Reactivity of a New Aryl Cycloplatinated(II) Complex Containing Rollover 2,2′-Bipyridine N-Oxide toward a Series of Diphosphine Ligands

Hamid R. Shahsavari,⁎ Reza Babadi Aghakhanpour,⁎ Mojdeh Hossein-Abadi,⁎ Reza Kia,⁎ Mohammad Reza Halvagar and Paul R. Raithby d

aDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Yousef Sobouti Blvd., Zanjan 45137-66731, Iran.
bChemistry Department, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran.
cChemistry & Chemical Engineering Research Center of Iran, Tehran, 14968-13151, Iran.
dDepartment of Chemistry, University of Bath, Claverton Down, BA2 7AY, Bath, UK.
Email: shahsavari@iasbs.ac.ir (H.R.S.); rkia@sharif.edu (R.K.).

Abstract

Reaction of the electron-rich complex cis-[Pt(p-Me-C6H4)2(SMe2)2] with 2,2′-bipyridine N-oxide, O-bpy, occurred by rollover cyclometalation to afford complex [Pt(O-bpy)(p-Me-C6H4)(SMe2)], 1. The obtained complex was characterized through NMR spectroscopy and its solid state structure was determined by the single crystal X-ray diffraction method. The reaction of 1 with seven diphosphine ligands, 1,1-bis(diphenylphosphino)methane (dppm), 1,2-bis(diphenylphosphino)ethane (dppe), 1,3-bis(diphenylphosphino)propane (dppp), 1,4-bis(diphenylphosphino)butane (dppb), N,N-bis(diphenylphosphino)amine (dppa), 1,2-bis(diphenylphosphino)benzene (dppbz) and 1,1′-bis(diphenylphosphino)ferrocene (dppf), in different molar ratio (1:1 or 1:0.5; 1:diphosphines) was studied. In accordance with the reaction conditions the analogous mononuclear or binuclear diphosphine cycloplatinated complexes were yielded. The diphosphines behave as a monodentate (dppm, dppa), a bridging (dppm, dppa, dppe, dppp, dppb, dppf) or a chelated (dppe, dppp, dppbz) ligand. These behaviors depended on the bite angle of the diphosphine ligands, flexibility or rigidity of alkyl and aromatic backbone between two phosphine groups. All diphosphine platinum complexes were characterized by NMR and the crystal structures of some complexes solved by X-ray diffraction.
Introduction

Mono and biaryl Pt(II) complexes containing chelating and labile solvent ligands reportedly have shown to be participated in many reactions such as insertion into Pt-C(Aryl) bond,1, 2 oxidative addition,3, 4 C-H activation5 and transmetalation of the aryl ligand.6 In this context, some of various C^N cycloplatinated(II) complexes with aryl ligands (p-tolyl, p-anisole, phenyl) and their reactions have been reported in the literature.7-12 To the best of our knowledge, the presence of aryl groups as ancillary ligands in the rollover cycloplatinated(II) complexes is very scarce in the published resources.13 In this way, thermal rearrangement of the complex [Pt(bpy)(Ar)\textsubscript{2}] (bpy = 2,2′-bipyridine, Ar = C\textsubscript{6}H\textsubscript{5}, p-tBu-C\textsubscript{6}H\textsubscript{4} and p-CF\textsubscript{3}-C\textsubscript{6}H\textsubscript{4}) results in the formation of three-coordinated monoaryl [Pt(C^N)(Ar)] intermediates via rollover cycloplatination process.14 Recently, cycloplatinated(II) complexes comprising a special kind of aryl ligand named pentafluorophenyl (C\textsubscript{6}F\textsubscript{5}) revealed strong luminescence at room temperature.15-18 It is worthy to note that the presence of aryl-type ancillary ligands in the structure of emissive cycloplatinated(II) complexes helps extending the π-conjugation system in such molecules.

It has been proved that the reactions of N-oxide derivatives of 2,2′-bipyridine (O-bpy) and 1,10-phenanthroline (O-phen) with dimethylplatinum(II) complex cis,cis-[Pt\textsubscript{2}Me\textsubscript{4}(μ-SMe\textsubscript{2})\textsubscript{2}] give the corresponding complexes with chelated ligands having the general formula of [Pt(N^O)(Me)\textsubscript{2}] (see scheme 1).19 O-bpy can potentially be a C^N cyclometalated ligand through a rotation along the bond between the rings (rollover cyclometalation) while the O-phen is not able to perform such rotation due to its structural rigidity. Rollover cyclometalation in [Pt(N^O)(Me)\textsubscript{2}] (N^O = O-bpy) concomitant with the addition of SMe\textsubscript{2} leads to formation of [Pt(C^N)(Me)(SMe\textsubscript{2})] (C^N = rollover O-bpy). There are some reports on replacement of SMe\textsubscript{2} in [Pt(C^N)(Me)(SMe\textsubscript{2})] by different neutral ligands.19-25

\begin{center}
\textbf{Scheme 1.} Binding modes of O-bpy and O-phen chelating ligands.
\end{center}
On the basis of our previous experiences in chemistry of cycloplatinated(II) compounds, herein, we report the synthesis and characterization of a new cycloplatinated(II) precursor complex including 2,2'-bipyridine N-oxide (O-bpy, C^N chelate), p-Me-C\textsubscript{6}H\textsubscript{4} and labile SM\textsubscript{2} ligands ([Pt(O-bpy)(p-Me-C\textsubscript{6}H\textsubscript{4})(SM\textsubscript{2})], I). In the following, the reactivity of this complex toward a wide range of diphosphine ligands was investigated in order to study the different behaviors of diphosphines against the cycloplatinated(II) complex. Such different behaviors are logically due to that the steric and electronic properties of diphosphine ligands are notably controlled by their backbones. Figure 1 shows three different possible modes of binding for diphosphines in cycloplatinated(II) complexes.

