \text{collective rate constants } k_{\text{Bio}}/k_{\text{Dec}}, \text{denitrification rates } \bar{k}_{\text{NOX}}\) and biodiversity indices (Shannon, ACE, Chao and evenness indices) was assesses using in Graph Prism 5.0. The statistical methods comprise (i) one way analysis of variance (ANOVA) with Bonferroni post-hoc test (significance level at \(p<0.05\)); (ii) Pearson correlation analysis (\(r\) values reported) and adjusted \(p\)-values (two-tailed). Although, Wilk-Shapiro test of normality may suggest a normal distribution (\(p<0.05\))
as the underlying distribution for the obtained biotransformation rate constants, bias could occurred due to the small sample size (equal to 4). Pearson coefficients were reported as an indication of the strength of the association between the targeted parameters and micropollutant biotransformation rate constants.
3. Results and discussion

3.1 Comparison of continuous-flow operation performance in S and U MBBR systems

3.1.1. Denitrification

The loading of readily biodegradable (S_S) and hydrolysable (X_S) fractions of COD in influent wastewater varied significantly through the experimental time (Fig. S1), with X_S typically contributing to more than 50% of biodegradable COD (bCOD). Most of influent S_S was utilized in the first stage S1 (on average 70%, Fig. S2a), leading to lower carbon loadings in the following stages (1.6 ± 0.4, 0.78 ± 0.2, 0.6 ± 0.2 gCOD d$^{-1}$ in S1, S2, S3 respectively, Polesel et al., 2017). A decrease in the surface-normalized COD removal rates (r_{COD}, gCOD d$^{-1}$ m$^{-2}$) could be observed after approximately 70 days of operation for the staged and un-staged MBBR, respectively, due to differences in carbon loading (Fig. S1). Except for few sampling days where r_{COD} in the staged MBBR was higher (up to 2-fold) than in the un-staged MBBR, no major differences in removal of COD were observed in the two systems (Fig 1a). Higher variability of performance was observed in the removal of nitrogen species NO$_X$-N (Fig 1b). The three-stage MBBR generally outperformed the single-stage system (higher up to 30%, for ~60% measurements) in terms of r_{NOx-N} after 50 days of operation. Fluctuations in r_{NOx-N} were also caused by the variance in the influent bCOD. Biomass concentration (as gTSS L$^{-1}$) rapidly increased in the first 100 days of operation (Fig. S3), reaching values (average ± standard deviation) of 4.9 ± 0.9, 5.2 ± 1.9, 4.7 ± 1.2, 4.47 ± 1.3 g L$^{-1}$, for S1, S2, S3 and U, respectively.

Overall, data during continuous-flow operation suggest an enhancement in denitrification performance in the three-stage MBBR, possibly explained based on reaction kinetics principles (Plósz, 2007), e.g., maximization of the uptake rate of S_S and less degradable carbon in the stages of S configuration.
Additionally, differences in nitrogen oxide reduction with a similar COD utilization were also observed during batch experiments, resulting in different calculated observable yield $Y_{H,obs}$ (mgCOD mgCOD$^{-1}$) in the four MBBRs (Polesel et al., 2017).

3.1.2 Micropollutant removal

During continuous-flow operation, 11 of the 23 targeted compounds were detected in the pre-clarified wastewater, including compounds such as atenolol, citalopram, diclofenac, sulfamethoxazole, erythromycin and iohexol (Fig. 1 c, d). Removal efficiencies of micropollutants (calculated according to Eq. S2) during the two sampling campaigns (at ~100 and 470 days of operation) were compound dependent, with atenolol and citalopram having the highest removal (72% and 56–67%, respectively) and sulfamethoxazole a negative removal (> -150%) due to possible de-conjugation of human metabolites (Polesel et al., 2017). The removal efficiency of the measured pharmaceuticals was not significantly different between U and S MBBR system in the two sampling campaigns (Fig. 1c,d).
Figure 1. Measured data from continuous-flow operation. Comparison between COD removal rates (r_{COD}, gCOD d$^{-1}$ m$^{-2}$) and denitrification rate ($r_{\text{NOx-N}}$, gN m$^{-2}$ d$^{-1}$) in the staged and un-staged MBBR (a and b); comparison between micropollutant removal (%) in S and U in the first (c, ~100 days of operation) and second (d, ~470 days of operation) campaigns. Dashed black line in (b) shows linear regression (slope 0.80 ± 0.07). Abbreviations: ATN = atenolol; CIT = citalopram; TMP = trimethoprim; DCF = diclofenac; IBU = ibuprofen; MET = metoprolol; SMX = sulfamethoxazole; SMZ = sulfamethizole; VFX = venlafaxine; ERY = erythromycin; IOH = iohexol.

