Judgmental selection of forecasting models

Fotios Petropoulosa, Nikolaos Kourentzesb, Konstantinos Nikolopoulosc, Enno Siemsen\textsuperscript{d,*}

a School of Management, University of Bath, UK
b Lancaster University Management School, Lancaster University, UK
c Bangor Business School, Bangor University, UK
d Wisconsin School of Business, University of Wisconsin, USA

\textbf{ARTICLE INFO}

Keywords:
Model selection
Behavioral operations
Decomposition
Combination

\textbf{ABSTRACT}

In this paper, we explored how judgment can be used to improve the selection of a forecasting model. We compared the performance of judgmental model selection against a standard algorithm based on information criteria. We also examined the efficacy of a judgmental model-build approach, in which experts were asked to decide on the existence of the structural components (trend and seasonality) of the time series instead of directly selecting a model from a choice set. Our behavioral study used data from almost 700 participants, including forecasting practitioners. The results from our experiment suggest that selecting models judgmentally results in performance that is on par, if not better, to that of algorithmic selection. Further, judgmental model selection helps to avoid the worst models more frequently compared to algorithmic selection. Finally, a simple combination of the statistical and judgmental selections and judgmental aggregation significantly outperform both statistical and judgmental selections.

1. Introduction

Planning processes in operations - e.g., capacity, production, inventory, and materials requirement plans - rely on a demand forecast. The quality of these plans depends on the accuracy of this forecast. This relationship is well documented (Gardner, 1990; Ritzman and King, 1993; Sanders and Graman, 2009; Oliva and Watson, 2009). Small improvements in forecast accuracy can lead to large reductions in inventory and increases in service levels. There is thus a long history of research in operations management that examines forecasting processes (Seifert et al., 2015; Nenova and May 2016; van der Laan et al., 2016, are recent examples).

Forecasting model selection has attracted considerable academic and practitioner attention during the last 30 years. There are many models to choose from - different forms of exponential smoothing, autoregressive integrated moving average (ARIMA) models, neural nets, etc. - and forecasters in practice have to select which one to use. Many academic studies have examined different statistical selection methodologies to identify the best model; the holy grail in forecasting research (Petropoulos et al., 2014). If the most appropriate model for each time series can be determined, forecasting accuracy can be significantly improved (Fildes, 2001), typically by as much as 25–30% (Fildes and Petropoulos, 2015).

In general, forecasting software recommends or selects a model based on a statistical algorithm. The performance of candidate models is evaluated either on in-sample data, usually using appropriate information criteria (Burnham and Anderson, 2002), or by withholding a set of data points to create a validation sample (out-of-sample evaluation, Ord et al., 2017, also known as cross-validated error). However, it is easy to devise examples in which statistical model selection (based either on in-sample or out-of-sample evaluation) fails. Such cases are common in real forecasting applications and thus make forecasting model selection a non-trivial task in practice.

Practitioners can apply judgment to different tasks within the forecasting process, namely:

1. definition of a set of candidate models,
2. selection of a model,
3. parametrization of models,
4. production of forecasts, and
5. forecast revisions/adjustments.

Most of the attention in the judgmental forecasting literature focuses on the latter two tasks. Experts are either asked to directly estimate the point forecasts of future values of an event or a time series (see for example Hogarth and Makridakis, 1981; Petropoulos et al., 2017), or they are asked to adjust (or correct) the estimates provided by a statistical method in order to take additional information into account;
such information is often called soft data, such as information from the sales team (Filédes et al., 2009).

However, little research has examined the role and importance of human judgment in the other three tasks. In particular, Bunn and Wright (1991) referred to the problem of judgmental model selection (item 2 in the above list), suggesting that the selection of the most appropriate model(s) can be based on human judgment. They also emphasized the dearth of research in this area. Importantly, the majority of the world-leading forecasting support systems allow human judgment as the final arbiter among a set of possible models. Therefore, the lack of research into how well humans perform this task remains a substantive gap in the literature.

In this study, we examined how well human judgment performs in model selection compared with an algorithm using a large-scale behavioral experiment. We analyzed the efficiency of judgmental model selection of individuals as well as groups of participants. The frequency of selecting the best and worst models provides suggestions on the efficacy of each approach. Moreover, we identified the process that most likely will choose models that lead to improved forecasting performance.