![Figure 1. Different binding modes for diphosphine ligands in cycloplatinated(II) complexes.](image)

Experimental

General Procedures and Materials

All the reactions were carried out in the common solvents and all the solvents were purified and dried according to standard procedures. The microanalyses were performed using a vario EL CHNS elemental analyzer and also all the melting point values were measured by a Buchi 510. Multinuclear (1H, 1H\{195Pt\}, 13C\{1H\}, 31P\{1H\}, 195Pt) NMR spectra together with two dimensional NMR spectra (COSY, HSQC and NOESY) and DEPT 135° technique were recorded on a Bruker Avance DPX 400 MHz spectrometer at 298 K. All chemical shifts are reported in ppm (part per million) relative to their corresponding external standards (SiMe\textsubscript{4} for 1H and 13C, 85% H\textsubscript{3}PO\textsubscript{4} for 31P and Na\textsubscript{2}PtCl\textsubscript{6} for 195Pt) and also all the coupling constants (J values) are given in Hz. All NMR spectra are shown in Supporting Information while the corresponding numerical data are listed in Experimental Section. 2,2'-Bipyridine N-oxide (O-bpy), 1,1-bis(diphenylphosphino)methane (dppm), 1,2-bis(diphenylphosphino)ethane (dppe),
1,3-bis(diphenylphosphino)propane (dppp), 1,4-bis(diphenylphosphino)butane (dppb), N,N-bis(diphenylphosphino)amine (dppa), 1,2-bis(diphenylphosphino)benzene (dppbz) and 1,1'-bis(diphenylphosphino)ferrocene (dppf) were purchased from commercial resources. cis-[Pt(p-Me-C$_6$H$_4$)$_2$(SMe)$_2$] was synthesized according to the previous report. The NMR labeling is shown in Figure 2 for clarifying the chemical shift assignments.

![Figure 2. NMR labeling for the chemical shift assignments.](image)

[Pt(O-bpy)(p-Me-C$_6$H$_4$)(SMe$_2$)], 1. To a solution of cis-[Pt(p-Me-C$_6$H$_4$)$_2$(SMe)$_2$] (500 mg, 1 mmol) in acetone (10 mL), 2,2'-bipyridine N-oxide (172 mg, 1 mmol) was added. Then, the reaction mixture was refluxed at 60 °C for 6 hours. The initial red color of the solution gradually became yellow and concurrently, a yellow precipitate appeared in the solution. The yellow precipitate was filtered, washed with n-pentane (3×3 mL) and dried under air atmosphere. Yield: 71%; m.p. = decomposed at 228 °C. Elem. Anal. Calcd. for C$_{19}$H$_{20}$N$_2$OPtS (519.52) C, 43.93; H, 3.88; N, 5.39; S, 6.17. Found: C, 43.86; H, 3.91; N, 5.47; S, 6.21. NMR data in CD$_2$Cl$_2$: δ(1H) = 2.12 [s, 6H, 3J$_{PH}$ = 25.9 Hz, SMe$_2$], 2.23 [s, 3H, Me of p-Me-C$_6$H$_4$], 6.72 [d, 1H, 3J$_{HH}$ = 7.2 Hz, 3J$_{PH}$ = 73.4 Hz, H3], 6.82 [t, 1H, 3J$_{HH}$ = 7.2 Hz, 4J$_{PH}$ = 24.1 Hz, H4], 6.89 [d, 2H, 3J$_{HH}$ = 7.8 Hz, Hm of p-Me-C$_6$H$_4$], 7.28 [d, 2H, 3J$_{HH}$ = 7.8 Hz, 3J$_{PH}$ = 58.9 Hz, Ho of p-Me-C$_6$H$_4$], 7.46 [dd, 1H, 3J$_{HH}$ = 7.3 Hz, 3J$_{HH}$ = 5.4 Hz, H3], 7.89 [dd, 1H, 3J$_{HH}$ = 6.2 Hz, 4J$_{HH}$ = 0.9 Hz, H5], 8.04 [td, 1H, 3J$_{HH}$ = 8.1 Hz, 4J$_{HH}$ = 1.6 Hz, H4], 9.03 [dd, 1H, 3J$_{HH}$ = 5.4 Hz, 4J$_{HH}$ = 1.1 Hz, 3J$_{PH}$ = 21.4 Hz, H6], 9.82 [d, 1H, 3J$_{HH}$ = 8.3 Hz, H3]; δ(13C in acetone-d_6) = 20.7 [s, 2C, SMe$_2$], 21.0 [s, 1C, Me of p-Me-C$_6$H$_4$], 124.8 [s, 1C, C4], 125.3 [s, 1C, 3J$_{PC}$ = 10 Hz, C5], 126.8 [s, 1C, 3J$_{PC}$ = 21 Hz, C6].
C3], 128.99 [s, 2C, \^2J\textsubscript{PC} = 77 Hz, C\textdegree of p-Me-C\textsubscript{6}H\textsubscript{4}], 131.6 [s, 1C, C\textring of p-Me-C\textsubscript{6}H\textsubscript{4}], 133.6 [s, 1C, \^2J\textsubscript{PC} = 89 Hz, C\textring], 136.6 [s, 1C, C\textring], 136.9 [s, 2C, \^3J\textsubscript{PC} = 25 Hz, C\textring of p-Me-C\textsubscript{6}H\textsubscript{4}], 139.3 [s, 1C, C\textring], 143.4 [s, 1C, \^1J\textsubscript{PC} = not resolved, C\textring of p-Me-C\textsubscript{6}H\textsubscript{4}], 147.5 [s, 1C, C\textring], 151.5 [s, 1C, \^1J\textsubscript{PC} = 580 Hz, C\textring], 152.4 [s, 1C, C\textring], 158.5 [s, 1C, C\textring]; \^\delta(195Pt) = -3860.4 [s, Pt].

\[\text{Pt(O-bpy)}(p\text{-Me-C\textsubscript{6}H\textsubscript{4}})(\kappa1-P-dppm), \text{2a}\] To a solution of 1 (100 mg, 0.193 mmol) in acetone (10 mL), dppm (75 mg, 0.193 mmol) was added. 1 was gradually solved and reacted with dppm. After 1 hour, the resulting yellow precipitate was filtered and washed with \textit{n}-pentane (3x3 mL) and dried under air atmosphere. Yield: 86%; m.p. = decomposed at 268 °C. Elem. Anal. Calcd. for C\textsubscript{42}H\textsubscript{36}N\textsubscript{2}OP\textsubscript{2}Pt (841.77) C, 59.92; H, 4.31; N, 3.33. Found: C, 59.74; H, 4.39; N, 3.37. NMR data in CDCl\textsubscript{3}: \^\delta(1H) = 2.22 [s, 3H, Me of p-Me-C\textsubscript{6}H\textsubscript{4}], 2.57 [br d, 2H, \^3J\textsubscript{PH} = 9.1 Hz, \^3J\textsubscript{PH} = 27.3 Hz, CH\textsubscript{2} of dppm], 6.66 [dd, 1H, \^3J\textsubscript{HH} = 7.5 Hz, \^3J\textsubscript{HH} = 5.6 Hz, H2], 6.77 [d, 2H, \^3J\textsubscript{HH} = 7.6 Hz, H6 of p-Me-C\textsubscript{6}H\textsubscript{4}], 6.93-8.14 [m, 26H, overlapping protons of aromatic rings of p-Me-C\textsubscript{6}H\textsubscript{4}, O-bpy and dppm], 9.92-9.94 [m, 2H, H3 and H6]; \^\delta(31P) = 16.7 [d, 1P, \^1J\textsubscript{PP} = 2216 Hz, \^2J\textsubscript{PP} = 49 Hz, Pt-P], -28.5 [s, 1P, \^3J\textsubscript{PP} = 54 Hz, \^2J\textsubscript{PP} = 49 Hz, CH\textsubscript{2}-P]; \^\delta(195Pt) = -4105.8 [dd, 1Pt, \^1J\textsubscript{PP} = 2223 Hz, \^3J\textsubscript{PP} = 56 Hz].