3.2 Microbial community structure and diversity in S and U MBBR systems
Microbial diversity in the two MBBR systems was assessed at 93%, 95%, 97% and 99% sequencing similarities cut-offs to maximize the resolution of the α-diversity analysis between the four reactors. After implementation of quality control measures, a total of 3178345 high quality sequences were obtained for each clustering, subsequently rarefied to 15800 sequences per sample. Alpha-diversity (expressed as Shannon diversity, ACE and Chao richness indices) increased overall with increasing sequence similarity cut-offs (Fig. 2)– as expected (Birtel et al., 2015). As the two MBBR systems followed similar patterns over the time in terms of community diversity (Fig. 2), the α-diversity was likely influenced by variations in influent wastewater composition (in terms of COD and microbial community in the influent wastewater). Accordingly, linear regression analysis (Fig. S4) suggested a significant (p<0.05) positive linear relationship between influent sCOD with microbial richness (ACE and Chao) in U (R^2 of 0.88, n=6) and S1 (R^2 of 0.80, n=6) at 99% similarity, but not for S, S2 and S3. No major differences were observed in terms of Shannon diversity and evenness indices over time between S and U (Fig. 2), while ACE and Chao richness presented overall higher values in S compared to U (with increasing differences at increasing sequences similarity cut-offs, from 23% to 30% for 93% and 99, respectively).

Furthermore, we assessed how the difference in the microbial community diversity in S and U (β-diversity) changed over the duration of the experiment and estimated the time needed for the MBBR microbial communities to reach a steady composition that was dissimilar from the inoculum (Fig. 3). Moving window analysis (MWA) was implemented using the reciprocal of Bray-Curtis indices measured at different sequence similarities (Fig. 3). Microbial community similarity significantly decreased from the same inoculum sample during the first 200 days of operation, subsequently reaching a stable
composition for the rest of the experiment. Bray-Curtis indices profiles (Fig. 3) for S and U decreased to the highest extent at 99% sequence similarity cut-off.

Figure 2. Shannon, richness (Chao and ACE) and evenness (H_1/H_0) indices measured at different time points for the staged (S) and un-staged (U) MBBR at 93, 95, 97 99% of sequencing similarity. Error bars define standard errors.

As the MBBR microbial communities and the difference between them appeared stable after approximately 200 days of operation based on MWA, we averaged the Shannon, richness and evenness indices after 200 days of operation (n=4) to assess statistical difference between the two systems and for
each sub-stage of S (Fig. 4). For all four tested sequence similarity levels, no significant difference was observed for the Shannon diversity and evenness for the microbial communities prevailing in S and U (reported at 97 and 99%, Fig. 4a–b). On the other hand, microbial richness (ACE and Chao) was higher in S than to U at both sequence similarities, with significant difference at 99% sequence similarity cut-off (Fig. 4d).

Figure 3. Moving window analysis (MWA) using reciprocal of Bray-Curtis indices (β) from the initial biofilm inoculum measured at different sequence similarity (93-99%) for S and U over 471 days of operation.

Hence, our findings (Fig. 2 and Fig. 4) suggest that the exposure of microbial communities to a gradient of organic carbon, achieved through reactor staging, results in significant higher microbial richness compared to single-stage configuration. Additionally, average Shannon diversity, evenness and richness were higher (although not significantly different) in S3 compared to S1 and S2 at 99% sequence similarity (Fig. 4). Nonetheless, it is likely that the more refractory and slowly biodegradable carbon, to which S3 was exposed during continuous-flow operation (Fig. S2), led to the co-existence of a more
diverse microbial community due to substrate competition (Huston, 1994). On the contrary, the easily
degradable carbon mostly utilized in S1 may have favoured microbial groups that dominate the microbial
community.