The rest of our paper is organized as follows. The next section provides an overview of the literature concerning model selection for forecasting. The design of the experiment to support the data collection is presented in section 3. Section 4 shows the results of our study. Section 5 discusses the implications for theory, practice, and implementation. Finally, section 6 contains our conclusions.

2. Literature

2.1. Commonly used forecasting models

Business forecasting is commonly based on simple, univariate models. One of the most widely used families of models is exponential smoothing models. Thirty different models fall into this family (Hyndman et al., 2008). Exponential smoothing models are usually abbreviated as ETS, which stands for either Exponential Smoothing or Error, Trend, Seasonality (the three terms in such models). More specifically, the error term may be either additive (A) or multiplicative (M), whereas trend and seasonality may be none (N), additive (A), or multiplicative (M). Also, the trend can be linear or damped (d). As an example, ETS(M,Ad,A) refers to an exponential smoothing model with a multiplicative error term, a damped additive trend, and additive seasonality. Maximum likelihood estimation is used to fit model parameters that produce optimal one-step-ahead in-sample predictions (Hyndman and Khandakar, 2008).

These models are widely used in practice. In a survey of forecasting practices, the exponential smoothing family of models is the most frequently used (Weller and Crone, 2012). In fact, it is used in almost 1/3 of times (32.1%), with averages coming second (28.1%) and naive methods third (15.4%). More advanced forecasting techniques are only used in 10% of cases. In general, simpler methods are used 3/4 times, a result that is consistent with the relative accuracy of such methods in forecasting competitions. Furthermore, an empirical study that evaluated forecasting practices and judgmental adjustments reveals that “the most common approach to forecasting demand in support of supply chain planning involves the use of a statistical software system which incorporates a simple univariate forecasting method, such as exponential smoothing, to produce an initial forecast” (Filédes et al., 2009, p. 4), while it specifies that three out of four companies examined “use systems that are based on variants of exponential smoothing” (Filédes et al., 2009, p. 7).

There are many alternatives to exponential smoothing for producing business forecasts, such as neural networks and other machine learning methods. Nevertheless, time series extrapolative methods remain very attractive. This is due to their proven track record in practice (Gardner, 2006) as well as their relative performance compared to more complex methods (Makridakis and Hibon, 2000; Armstrong, 2006; Crone et al., 2011). Furthermore, time series methods are fairly intuitive, which makes them easy to specify and use, and enhances their acceptance by the end-users (Dietvorst et al., 2015; Alvarado-Valencia et al., 2017). Complex methods, such as many machine learning algorithms, often appear as black boxes, and provide limited or no insights into how the forecasts are produced and which data elements are important. These attributes of forecasting are often critical for users (Sagha et al., 2018).

2.2. Algorithmic model selection

Automatic algorithms for model selection are often built on information criteria (Burnham and Anderson, 2002; Hyndman et al., 2002). Models within a certain family (such as exponential smoothing or ARIMA) are fitted to the data, and the model with the minimum value for a specific information criterion is selected as the best. Various information criteria have been considered, such as Akaike’s Information Criterion (AIC) or the Bayesian Information Criterion (BIC). The AIC after correction for small sample sizes (AICc) is often recommended as the default option because it is an appropriate criterion for short time series and it differs only minimally from the conventional AIC for longer time series (Burnham and Anderson, 2002). However, research also suggests that if we focus solely on out-of-sample forecasting accuracy, the various information criteria may choose different models that nonetheless result in almost the same forecast accuracy (Billah et al., 2006).

Information criteria are based on the optimized likelihood function penalized by model complexity. Using a model with optimal likelihood inadvertently assumes that the postulated model is true (Xia and Tong, 2011). In a forecasting context, this assumption manifests itself as follows: The likelihood approach generally optimizes the one-step-ahead errors; for the forecasts to be optimal for multi-step ahead forecasts, the resulting model parameters should be optimal for any longer horizon error distribution as well. This will only occur if the model is true, in which case the model fully describes the structure of the series. Otherwise, the error distributions will vary with the time horizon (Chatfield, 2000). Such time-horizon dependent error distributions are often observed in reality (Barrow and Kourentzes, 2016), providing evidence that any model merely approximates the underlying unknown true process. Not recognizing this can lead to a biased model selection which favors one-step-ahead performance at the expense of longer time horizons that may well be the analyst’s real objective.