\[\text{Pt\textsubscript{2}(O-bpy)}(p\text{-Me-C\textsubscript{6}H\textsubscript{4}})\textsubscript{2}(\mu\text{-dppm}), \text{2b}\] To a solution of 1 (100 mg, 0.193 mmol) in acetone (10 mL), dppm (38 mg, 0.97 mmol) was added. 1 was gradually solved and reacted with dppm. After 2 hours, the resulting yellow precipitate was filtered and washed with \textit{n}-pentane (3x3 mL) and dried under air atmosphere. Yield: 79%; m.p. = decomposed at 270 °C. Elem. Anal. Calcd. for C\textsubscript{59}H\textsubscript{50}N\textsubscript{4}O\textsubscript{2}P\textsubscript{2}Pt\textsubscript{2} (1299.16) C, 54.55; H, 3.88; N, 4.31. Found: C, 54.61; H, 3.94; N, 4.39. NMR data in CDCl\textsubscript{3}: \^\delta(1H) = 2.25 [s, 6H, Me of p-MeC\textsubscript{6}H\textsubscript{4}], 2.98 [t, 2H, \^3J\textsubscript{PH} = 9.3 Hz, CH\textsubscript{2} of dppm], 6.69-6.77 [m, 8H, H3, H4 and H6 of p-MeC\textsubscript{6}H\textsubscript{4}], 6.88 [dd, 2H, \^3J\textsubscript{HH} = 7.6 Hz, \^3J\textsubscript{HH} = 5.5 Hz, H5], 6.94 [d, 4H, \^3J\textsubscript{HH} = 7.8 Hz, H1 of p-MeC\textsubscript{6}H\textsubscript{4}], 7.04-7.07 [m, 8H, H6 of dppm], 7.18-7.22 [m, 4H, H\textring of dppm], 7.54-7.59 [m, 8H, H\textring of dppm], 7.72 [dd, 2H, \^3J\textsubscript{HH} = 5.5 Hz, \^4J\textsubscript{HH} = 1.0 Hz, \^3J\textsubscript{PP} = 20.7 Hz, H6], 2.77 [dt, 2H, \^3J\textsubscript{HH} = 8.3 Hz, \^4J\textsubscript{HH} = 1.3 Hz, H4], 8.00 [dd, 2H, \^3J\textsubscript{HH} = 6.5 Hz, \^4J\textsubscript{HH} = 1.0 Hz, H5], 8.97 [d, 2H, \^3J\textsubscript{HH} = 8.4 Hz, H3]; \^\delta(13C) = 21.0 [s, 2C, Me of p-Me-C\textsubscript{6}H\textsubscript{4}], 53.5 [m, 1C, CH\textsubscript{2} of dppm], 128.4 [s, 4C, \^2J\textsubscript{PC} = not resolved, C\textring of p-Me-C\textsubscript{6}H\textsubscript{4}], 134.2 [s, 4C, \^3J\textsubscript{PC} = not resolved, C\textring of p-Me-C\textsubscript{6}H\textsubscript{4}], 151.3 [s, 2C, \^1J\textsubscript{PC} = not resolved, C\textring]; \^\delta(31P) = 15.2 [s, 2P, \^1J\textsubscript{PP} = 2204 Hz, \^3J\textsubscript{PP} = 51 Hz, \^2J\textsubscript{PP} = 17 Hz, Pt-P]; \^\delta(195Pt) = -3917.4 [br d, 1Pt, \^1J\textsubscript{PP} = 2209 Hz].
The synthetic routes for the complexes with sign “a” are similar to 2a, using 1 and one equivalent of corresponding diphosphine ligands. Whilst, the complexes with sign “b” are synthesized like 2b applying 1 and 0.5 equivalent of corresponding diphosphine ligands.

\[\text{[Pt(O-bpy)(p-Me-C_6H_4)(κ^1-P-dppa)], 3a.} \text{ Yield: 73%; m.p. = decomposed at 239 °C. Elem. Anal. Calcd. for C_{41}H_{35}N_3OP_2Pt (842.19.) C, 58.43; H, 4.19; N, 4.99. Found: C, 57.91; H, 4.67; N, 4.32. NMR data in CDCl}_3: \delta(1H) = 2.26 [s, 3H, Me of p-Me-C_6H_4], 3.89 [br dd, 1H, \({^3J_{PH}} = 14.73\), \({^3J_{PH}} = 6.95\) Hz, \({^3J_{PPH}} = 34\) Hz, NH of dppa], 6.70 [dd, 1H, \({^3J_{HH}} = 6.5\) Hz, \({^3J_{HH}} = 5.1\) Hz, H5], 6.84-7.91 [m, 28H, overlapping protons of aromatic rings of p-Me-C_6H_4, O-bpy and dppa], 8.01 [d, 1H, \({^3J_{HH}} = 5.1\) Hz, H5], 9.94 [d, 1H, \({^3J_{HH}} = 8.2\) Hz, H3]; \delta(13C) = 21.1 [s, 1C, Me of p-Me-C_6H_4], 128.2 [d, 2C, \({^4J_{PC}} = 7\) Hz, C\(^{6}\) of p-Me-C_6H_4], 128.7 [d, 2C, \({^4J_{PC}} = 1.6\) Hz, C\(^{m}\) of p-Me-C_6H_4], 134.4 [s, 1C, \({^1J_{PC}} = \) not resolved, C\(^{l}\) of p-Me-C_6H_4], 151.6 [d, 1C, \({^1J_{PC}} = \) not resolved, 2J\(_{PC} = 5\) Hz, C\(^{2}\); \delta(^{31}P) = 60.8 [d, 1P, \({^1J_{PP}} = 2441\) Hz, \({^2J_{PP}} = 19\) Hz, Pt-P], 28.6 [s, 1P, \({^3J_{PP}} = 63\) Hz, \({^2J_{PP}} = 19\) Hz, NH-P]; \delta(^{195}Pt) = -4008.7 [dd, 1P, \({^1J_{PP}} = 2472\) Hz, \({^3J_{PP}} = 62\) Hz].