Similar observations were previously reported in managed aquifer recharge systems (MAR), where
higher community diversity was observed at more oligotrophic depths of MAR compared to the depths
where more easily degradable carbon was available (Li et al., 2013, 2012). Increased taxonomic richness
was also associated with influent lower ambient nitrogen and carbon availability in full-scale wastewater
treatment plant microbial communities (Johnson et al., 2015b). Conversely, higher microbial diversity
(expressed as Shannon index) was found in the first stage of an aerobic two-stage nitrifying MBBR
treating landfill leachate (Ciesielski et al., 2010).
Figure 4. Averaged values of Shannon diversity, evenness, ACE and Chao indices after 200 days of operation (n=4) at 97% (a, c) and 99% (b, d) sequence similarity cut-offs for the three stages MBBR at local (S1, S2, S3) and system (S) level and the single stage system (U). Asterisks indicate significance difference. Mean is shown as +.
3.2.2 Temporal variability in the selection of taxa by substrate availability in S and U MBRR systems

We further investigated the development of microbial structure in S and U over 471 days of operation to elucidate whether staging the MBBR system resulted in a selection of specific taxa. Hence, we computed heatmaps of the 100 most abundant OTUs at order level sorted by most abundant OTUs after 200 days of operation (218, 300, 434, 471 days) (Fig. 5 (a) and (b)). In both systems, the methanol-utilizing bacteria *Methylophilales*, that were enriched in inoculum (methanol dosing was applied to full-scale WWTP), decreased over time, eventually disappearing after approximately 200 days. A core of OTUs was shared in both systems, consisting of *Burkholderiales*, *Xanthomonadales*, *Flavobacteriales* and *Sphingobacteriales*. Notably, taxa such as *AKYG1722*, *Caldilineales*, *JG30-KF-CM45* and *Candidate division WS6* were enriched in both MBBR systems during 300 days of operation. To effectively identify the microbial organisms that were differently selected in the two configurations, we selected the most abundant OTUs of S and U MBBRs and reported the log of the ratio of the sequence abundance in S and U (log(S/U)) (Fig. 5 (c)). A similar approach was used for the taxa in S3 and S1 (log(S3/S1), Fig. 5 (d)).

Notably, staged MBBR (S) selected for the OTU *Bifidobacteriales* and *Candidate division WS6* after day 218. *Candidate division WS6* have been previously identified as abundant community members in anoxic/anaerobic environments (Dojka et al., 1998, 2000). Additionally, *Candidate division WS6* and *Deinococcales* were enriched in S3 over S1 (Fig. 5 (4)), which suggests a correlation of these OTUs with the availability of low readily biodegradable carbon availability at which S3 was operated during continuous-flow operation. The family *Deinococcaceae* is widely studied, since organisms from this groups have been observed to exhibit remarkable resistance to radiation (Chaturvedi and Archana, 2012; Slade and Radman, 2011). Conversely, *Dictyoglomales*, *Microgenomates_4* and subgroup 4 of *Acidobacteria* were mostly enriched in U over S after 218 days (Fig. 5 (3)). Compared to other subgroups,
the abundance of Acidobacteria subgroup 4 have been negatively associated with organic carbon availability and C-to-N ratio in grassland soils (Naether et al., 2012; Will et al., 2010).

Overall, we observed only few taxa consistently enriched after 218 days in the three-stage configuration compared to single-stage and generally dynamic microbial communities. Considering the long-term operation of the two systems with actual pre-clarified wastewater influent, it is likely that, besides the organic substrate availability, continuous and random immigration by the microbial community present in the influent wastewater played an important role in shaping the microbial communities. The importance of microbial immigration was shown by calibrating a neutral model community assembly with dynamic observations of wastewater treatment communities (Ofiteru et al., 2010), in full-scale WWTP (Wells et al., 2014), as well in a pilot-scale membrane bioreactor system (Arriaga et al., 2016). Additionally, cross-inoculation between staged reactors may have been occurred, as previously observed in staged bioprocesses in full-scale WWTP (Wells et al., 2014).
Figure 5. Heatmaps of the 100 most abundant order level taxa in the staged MBBR, S (a) and un-staged MBBR, U (b). The most shifted abundant taxa (expressed as log sequence abundance) of S and S3 were selected to perform the ratio of S/U (c) and S1/S3 (d) to effectively identify the selected taxa in S compared to U, and S3 compared to S1.
3.2.3 Microbial and denitrifying gene abundance in S and U MBBR systems