An alternative to selecting models via information criteria is to measure the performance of different models in a validation set (Filédes and Petropoulos, 2015; Ord et al., 2017). The available data are divided into fitting and validation sets. Models are fitted using the first set, and their performance is evaluated in the second set. The model with the best performance in the validation set is put forward to produce forecasts for the future. The decision maker can choose the appropriate accuracy measure. The preferred measure can directly match the actual cost function that is used to evaluate the final forecasts.

Forecasts for validation purposes may be produced only once (also known as fixed-origin validation) or multiple times (rolling-origin), which is the cross-validation equivalent for time series data. Evaluating forecasts over multiple origins has several advantages, most importantly their robustness against the peculiarities in data that may appear within a single validation window (Tashman, 2000). Model selection on (cross-)validation has two advantages over selection based on information criteria. First, the performance of multiple-step-ahead forecasts can be used to inform selection. Second, the validation...
approach is able to evaluate forecasts derived from any process (including combinations of forecasts from various models). The disadvantage of this approach is that it requires setting aside a validation set, which may not always be feasible. Given that product life cycles are shortening, having a validation sample available can be an out of reach luxury for forecasters.

A final category for automatic model selection involves measurement of various time series characteristics (such as trend, seasonality, randomness, skewness, intermittency, variability, number of available observations) as well as consideration of decision variables (such as the forecast horizon). Appropriate models are selected based on expert rules (Collopy and Armstrong, 1992; Adya et al., 2001) or meta-learning procedures (Wang et al., 2009; Petropoulos et al., 2014). However, such approaches are very sensitive to the selected rules or meta-learning features. No widely accepted set of such rules exists.

Regardless of the approach used for the automatic selection of the best model, all processes outlined above (information criteria, validation, and selecting based on rules) are based on statistics or can be implemented through an algorithmic process. A commonality among all algorithmic model selection approaches is that selection is based on historical data. None of these algorithms can evaluate forecasts when the corresponding actual values (for example, actually realized demand) are not yet available. These statistical selection approaches have been adopted from non-time series modeling problems in which the predictive aspect of a model may not be present. Therefore, forecasting is only implicitly accounted for in these algorithmic approaches. Good forecasts, rather than good descriptions of the series, are done with a “leap of faith”.

2.3. Model selection and judgment

Despite the fact that the automatic selection of forecasting models has been part of many statistical packages and commercial software, what is often observed in practice is that managers select a model (and in some cases parameters) in a judgmental way. Automatic selection procedures are often hard to understand and communicate within companies. In that sense, managers lack trust in automatic statistical forecasting (Alvarado-Valencia et al., 2017). A standard issue is that automatic selection methods tend to change models between successive planning periods, substantially altering the shape of the series of forecasts. This issue reduces the users’ trust in the system, especially after planning periods, substantially altering the shape of the series of forecasts. The noise and patterns in the forecasts were representative of the out-of-sample forecasts with the expected reality. Harvey (1995) observed that participants in a laboratory experiment made predictions so that the noise and patterns in the forecasts were representative of the past data. This finding leads us to believe that forecasters perform a mental extrapolation of the available in-sample data, rejecting the models that result in seemingly unreasonable forecasts and accepting the ones that represent a possible reality for them. Thus, in contrast to algorithmic model selection, forecasters will attempt to evaluate the out-of-sample forecasts, even if the future realized values of the forecasted variable are not yet available.