\[\text{[Pt_2(O-bpy)_2(p-Me-C_6H_4)_2(μ-dppa)], 3b.} \text{ This complex is mixture product with 3a. NMR data in CDCl}_3: \delta(1H) = 2.21 [s, 6H, Me of p-Me-C_6H_4], 4.72 [br m, 1H, \({^3J_{PH}} = 23\) Hz, NH of dppa], [The aromatic protons of 3b are considerably overlapped with that of 3a and cannot be resolved]; \delta(^{31}P) = 62.5 [s, 2P, \({^1J_{PP}} = 2439\) Hz, \({^3J_{PP}} = 45\) Hz, \({^2J_{PP}} = 17\) Hz, Pt-P].

\[\text{[Pt(κ^1-C-O-bpy)(p-Me-C_6H_4)(dppe)], 4a.} \text{ Yield: 69%; m.p. = decomposed at 235 °C. Elem. Anal. Calcd. for C_{43}H_{38}N_2O_2P_2Pt (855.21) C, 60.35; H, 4.48; N, 3.27. Found: C, 59.91; H, 4.51; N, 3.01. NMR data in CDCl}_3: \delta(1H) = 1.84 [m, 4H, CH\(_2\) groups of dppe] 2.05 [s, 3H, Me of p-Me-C_6H_4], 6.67 [d, 2H, \({^3J_{HH}} = 8.6\) Hz, H\(^{6}\) of p-Me-C_6H_4], 7.08-7.59 [m, 27H, overlapping protons of aromatic rings of p-Me-C_6H_4, O-bpy and dppe], 7.75 [d, 1H, \({^3J_{HH}} = 6.3\) Hz, H5], 8.41 [d, 1H, \({^3J_{HH}} = 4.3\) Hz, H3]; \delta(^{31}P) = 38.7 [s, 1P, \({^1J_{PP}} = 2047\) Hz, Pt-P], 41.9 [s, 1P, \({^3J_{PP}} = 1702\) Hz, Pt-P]; \delta(^{195}Pt) = -4538.7 [dd, 1P, \({^1J_{PP}} = 2069\) Hz, \({^1J_{PP}} = 1721\) Hz].

\[\text{[Pt_2(O-bpy)_2(p-Me-C_6H_4)_2(μ-dppa)], 4b.} \text{ Yield: 91%; m.p. = decomposed at 270 °C. Elem. Anal. Calcd. for C_{60}H_{52}N_4O_2P_2Pt_2 (1312.29) C, 54.88; H, 3.99; N, 4.27. Found: C, 54.91; H, 4.69; N, 4.31. NMR data in CDCl}_3: \delta(1H) = 1.67 [m, 4H, CH\(_2\) groups of dppe], 2.25 [s, 6H, Me of p-Me-C_6H_4], 6.68-7.89 [m, 46H, overlapping protons of phenyl rings of p-Me-C_6H_4, O-bpy and dppa], 7.98 [d, 2H, \({^3J_{HH}} = 6.3\) Hz, H5], 9.90 [d, 2H, \({^3J_{HH}} = 8.3\) Hz, H3]; \delta(^{13}C) = 21.2 [s, 2C,}
Me of \(p\)-Me-C\(_6\)H\(_4\), 22.9 [m, 2C, CH\(_2\) groups of dppe], 128.9 [d, 4C, \(^3\)J\(_{PC} = 9\) Hz, \(\gamma\) of \(p\)-Me-C\(_6\)H\(_4\)], 133.9 [s, 2C, \(\gamma\) of \(p\)-Me-C\(_6\)H\(_4\)], 134.1 [d, 4C, \(^4\)J\(_{PC} = 5\) Hz, \(\gamma\) of \(p\)-Me-C\(_6\)H\(_4\)], 151.7 [s, 2C, \(^1\)J\(_{PC} = \) not resolved, \(C^2\)]; \(\delta\)\(^{31}\)P = [s, 2P, \(^1\)J\(_{PP} = 2195\) Hz, \(^3\)J\(_{PP} = 23\) Hz, \(^2\)J\(_{PP} = 19\) Hz, Pt-P]; \(\delta\)\(^{195}\)Pt = -3987.8 [d, 1Pt, \(^1\)J\(_{PP} = 2249\) Hz].

\[[\text{Pt}(\kappa^1-C-O-bpy)(p-Me-C_6H_4)(dppp)], 5a.\] Yield: 71%; m.p. = decomposed at 207 °C. Elem. Anal. Calcd. for C\(_{44}\)H\(_{40}\)N\(_2\)O\(_2\)Pt (869.23) C, 60.76; H, 4.64; N, 3.22. Found: C, 60.14; H, 4.41; N, 3.49. NMR data in CDCl\(_3\): \(\delta\)\(^1\)H = 1.92 [s, 3H, Me of \(p\)-Me-C\(_6\)H\(_4\)], 2.51 [br m, 2H, central CH\(_2\) group of dppp], 2.69 [br m, 4H, CH\(_2\) groups adjacent to P of dppp], 6.27 [d, 2H, \(^3\)J\(_{HH} = 6.9\) Hz, H\(_m\)], 6.50 [d, 2H, \(^3\)J\(_{PH} = 54.7\) Hz, \(^3\)J\(_{HH} = 7.0\) Hz, H\(_o\)], 6.96-7.83 [m, 27H, overlapping protons of phenyl rings of \(p\)-Me-C\(_6\)H\(_4\), O-bpy and dppp], 8.73 [d, 1H, \(^3\)J\(_{HH} = 4.7\) Hz, H\(^3\)]; \(\delta\)\(^{31}\)P = -4.0 [d, 1P, \(^1\)J\(_{PP} = 2004\) Hz, \(^2\)J\(_{PP} = 23\) Hz, Pt-P], -1.8 [d, 1P, \(^1\)J\(_{PP} = 1673\) Hz, \(^2\)J\(_{PP} = 23\) Hz, Pt-P]; \(\delta\)\(^{195}\)Pt = -4465.9 [dd, 1Pt, \(^1\)J\(_{PP} = 2014\) Hz, \(^1\)J\(_{PP} = 1675\) Hz].