Quantification of 16S rRNA (total bacteria) and denitrifying genes was performed to investigate differences in denitrifying microbial communities in the four MBBR reactors (Fig. S5). For U and S1 MBBR, microbial abundance of total bacteria during 471 days of operation could be associated with the influent substrate concentration – expressed as influent sCOD (Fig. S6, R^2 of 0.8 and 0.5, respectively), while no association was found for S2 and S3 with the respective influent sCOD.

As informed by MWA, qPCR data for all reactors were averaged from the point when the microbial community was stable (i.e., after 200 days of operation) (Table 1). The lowest abundance of 16S rRNA gene (copies g_{biomass}^{-1}) (p<0.05) was measured in S3, mostly adapted to carbon limitation during continuous-flow operation, as previously observed in soil-column, simulating managed aquifer recharge (Li et al., 2013). Overall, the measured $nirS$ gene fraction was up to 10 times higher than $nirK$ (in agreement with other studies in aquatic ecosystems, e.g., Braker et al., 2000; Nogales et al., 2002; Peterson et al., 2011), while no differences was observed between the 4 reactors in terms of $nirS$ gene fraction (Table 1). Previous studies have suggested lower densities of $nirK$-containing denitrifiers in aquatic ecosystems (Braker et al., 2000). The decrease of $nirS$ from the inoculum sample (day 0), adapted to methanol (Fig. S5), is consistent with the previous observation that utilization of methanol as a readily biodegradable substrate can select for $nirS$-expressing denitrifiers. Furthermore, a change to different carbon sources can result in a loss of $nirS$ density (Hallin et al., 2006). The S3 reactor was continuously exposed to the lowest C-to-N influent ratio (average values of C, expressed as soluble COD, -to-N ratio of 1, 0.8 and 0.7 for S1 and U, S2, S3 respectively), and previous research reported increased N$_2$O production at lower C-to-N ratios (Kampschreur et al., 2009; Zhang et al., 2016). However, S3 (exposed to lower C-to-N ratios during continuous-flow operation) exhibited the highest (p<0.05) abundance of atypical nosZ gene (% of 16S rRNA, Table 1), which could indicate a more effective N$_2$O removal with
respect to other reactor stages. Furthermore, S3 and S1 had the highest and lowest ratio of atypical to
typical nosZ, respectively (Table 1). The typical nosZ genes have been associated with bacteria capable
of complete denitrification (thus encoding all the enzymes for converting nitrate to nitrogen) (Sanford et
al., 2012). In contrast, atypical nosZ genes are also found in non-denitrifying bacteria with more-diverse
N-metabolism (e.g., missing nirK and nirS) (Orellana et al., 2014; Sanford et al., 2012), and are
commonly present at concentrations higher than typical nosZ in soil (Orellana et al., 2014). Hence, our
results suggest a microbial selection driven by the substrate gradient through the MBBR stages, where
most of the complete denitrifiers (carrying typical nosZ) are selected in S1 (with the highest readily
biodegradable substrate availability). On the other hand, microbes with more diverse N-metabolism
(carrying atypical nosZ) are selected in S3. Although, based on prior reports, the highest N₂O production
was expected in MBBR stages with low influent C-to-N ratio, the selection of non-denitrifying bacteria
containing atypical nosZ genes (which code for high affinity N₂O reductase) could have likely reduced
the accumulation of nitrous oxide – a factor suggesting staged MBBR as a process optimisation means
to reduce N₂O emissions, and which requires further research.

Table 1. Results from qPCR targeting 16S rRNA and functional genes in the four MBBRs (S1, S2, S3, U). Values
result from the average of the last four sampling day (218, 300, 434 and 471) after microbial community
stabilization according to MWA. Values are reported with the corresponding standard deviation (n=8). Statistical
differences (p<0.05) were estimated according to one way analysis (ANOVA).