As the amount of information increases, decision makers are unable to process it efficiently and simultaneously (Payne, 1976). Accordingly, research in decision analysis and management judgment has established that decomposition methods, which divide a task into smaller and simpler ones, lead to better judgment. Such methods have also been found to be useful in judgmental forecasting tasks, especially for forecasts that involve trends, seasonality and/or the effect of special events such as promotions. Edmundson (1990) examined the performance of judgmental forecasting under decomposition. Similar to the way exponential smoothing works (Gardner, 2006), forecasters were asked to estimate the structural components of the time series (level, trend, and seasonality) separately. The three estimates were subsequently combined (Edmundson, 1990). found that estimating the components independently resulted in superior performance compared with producing judgmental forecasts directly. In another study, Webby et al. (2005) observed similar results when the effects of special events were estimated separately. Also, Lee and Siemsen (2017) demonstrated the value of task decomposition on order decisions, especially when coupled with decision support.

We expect that these insights may be applied to judgmental model selection. When judgmentally selecting between forecasting models (through a graphical interface), we expect a model-build approach to outperform the simple choice between different models. In a model-build approach, forecasters are asked to verify the existence (or not) of structural components (trend and seasonality). This changes the task from identifying the best extrapolation line to determining whether the historical information exhibits specific features that the expert believes will extend into the future.

2.4. Combination and aggregation

Forecast combinations can result in significant improvement in forecast accuracy (Armstrong, 2001). There is also ample evidence that combining the output of algorithms with the output of human judgment can confer benefits. Blattberg and Hoch (1990) used a simple (50-50%) combination and found significant gains in combination methods compared with the separate use of algorithms and judgment. Their results have been repeatedly confirmed in the forecasting literature. Fenas and Legerstee (2011) found that a simple combination of forecasts outperformed both statistical and judgmentally adjusted forecasts. Petropoulos et al. (2016) demonstrated that a 50-50 combination of forecasts in the period after a manager's adjustments have resulted in significant losses can indeed increase accuracy by 14%. Wang and Petropoulos (2016) found that a combination is as good, if not better, than selecting between a statistical or an expert forecast. Trapero et al. (2013) demonstrated further gains with more complex combination schemes. We anticipate that a combination will also be beneficial in the context of forecast model selection.

The concept of the wisdom of crowds refers to the aggregation of the judgments of a group of decision makers/stakeholders. Surowiecki (2005) provided several cases in which this concept has been found to increase performance compared with individual judgments. Ferrell (1985) also argued for the importance of combining individual judgments and discussed the significantly improved performance of judgmental aggregation. He suggested that the process of the combination itself is of little significance. However, a later study added that aggregation done mechanically is better than if it is done by one of the forecasters to avoid the possibility of biased weights (Harvey and Harries, 2004). In any case, we expect that the aggregation of
judgmental model selections will lead to improved performance compared with selecting a single model, either judgmentally or statistically.

3. Design of the behavioral experiment

3.1. Selecting models judgmentally

Specialized forecasting software lists forecast methods and models. The users of such systems must choose one from the list to extrapolate the data at hand. In some cases, this list of choices is complemented by an option that, based on an algorithm, automatically identifies and applies the best of the available methods. However, in the context of the current paper, we assumed that forecasters do not have such a recommendation available and instead rely solely on their own judgment. We also assumed that the choice set is constrained to four models able to capture various data patterns (level, trend, and seasonality). This is not an unreasonable setup, with some established systems offering such specific options (such as the well established SAP APO-DP system). We resorted to the exponential smoothing family of models (Hyndman et al., 2008) and focused on the four models presented in Table 1.

Table 1: The four forecasting models considered in this study.

<table>
<thead>
<tr>
<th>Model description</th>
<th>ETS Model</th>
<th>Trend</th>
<th>Seasonality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple exponential smoothing (SES)</td>
<td>A,N,N</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>SES with additive seasonality</td>
<td>A,N,A</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Damped exponential smoothing (DES)</td>
<td>A,Ad,N</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>DES with additive seasonality</td>
<td>A,Ad,A</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Once the forecasts produced by a method are considered satisfactory, we considered the respective model from the Table 1. For example, identification of a trend implies damped exponential smoothing; identification of seasonality without a trend implies SES with seasonality. This can be implemented in the software design by including two check-boxes (right panel of Fig. 1). Once a change in one of these two check-boxes has been made, the forecasts of the respective model are drawn. To facilitate identification, we provide trend and seasonal plots (with usage instructions) in an attempt to aid the users with the pattern identification task.