\[[\text{Pt}(O-bpy)_2(p-Me-C_6H_4)2(\mu-dppp)], 5b.\] Yield: 83%; m.p. = decomposed at 192 °C. Elem. Anal. Calcd. for C\(_{61}\)H\(_{54}\)N\(_4\)O\(_2\)Pt\(_2\) (1326.30) C, 55.20; H, 4.10; N, 4.22. Found: C, 54.91; H, 4.17; N, 4.73. NMR data in CDCl\(_3\): \(\delta\)\(^1\)H = 1.20 [br m, 4H, CH\(_2\) groups adjacent to P of dppp], 1.63 [br m, 2H, central CH\(_2\) group of dppp], 2.21 [s, 6H, Me of \(p\)-Me-C\(_6\)H\(_4\)], 6.51 [d, 4H, \(^3\)J\(_{HH} = 7.5\) Hz, H\(_m\)], 6.68 [d, 4H, \(^3\)J\(_{PH} = 40.1\) Hz, \(^3\)J\(_{HH} = 7.5\) Hz, H\(_o\)], 6.69-7.96 [m, 39H, overlapping protons of phenyl rings of \(p\)-Me-C\(_6\)H\(_4\), O-bpy and dppp], 8.00 [d, 2H, \(^3\)J\(_{HH} = 6.2\) Hz, H\(^5\)]; 9.93 [d, 2H, \(^3\)J\(_{HH} = 7.8\) Hz, H\(^3\)]; \(\delta\)\(^{13}\)C = 19.0 [s, 1C, C-CH\(_2\)-C of dppp], 21.0 [s, 2C, Me of \(p\)-Me-C\(_6\)H\(_4\)], 27.1 [m, 2C, P-CH\(_2\) groups of dppp], 128.8 [d, 4C, \(^3\)J\(_{PC} = 9\) Hz, \(\gamma\) of \(p\)-Me-C\(_6\)H\(_4\)], 133.9 [d, 4C, \(^4\)J\(_{PC} = 6\) Hz, \(\gamma\) of \(p\)-Me-C\(_6\)H\(_4\)], 152.1 [s, 2C, \(^1\)J\(_{PC} = \) not resolved, \(C^2\)]; \(\delta\)\(^{31}\)P = 19.2 [s, 2P, \(^1\)J\(_{PP} = 2221\) Hz, Pt-P]; \(\delta\)\(^{195}\)Pt = -3986.2 [d, 1Pt, \(^1\)J\(_{PP} = 2252\) Hz].

\[[\text{Pt}(O-bpy)_2(p-Me-C_6H_4)2(\mu-dpbp)], 6b.\] Yield: 91%; m.p. = decomposed at 223 °C. Elem. Anal. Calcd. for C\(_{62}\)H\(_{56}\)N\(_4\)O\(_2\)Pt\(_2\) (1340.32) C, 55.52; H, 4.21; N, 4.18. Found: C, 55.73; H, 4.69; N, 3.98. NMR data in CDCl\(_3\): \(\delta\)\(^1\)H = 0.78-1.68 [br m, 8H, CH\(_2\) groups of dppp], 2.03 [s, 6H, Me of \(p\)-Me-C\(_6\)H\(_4\)], 6.51 [d, 4H, \(^3\)J\(_{HH} = 7.7\) Hz, H\(_m\)], 6.91 [d, 4H, \(^3\)J\(_{PH} = 62.1\) Hz, \(^3\)J\(_{HH} = 7.5\) Hz, H\(_o\)], 6.66-8.01 [m, 38H, overlapping protons of phenyl rings of \(p\)-Me-C\(_6\)H\(_4\), O-bpy and dppp], 9.94 [d, 2H, \(^3\)J\(_{HH} = 8.1\) Hz, H\(^3\)]; \(\delta\)\(^{31}\)P = 20.1 [s, 2P, \(^1\)J\(_{PP} = 2199\) Hz, Pt-P].
[Pt(κ¹-C-O-bpy)(p-Me-C₆H₄)(dpbbz)], 7a. Yield: 73%; m.p. = decomposed at 183 °C. Elem. Anal. Calcd. for C₄₇H₃₈N₂OP₂Pt (903.21) C, 62.46; H, 4.24; N, 3.10. Found: C, 62.79; H, 4.78; N, 3.27. NMR data in CDCl₃: δ(¹H) = 2.03 [s, 3H, Me of p-Me-C₆H₄], 6.38-7.71 [m, 42H, overlapping protons of aromatic rings of p-Me-C₆H₄, O-bpy and dpbbz], 7.75 [d, 1H, ³J_HH = 6.3 Hz, H⁵], 8.23 [d, 1H, ³J_HH = 4.8 Hz, H³]; δ(¹³C) = 20.8 [s, 1C, Me of p-Me-C₆H₄], 127.6 [d, 2C, ²J_PtC = 6.8 Hz, C° of p-Me-C₆H₄], 147.8 [s, 1C, ¹J_PtC = not resolved, C²]; δ(³¹P) = 45.5 [s, 1P, ¹J_PtP = 2058 Hz, Pt-P], 46.6 [s, 1P, ³J_PtP = 1726 Hz, Pt-P]; δ(¹⁹⁵Pt) = -4512.1 [dd, 1Pt, ¹J_PtP = 2048 Hz, ¹J_PPt = 1722 Hz].

[Pt₂(O-bpy)₂(p-Me-C₆H₄)₂(µ-dppf)], 8b. Yield: 88%; m.p. = decomposed at 261 °C. Elem. Anal. Calcd. for C₆₈H₅₆N₄O₂P₂FePt₂ (1468.25) C, 55.59; H, 3.84; N, 3.81. Found: C, 56.01; H, 3.92; N, 3.72. NMR data in CDCl₃: δ(¹H) = 2.17 [s, 6H, Me of p-Me-C₆H₄], 3.35 [m, 4H, H⁰ of Cp rings], 4.35 [m, 4H, H° of Cp rings], 6.59 [d, 4H, ³J_HH = 6.9 Hz, Hᵐ], 6.96 [d, 4H, ³J_PPt = 51.4 Hz, ³J_HH = 6.8 Hz, H⁰], 7.20-7.86 [m, 30H, overlapping protons of phenyl rings of p-Me-C₆H₄, O-bpy and dppf], 8.03 [m, 2H, H⁵], 9.92 [m, 2H, H³]; δ(³¹P) = 20.2 [s, 2P, ¹J_PtP = 2205 Hz, Pt-P].