<table>
<thead>
<tr>
<th>16S rRNA (copies/g biomass)</th>
<th>S1</th>
<th>S2</th>
<th>S3</th>
<th>U</th>
</tr>
</thead>
<tbody>
<tr>
<td>narG (%)*</td>
<td>48 ±20</td>
<td>22 ±7(2)</td>
<td>53 ±22</td>
<td>27 ± 9</td>
</tr>
<tr>
<td>nirS (%)*</td>
<td>58 ± 10</td>
<td>54 ± 9</td>
<td>63 ± 6</td>
<td>64 ± 9</td>
</tr>
<tr>
<td>nirK (%)*</td>
<td>8 ± 4</td>
<td>12 ± 7</td>
<td>11 ± 5</td>
<td>11 ± 7</td>
</tr>
<tr>
<td>nirS/nirK</td>
<td>6.9 ± 3</td>
<td>8.3 ± 3</td>
<td>6.3 ± 3</td>
<td>10.9 ± 11</td>
</tr>
<tr>
<td>nosZ_typ (%)*</td>
<td>9 ± 3</td>
<td>9 ± 1</td>
<td>9 ± 1</td>
<td>9 ± 2</td>
</tr>
<tr>
<td>nosZ_atyp (%)*</td>
<td>6 ± 1</td>
<td>8 ± 5</td>
<td>15 ± 8(3)</td>
<td>11 ± 5</td>
</tr>
<tr>
<td>nosZ_atyp/nosZ_typ</td>
<td>0.72 ± 0.23</td>
<td>0.93 ± 0.53</td>
<td>1.60 ± 0.71(3)</td>
<td>1.36 ± 0.62</td>
</tr>
</tbody>
</table>

* % of 16S rRNA gene abundance

(1) significantly lower than S1 and U (95% confidence interval)

(2) significantly lower than S1 and S3 (95% confidence interval)

(3) significantly higher than S1 and S2 (95% confidence interval)
3.3. Linking activity, community structure and diversity with micropollutant biotransformation in batch experiments

3.3.2 System level (S and U)

Based on the results of the batch experiments, biotransformation rate constants of the pharmaceuticals were calculated at system level for the staged MBBR (Eq. 2) and compared with rate constants for the single-stage U MBBR for Batch 1 (Fig. S10) and Batch 2 (Fig. 6 a). We observed an improvement in specific denitrification rate at system level (calculated as in Eq. 1) and higher (p<0.05) microbial richness in S compared to U in Batch 2 (Fig. 6b). Nonetheless, no significant difference was observed in the biotransformation of the targeted micropollutants between the two MBBR systems (Fig S10 and Fig. 6).

Figure 6. Biotransformation and retransformation rate constants $k_{\text{Bio}}/ k_{\text{Dec}}$ (L g$^{-1}$ d$^{-1}$) for each micropollutant (a) and specific denitrification rate, ACE and Chao indices (b) calculated at system level for S for U MBBR in Batch 2.

3.3.1. Local level (S1, S2, S3 and U)
In Batch 1, S1 and U exhibited the highest biotransformation rate constants k_{Bio} (L g$^{-1}$ d$^{-1}$) for the pharmaceuticals sulfamethoxazole, sulfadiazine, metoprolol, atenolol, up to 4 and 3-fold higher compared to S3, respectively. In Batch 2 (after 471 days of operation) decreased biotransformation kinetics were observed in U, resulting in the highest k_{Bio} obtained for S1 stage reactor for most of the targeted pharmaceuticals (with exception of atenolol) (Polesel et al., 2017). Furthermore, when considering the staged MBBR, k_{Bio} decreased from S1 to S3, consistent with decreasing loading and availability of carbon during continuous-flow operation (Table S3, Polesel et al., 2017).

Pearson’s coefficients r were used to evaluate associations between biotransformation rate constant k_{Bio} /k_{Dec} and (i) biodiversity indices (at 99% sequence similarity, Fig. S8); (ii) denitrifying gene abundance (Fig. S5); (iii) specific denitrification rates \bar{k}_{NOX} (mgN g$^{-1}$ d$^{-1}$) (Table S3). Only relevant k_{Bio} and k_{Dec} values (>0.1 L g$^{-1}$ d$^{-1}$, according to the classification presented in Joss et al., 2006) were included in the analysis. Notably, in this study correlations were performed by using only taxonomic diversity (based on 16S rRNA amplicon sequencing), rather than data combining functional diversity (based on the phenotypes inferred from taxonomic descriptors and on mRNA sequencing). Although it has been observed that taxonomic and functional diversity associate with each other in wastewater treatment systems (Johnson et al., 2015b), additional information could be derived by the combination of both analysis (Johnson et al., 2015c).