X-ray structure determinations

Single crystals of 1, 2a, 2b and 5b suitable for X-ray diffraction analysis, were grown by slow layer diffusion of n-hexane into dichloromethane solution of the complex. X-ray intensity data for 2a, 2b and 5b were collected using the full sphere routine by φ and ω scans strategy on the Agilent SuperNova dual wavelength EoS S2 diffractometer with mirror monochromated Mo Kα radiation (λ = 0.71073 Å) for 2b and Cu Kα radiation for 2a and 5b. For all data collections except 1, the crystals were cooled to 150 K using an Oxford diffraction Cryojet low-temperature attachment. The data reduction, including an empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm, was performed using the CrysAlisPro software package. The crystal structures of 2a, 2b and 5b were solved by direct methods using the online version of AutoChem 2.0 in conjunction with OLEX2 suite of programs implemented in the CrysAlis software. Diffraction data for 1 were collected by STOE IPDS 2T diffractometer in a series of ω scans in 1° oscillations and integrated using the STOE X-AREA software package. Numerical absorption correction was applied using X-Red32 software. The structures were refined by full-matrix least-squares (SHELXL2014-7) on F². The non-hydrogen atoms were refined anisotropically. All of the hydrogen atoms were
positioned geometrically in idealized positions and refined with the riding model approximation, with \(U_{\text{iso}}(H) = 1.2 \) or 1.5 \(U_{\text{eq}}(C) \). For the molecular graphics the program SHELXTL was used. Crystallographic data for the structural analysis has been deposited with the Cambridge Crystallographic Data Centre, No. CCDC-1818536 (1), CCDC-1818535 (2a), CCDC-1818538 (2b) and CCDC-1818537 (5b). Details of data collection and refinement parameters for 1, 2a, 2b and 5b are given in Table S1. Selected bond lengths and angles for 1, 2a, 2b and 5b are listed in Table S2. Details of the hydrogen bonding for 1, 2a, 2b and 5b are summarized in Table S3. The crystal structure of 5b showed the voids content of the solvents which were not easy to model properly. The electron density contribution from the solvent was back Fourier transformed from the whole structure by SQUEZZE routine in PLATON and it was roughly fitted with a molecule of \(n \)-hexane (76 electron counts).

Results and discussions

Synthesis and Characterization of the Precursor Complex 1

The complex [Pt(O-bpy)(\(p \)-Me-C\(_6\)H\(_4\))(SMe\(_2\))], 1, (O-bpy = rollover deprotonated 2,2’-bipyridine \(N \)-oxide) was purely synthesized through the reaction of complex \(\text{cis} \)-[Pt(\(p \)-Me-C\(_6\)H\(_4\))\(_2\)(SMe\(_2\))\(_2\)] with 2,2’-bipyridine \(N \)-oxide under reflux condition (Scheme 2). The obtained complex was characterized employing various one or two dimensional NMR techniques (Figures S1-S8). The \(^1\)H NMR spectrum of this complex with full assignments is shown in Figure S1, confirming its successful synthesis. Additionally, the \(^1\)H\{\(^{195}\)Pt\} NMR spectrum of 1 clearly indicates the absence of platinum satellites for the signals related to the protons of SMe\(_2\), H\(^6\), H\(^3\) and H\(^6\). \(^{13}\)C\{\(^1\)H\} NMR spectrum of 1 includes two distinct singlet signals at \(\delta = 20.7 \) and 21.0 in the aliphatic region which are respectively related to the SMe\(_2\) and Me of \(p \)-Me-C\(_6\)H\(_4\) ligands. However, the aromatic region contains various signals which are accurately assigned in Experimental Section. In this region, one of the most prominent signals appeared as a singlet at \(\delta = 151.5 \) ppm with large coupling to platinum center (\(^1\)J\(_{\text{Pt-C}} = 580 \) Hz), being attributed to the C\(^2\) of O-bpy. Logically, this signal is absent in the corresponding DEPT 135° spectrum. Similarly, the other signals related to the quaternary carbons (\(\delta = 131.6, 143.4, 152.4 \) and 158.5 ppm) are absent in the DEPT 135° spectrum. As expected, the \(^{195}\)Pt\{\(^1\)H\} NMR spectrum of 1 comprises a clear singlet at \(\delta = -3860.4 \) ppm.

9
Scheme 2. The route for the synthesis of 1.

Furthermore, the structure of 1 was further authenticated by X-ray crystallography (Figure 3). The selected bonds and angles for 1 are summarized in Table S2. The appropriate yellow crystals for crystallography were grown by slow layer diffusion of n-hexane into the solution of 1 in CH$_2$Cl$_2$ solvent. The crystal structure vividly indicates that the O-bpy is located as a C$^\wedge$N-chelated ligand. Also, it can be observed that the p-Me-C$_6$H$_4$ moiety is located perpendicular in relation to the molecule plane. The crystal packing of 1 shows the formation of centrosymmetric head-to-tail dimer through the intermolecular C–H…O interaction which is supported by π…π interaction with centroid to centroid distances of 3.682(8) and 3.732(7) Å (Figure S9).

Figure 3. ORTEP plot of 1. Ellipsoids are drawn at the 40% probability level, and hydrogen atoms are omitted for clarity.
Reactivity of 1 toward various diphosphine ligands

The reactivity of 1 toward a wide range of common diphosphines was evaluated. 1 was reacted with 1 or 0.5 equivalent of dppm (1,1-bis(diphenylphosphino)methane) ligand to give the complexes [Pt(O-bpy)(p-Me-C₆H₄)(κ¹-P-dppm)], 2a, or [Pt₂(O-bpy)₂(p-Me-C₆H₄)₂(µ-dppm)], 2b, respectively (Figure 4). The NMR spectra for 2a and 2b are shown in Figures S10-16. In 2a, the monodentate form (dangling) of dppm is present due to that the stability of the five-membered cyclometalated ring is favored over the four-membered ring in chelating dppm. In this way, the ³¹P{¹H} NMR spectrum of 2a (Figure S11) shows two different signals related to the coordinated and uncoordinated P atoms of dppm ligand with respectively large and small couplings to platinum center. However, for 2b, the observed signal in ³¹P{¹H} NMR spectrum completely reveals the presence of two equivalent phosphorus atoms, exhibiting the bridge pattern between two platinum centers. Besides, ¹⁹⁵Pt NMR spectrum of 2a displayed a doublet of doublets due to coupling with two different P atoms, showing only the larger doublet in the spectrum. However, a doublet signal for 2b is only observed in its ¹⁹⁵Pt NMR spectrum. The observed value of coupling constants for both complexes in ¹⁹⁵Pt NMR spectra were close to the obtained value from their ³¹P{¹H} NMR spectra.

![Figure 4](image)

Figure 4. The mononuclear and binuclear cycloplatinated(II) complexes containing dppm ligand.

The structures of 2a and 2b have been characterized by X-ray crystallography. Similar to 1, the suitable single crystals of both complexes were obtained by slow layer diffusion of n-hexane into the CH₂Cl₂ solution of the complexes. Figure 5 displays the crystal structures for 2a and 2b while the crystal packing views are demonstrated in Figures S17 and S18, respectively.
Also, the selected bond angles for 2a and 2b are listed in the Table S2. Crystal structure of 2a clearly proves dangling form of the dppm ligand. The distance between Pt center and uncoordinated P atom is equal to 4.23 Å which is very close to those reported before. In the binuclear complex 2b, the Pt centers are not located in front of each other, showing no metal-metal bond between Pt centers. However, in the previously reported cycloplatinated(II) complexes with bridging dppm (containing Me ligand instead of p-Me-C₆H₄), intra-molecular Pt-Pt interactions can be observed. For 2b, the P-C-P angle in dppm ligand was measured to be 129.64° which is larger than that observed for 2a (112.05°). In 2a, pair of centrosymmetric C–H···O interactions form dimers which are further connected to one-dimensional extended chain along the a-axis through the intermolecular C–H···N interactions (Figure S17). Also, in 2b, the intermolecular C–H···O interactions are the main intermolecular interactions which have consolidated the neighboring molecules in the crystal packing (Figure S18).
Figure 5. ORTEP plots of 2a (top) and 2b (bottom). Ellipsoids are drawn at the 40% probability level. Hydrogen atoms and a CH$_2$Cl$_2$ solvent molecule (in 2b) are omitted for clarity.

The reaction of 1 with 1 equivalent of dppe (N,N-bis(diphenylphosphino)amine) ligand gave the complex [Pt(O-bpy)(p-Me-C$_6$H$_4$)(κ1-P-dppa)], 3a, with a dangling dppa ligand (Figure 6). The NMR spectra of 3a are embedded in the Figures S19-S24. In the 1H NMR spectrum of 3a, a distinct multiplet signal is observed at δ = 3.89 ppm which is related to the N-H group of the dangling dppa ligand. This signal is converted to a broad singlet signal in the corresponding 1H{31P} NMR spectrum (Figure S20). Interestingly, the signal is vanished in the presence of some amount of D$_2$O due to that the hydrogen of N-H group can be replaced by deuterium (Figure S21). Similar to 2a, the 31P{1H} NMR spectrum of 3a, including two different doublet signals, vividly confirms the presence of monodentate (dangling) dppa. Expectedly, the 195Pt NMR spectrum of 3a also contains a doublet of doublet signal due to the coupling with two phosphorus atoms of dppa ligand (Figure S24). On the other hand, the reaction of 1 with 0.5 eq of dppp did not proceed to the pure complex [Pt$_2$(O-bpy)$_2$(p-Me-C$_6$H$_4$)$_2$(μ-dppa)], 3b, with bridging dppa ligand (see Figure 6). In addition to the major product of 3b, both 1H NMR and 31P{1H} NMR spectra exhibit the presence of minor product of 3a (Figures S25 and S26).

![Diagram](image_url)

Figure 6. The mononuclear and binuclear cycloplatinated(II) complexes containing dppa ligand.

Dppe (1,2-bis(diphenylphosphino)ethane) and dppp (1,3-bis(diphenylphosphino)propane) ligands contain longer alkyl chains in relation to dppe. They exhibit the same behavior in reaction with 1 (Figure 7). When 1 reacts with 1 equivalent of dppe or dppp, they show a high tendency to make cycloplatinated(II) complexes with chelated diphosphine ligands and yield the complexes [Pt(κ1-C-O-bpy)(p-Me-C$_6$H$_4$)(dppe)], 4a, and [Pt(κ1-C-O-bpy)(p-Me-C$_6$H$_4$)(dppp)],
5a, respectively. Because of high capability of these ligands to coordinate to the central atom as a chelated ligand, the Pt-N bond in cycloplatinated(II) moiety is forced to be broken when chelate is formed. It is expected that, this tendency is higher in dppe in relation to dppp which is due to that dppe is able to form very stable five-membered ring. However, both of them can be located as a bridging ligand between two cyclometalated parts when 1 reacts with 0.5 eq of each ligand and gives the complexes [Pt₂(O-bpy)₂(p-Me-C₆H₄)₂(µ-dppe)], 4b, and [Pt₂(O-bpy)₂(p-Me-C₆H₄)₂(µ-dppp)], 5b. The NMR spectra for 4a, 4b, 5a and 5b are shown in Figures S27-S40.

The ³¹P {¹H} NMR spectra of 4a and 5a both contain two different signals flanked with platinum satellites, confirming two different P atoms which are directly connected to platinum center (chelated products). These signals are singlet in the case of dppe (4a) showing a very small (not observable) coupling between these two different P atoms, while for 5a (bearing chelated dppp), both signals appeared as doublet signals. It can be related to the bite angle of chelated diphosphine ligands. Probably, the bite angle for dppp is in such a way that the P atoms can be strongly coupled to each other. Furthermore, the large difference between the chemical shifts arises from the amount of bite angle which is a steric effect imposed by diphosphine backbone. See Figures S28 and S35 for the ³¹P {¹H} NMR spectra of 4a and 5a, respectively. Expectedly, ¹⁹⁵Pt NMR spectra of both complexes include a doublet of doublet signal due to coupling with two different phosphorus atoms (see Figures S29 and S36 for 4a and 5a respectively).

In the case of dimeric complexes with bridging dppe or dppp (4b and 5b), the ³¹P {¹H} NMR spectra clearly proves the presence of one signal, presenting two equivalent P atoms. The ³¹P {¹H} NMR spectrum of 4b indicates a signal with splitting pattern related to the “short range-long range” coupling between Pt center and “connected and remote” phosphorus atoms (Figure S32). For 5b, due to the longer chain of the backbone in dppp compared with dppe, the long range coupling is practically eliminated. Therefore, each phosphine head acts as a monophosphine ligand, making a normal 1:4:1 pattern in the ³¹P {¹H} NMR spectrum (Figure S39). As expected, the ¹⁹⁵Pt NMR spectra of both 4b and 5b have a doublet signal which is due to the coupling of each Pt center with one P atom (Figures S33 and S40).

The appropriate crystals of 5b, obtained by diffusion of n-hexane into its CH₂Cl₂ solution, were further characterized by X-ray crystallography (Figure 8). Similar to the other
crystal structures in this work, p-Me-C_6H_4 group is located perpendicular to the molecule plane. The presence of dppp as a bridging ligand is clearly observable. In crystal packing of 5b the molecules propagated along the $[011]$ direction through C–H⋯O interactions (Figure S41).

Figure 7. The mononuclear and binuclear cycloplatinated(II) complexes containing dppe or dppp ligand.

Figure 8. ORTEP plot of 5b. Ellipsoids are drawn at the 40% probability level, and hydrogen atoms and an n-hexane solvent molecule are omitted for clarity.

In order to test the behaviors of dppb (1,4-bis(diphenylphosphino)butane) ligand possessing a longer chain in its backbone relative to dppe and dppp, it was applied in the reaction with 1. Interestingly, it was observed that dppb ligand is not able to be located as a chelated
ligand. In the reactions with 1:1 and 1:0.5 ratios (1: dppb), dppb chose to be a bridging ligand (Figure 9) and produced complex \([\text{Pt}_2(\text{O-bpy})_2(p-\text{Me-C}_6\text{H}_4)_2(\mu\text{-dppb})]\), 6b. In the reaction of 1 with 1 equivalent of dppb, the dimeric product (6b) was generated together with 0.5 eq of unreacted free dppb ligand. The unreacted dppb ligand is washed after the reaction terminates. The NMR spectra of 6b are demonstrated in Figure S42 and S43. Similar to 5b, the \(^{31}\text{P}\{^1\text{H}\}\) NMR spectrum of the complex 6b comprises a normal singlet signal with platinum satellites (1:4:1 pattern) because of two equivalent P atoms.