In Batch 1, only few positive correlation (p<0.05) were observed between diversity indices and biotransformation rate constants of pharmaceuticals. i.e., sulfamethoxazole, trimethoprim and metoprolol. In Batch 2, k_{Bio} and k_{Dec} of most detected pharmaceuticals were negative or not significant.
correlated with microbial richness (Fig. 7), but positive correlated \((p<0.05)\) with specific denitrification rates \(k_{\text{NOx}}\). The obtained correlation are reported in Fig. S7.

Positive correlations \((p<0.05)\) were also found between \(k_{\text{Bio}}\) (of erythromycin, trimethoprim and collective pharmaceuticals) and the abundance of denitrifying genes \(narg, nirS, \) and \(nOS\) typical, but not atypical \(nOS\). The difference in the correlation results from Batch 1 and 2 may derive from adaptation of the biomass to the specific operational conditions (i.e., from post- to pre-denitrification and from single to three-stages configuration). On the other hand, as discussed previously, a stable microbial community was observed only after 200 days of operation and results from Batch 2 (at 471 days) may be considered representative of the long-time operation of the two MBBR systems.

Biotransformation of several micropollutants has been related to the lack of specificity (i.e., cometabolism, Criddle 1993) of enzymes such as ammonia monooxygenase (Sathyamoorthy et al. (2013)). To our knowledge, cometabolism of micropollutants by respiratory denitrifying enzymes (e.g., \(narg, nirS, nor, nOS\)) has not been documented. Thus, the unexpected association between denitrifying genes and biotransformation of micropollutants may be the result of a genuine but nevertheless non-causal relationship (Johnson et al., 2015c). Further research required to examine the cause of this correlation.

As mentioned previously, positive relationships between microbial diversity (and in particular \(\alpha\)-diversity) and biotransformation rate constants of micropollutants have been observed in activated sludge (Johnson et al., 2015a), in sequencing batch lab-reactors (Stadler and Love, 2016) and in nitrifying MBBRs (Torresi et al., 2016). Yet, equally negatively correlations have been observed between biodiversity and removal of natural and synthetic estrogens in suspended biomass (Pholchan et al., 2013) and of sulfonamides antibiotic (sulfadiazine, sulfamethoxazole, sulfamethizole) in nitrifying MBBRs
(Torresi et al., 2016). Among others, two phenomena may explain the lack of an observable (positive) relationship:

(i) A positive relationship between biodiversity (or richness) would emerge (a) if the microbial community consisted of a number of microorganisms with unique niche partitioning or (b) if facilitative interactions (i.e., complementarity effects) occurred (Cardinale, 2011; Cardinale et al., 2012; Loreau et al., 2001). However, functional redundancy (i.e., different taxa coexist to perform the same functionality) could be sufficient mask this positive interaction (Johnson et al., 2015b). Accordingly, if the biotransformation of a specific compound is performed by a large number of taxa, the increase of biodiversity may not necessarily positively impact the biotransformation as it is not limited by the number of taxa which can perform it (Stadler and Love, 2016). Taken together, the negative correlation observed in this study between biotransformation rate constants and biodiversity, combined with the positive correlation with kinetics of denitrification, could suggest a redundancy of the denitrifying microbial community towards the biotransformation of these targeted pharmaceuticals.

This observation might suggest that denitrifying systems exhibit higher biotransformation rates of pharmaceuticals compared to aerobic systems, due to the higher number of taxa performing this function. Hence, we compared the averaged biotransformation rate constants obtained in this study (under pre-denitrification conditions) and in post-denitrification MBBRs (Torresi et al., 2017) with kinetics obtained for aerobic nitrifying MBBRs (Torresi et al., 2016) (Fig S11). While we observed comparable biotransformation kinetics for aerobic and pre-denitrifying MBBRs (this study) (Fig. S11a), post-denitrifying MBBRs indeed exhibited higher biotransformation rate constants for more than 60% of the examined pharmaceuticals (Fig. S11b) compared to aerobic MBBRs. In the post-denitrifying MBBRs
(Torresi et al., 2017), additional carbon sources (i.e., methanol or ethanol) were spiked in the systems, which are known to be readily consumable substrates. This suggests that in the absence of catabolic limitation (i.e., in the presence of easily degradable organic carbon), biotransformation of the targeted pharmaceuticals may be more expedient under anoxic versus aerobic conditions.

(ii) An increase in biodiversity might not translate into differences in microbial functionality if the microbial community present sufficient biodiversity to begin with, that can saturate the possible effects (Johnson et al 2015a). While this effect was not observed for suspended biomass in full-scale WWTP (i.e., microbial communities were insufficiently biodiverse to maximize the collective rate of multiple micropollutant biotransformation, Johnson et al., (2015a)), this may be different for biofilm systems that can already potentially harbor higher microbial diversity compared to suspended biomass (Lu and Chandran, 2010; Stewart and Franklin, 2008).

Overall, our results (at both global and system level) suggest that despite the general positive association between microbial diversity and macro and microbial ecology activity (Cardinale et al., 2012; Emmett Duffy, 2009), this association is not fully understood for microbial communities in biological wastewater treatment regarding micropollutant biotransformation. On the other hand, additionally information could be obtained by targeting a broader number of micropollutants. Nonetheless, few studies demonstrated the relationships between microbial diversity and system stability and resilience in wastewater treatment plant (Cook et al., 2006; Fernandez et al., 2000), which per se can be correlated with functional redundancy (Briones and Raskin, 2003). Accordingly, it has been suggested that if two denitrifying configurations perform equally efficiently, the configuration with higher functional diversity should be preferentially selected to ensure higher system stability (Lu et al., 2014).
Figure 7. Pearson’s coefficient (r) of the correlation between biotransformation (k_{Bio}), retransformation (k_{Dec}) of micropollutant, collective k_{Bio} with Shannon biodiversity, richness (ACE and Chao), evenness indices (at 99% sequences similarity) and specific denitrification rate k_{NOx} (mgN g$^{-1}$ d$^{-1}$) for Batch 2. Asterisks indicate significance (p<0.05).
4. Conclusions

Two pre-denitrifying MBBR systems were operated in parallel in single- (U) and three-stage (S) configurations using pre-clarified wastewater as influent and native concentration of micropollutants. The microbial communities in the two MBBR systems in terms of α- and β-diversity were investigated during long-term operation and compared to the performance.

- Staging of MBBR systems led to an increased richness of the microbial community at system level. Within the three-stage system, the decreasing gradient of organic carbon loading and availability was accompanied by an increase α-diversity of the microbial community.

- The microbial community became stable after 200 days operation, when the two configurations shared a core of OTUs such as Burkholderiales, Xanthomonadales, Flavobacteriales and Sphingobacteriales. The staged configuration (and in particular in the last stage MBBR, S3) selected for OTUs such as Candidate division WS6 and Deinococcales.

- No major difference between S and U configurations was observed in terms of removal efficiency (%) or bio- and retransformation rate constants of sulfamethoxazole, atenolol, erythromycin, trimethoprim, citalopram, venlafaxine, ibuprofen, metoprolol and sulfamethizole.

- Specific and collective bio- and re-transformation rate constants of the targeted pharmaceuticals positively correlated with specific denitrification rates and abundance of denitrifying genes (narG, nirS and nosZ typical), rather than biodiversity.

Overall, staging of MBBR systems under denitrifying conditions resulted in enhanced denitrification rate and increased microbial diversity compared to a single-stage configuration, although no major improvement was observed in the removal of the selected trace organic pharmaceuticals.
Acknowledgments

This research was supported by MERMAID: an Initial Training Network funded by the People Programme (Marie-Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/under REA grant agreement n. 607492. The authors thank Luca Loreggian and Saverio Conti for technical support.
References

Chaturvedi, R., Archana, G., 2012. Novel 16S rRNA based PCR method targeting Deinococcus spp. and
its application to assess the diversity of deinococcal populations in environmental samples. J. Microbiol. Methods 90, 197–205.