![6b](image)

Figure 9. The binuclear cycloplatinated(II) complex containing dppb ligand.

Similar to dppe, dppbz (1,2-bis(diphenylphosphino)benzene) ligand is able to make a five-membered ring in its chelated form. However, the chelation tendency for dppbz is much more intense than dppe so that dppbz cannot be located as a bridging ligand. Definitely, this tendency comes from its rigid backbone (benzene) which effectively hampers the rotation along the bonds between phosphorus atoms. The reaction of 1 with 1 equivalent of dppbz ended up to the formation of complex \([\text{Pt}(\kappa^1\text{-C-O-bpy})(p-\text{Me-C}_6\text{H}_4)(\text{dppbz})]\), 7a, with chelated dppbz ligand. Two different signals with platinum satellites in the \(^{31}\text{P}\{^1\text{H}\}\) NMR spectrum and one doublet of doublet signal in the \(^{195}\text{Pt}\) NMR spectrum are the definitive evidences for the structure of 7a, as shown in Figure 10 (see Figures S46 and S47 for the \(^{31}\text{P}\{^1\text{H}\}\) NMR and \(^{195}\text{Pt}\) NMR spectra, respectively). As mentioned above, the dppbz ligand is not able to make a bridge between two cyclometalated fragments so that the reaction of 1 with 0.5 equivalent of dppbz ligand gave 7a.
and half of the unreacted complex 1. The 1H NMR spectrum for the mixture of 7a and 1, shown in Figure S48, clearly confirms the presence of these two components.

![Image of complex 7a]

Figure 10. The mononuclear cycloplatinated(II) complex containing dppbz ligand.

Dppf (1,1'-bis(diphenylphosphino)ferrocene) ligand is the last diphosphine ligand which was reacted with 1 in this study. Previously, it has been proved that the reaction of cycloplatinated(II) compounds containing aryl ligands with one equivalent of dppf does not simply proceed like the other diphosphine ligands. Therein, a mechanism was proposed in which the reaction equally results in the formation of two different species; one has chelated dppf and the other one has dangling monodentate dppf. However, these two species are gradually converted to a new species that concurrently includes bridging and dangling dppf. It should be noted that such conversions make the NMR spectra to be very complicated and unexplainable. Interestingly, these conversions do not occur for the cycloplatinated(II) compounds with methyl ligand and their reactions with dppf completely lead to the formation of the pure products with chelated dppf ligand. Conversely, in the reaction of 1 with 0.5 equivalent of dppf, the complex [Pt$_2$(O-bpy)$_2$(p-Me-C$_6$H$_4$)$_2$(µ-dppf)], 8b, is obtained as a pure binuclear complex with the bridging dppf ligand (Figure 11). The NMR spectra of 8b are shown in Figures S49 and S50. Due to the mentioned reason for the dppp and dppb ligands (5b and 6b), only a singlet signal with platinum satellites is observed in the 31P1H NMR spectrum of 8b, which is indicative of the bridging dppf ligand with two equivalent P atoms.
Figure 11. The binuclear cycloplatinated(II) complex containing dppf ligand.

Conclusion

In this work, the reactivity of a new cycloplatinated(II) complex, [Pt(O-bpy)(p-Me-C₆H₄)(SMe₂)], 1, was tested toward a wide range of diphosphine ligands. It was proved that, the diphosphines exhibit various behaviors against 1, due to their different backbones. All the new complexes were characterized by NMR spectroscopy of the ¹H, ³¹P and ¹⁹⁵Pt nuclei. Also, some of them were structurally determined by X-ray crystallography technique.

The reactions of 1 with one equivalent of diphosphines with short backbones (dppm and dppa) yield the products with dangling monodentate diphosphines (2a and 3a). For dppm and dppa, in the first step, SMe₂ is replaced by one phosphine head while the other phosphine head is not able to cleave the cyclometalated Pt-N bond in 1 and consequently remains uncoordinated. In fact, herein, the formation of chelated dppa or dppm with four-membered ring does not have any priority. It is obvious that these two diphosphine ligands can act as bridging ligands when 0.5 equivalent of each is treated with 1.

In the following, it is observed that dppe and dppp exhibit high tendency to be chelated ligands and make five- and six-membered rings, respectively. As a result, in the reactions with 1:1 ratios (1: dppe or dppp), the cyclometalated Pt-N bond is cleaved because of chelation process of the diphosphine. Similar to dppa and dppm cases, they are able to make bridge between two cyclometalated parts in the reactions with 1:0.5 (1 : dppe or dppp) molar ratios.
Dppb cannot be located as a chelated ligand because of its longer and more flexible backbone (butane) than those of dppe and dppp. Instead, it prefers to be a bridging ligand in both 1:1 and 1:0.5 reactions (\(1 : \text{dppb}\)). Conversely, dppbz has a strong tendency (more than dppe) to make five-membered chelated product even in the reaction with 1:0.5 ratio (\(1 : \text{dppbz}\)). In dppbz, two PPh\(_2\) moieties are in ortho positions relative to each other on a benzene ring. Also, the rigidity of the backbone and formation of five-membered ring are the reasons for the intense tendency of the dppbz to form the chelated products. Finally, dppf proved to be able to make a bridge between two cyclometalated parts in a reaction with 1:0.5 ratio (\(1 : \text{dppf}\)). However, as previously reported, the reaction of \(1\) with 1 equivalent of dppf gives different products.

Electronic supplementary information (ESI) available: NMR spectra and crystallographic data.

Acknowledgments

This work was supported by the Institute for Advanced Studies in Basic Sciences (IASBS) Research Council and the Iran National Science Foundation (Grant no. 95834232). RK is thankful to Sharif University of Technology research Council for the research facility (Grant No. QB960401). RK also thanks Prof. Paul R. Raithby and Bath University for their support. PRR is grateful to the Engineering and Physical Sciences Research Council (EPSRC) for continued funding (EP/K004956/1). Thanks are also due to Mr. A. Biglari, the operator of Bruker NMR instrument at IASBS, for recording the NMR spectra.

References

52. Stoe & Cie, X–RED: Program for Data Reduction and Absorption Correction, Version 1.28b; Stoe & Cie GmbH: Darmstadt, Germany, 2005.