In both cases, once a participant submits his or her decisions, we used the selected forecasting method to produce one-year-ahead (12 months) forecasts for that time series. The forecasts are compared with the actual future values, which were withheld, to find the forecast accuracy of the submitted choice.

3.2. Data

To compare the performance of statistical versus judgmental model selection, we used a subset of time series from the M3-Competition dataset (Makridakis and Hibon, 2000). This dataset consists of 3003 real time series of various frequencies and types. It has been used many times in empirical evaluations of new forecasting models or processes (Hyndman et al., 2002; Taylor, 2003; Hibon and Evgeniou, 2005; Crone et al., 2011; Athanasopoulos et al., 2017; Petropoulos et al., 2018). We did not disclose the data source to the participants.

We focused on series with a monthly frequency and handpicked 32 time series. We selected series so that in half of them, the statistical model selection based on minimizing the value of the AIC succeeds in identifying the best model as evaluated in the hold-out sample (out-of-sample observations). For the other half, this minimum-AIC model fails to produce the best out-of-sample forecast. Moreover, the 32 time series were selected so that all four exponential smoothing models considered in this paper (Table 1) are identified as best in some time series according to the AIC criterion.

This success rate of 50% for the statistical algorithm to pick the correct model probably overestimated (but not by much) the true success rate. When the four models presented in section 3.1 were applied on the 1428 monthly series of the M3-competition, selection based on AIC is accurate in 36% of the cases. As such, if any bias is introduced by our time series selection, we favor the statistical algorithm by giving the algorithm a higher chance of picking the correct model. Consequently, the true effect size with which human judgment improves upon performance may be underestimated in our analysis.

Fig. 1. Screens of the Web-based environment of the behavioral experiment. The left panel shows the implementation of model selection; the right panel presents the model-build.
Because time series from the M3-Competition are of various lengths, we truncated all selected series to a history of 72 months (six years). The first five years of data (60 months) were treated as the in-sample data, on which the models were fitted. The last year (12 months) was used for out-of-sample evaluation. Fig. 2 depicts a typical time series used in this behavioral experiment. Along with the historical data that cover five years, we also draw the (unobserved) future of the series. Moreover, we show the statistical point forecasts of the four exponential smoothing models considered in different colors. For this example, the AIC method identifies the ETS(A,Ad,A) model as best and, in fact, produced the best out-of-sample forecasts.

3.3. Participants

The behavioral experiment was introduced as an elective exercise to groups of undergraduate and postgraduate students studying at various universities (Institutions with at least 20 participants include Bangor University, Cardiff University, Lancaster University, the National Technical University of Athens, and Universidad de Castilla-La Mancha). Details regarding the modules where the experiment was introduced as an elective exercise are provided in Table B.6 of Appendix B. We ran the exercise as a seminar (workshop) session during the respective modules. The experiment was also posted to several relevant groups on LinkedIn and three major forecasting blogs. As an incentive, the participants were told they would receive £50 if their performance ranked within the top-20 across all the participants (see Lacetera et al., 2014). The sample of student participants was complemented by a sample of practitioners (90 forecasting experts). Practitioner participants come from a variety of industries, as depicted in Table B.7 of Appendix B. Our analysis also considered this sub-sample separately to check for differences and similarities between the practitioners and the students.

The completion rate was high for student participants (at 83%). This was expected, as the experiment was conducted in a lab for several cohorts of this population. The rate was lower for the other groups (practitioners 67%, researchers 57%, and other participants 56%). These observed completion rates are slightly lower than other professional web-based surveys (78.6%); this difference may be explained by the duration of this behavioral experiment (around 30 min, as opposed to the recommended 15 min).

3.4. The process of the experiment

After being randomly assigned to experimental conditions, participants were given a short description of the experimental task. The participants assigned to the model-build condition were given brief descriptions of the trend and seasonal plots.

The 32 time series we selected from the M3 Competition were divided into four groups of 8 time series each (the same for all participants), and the actual experiment consisted of 4 rounds. In each round, the participants were provided with different information regarding the forecasts and the fit derived from each model. The purpose was to investigate how different designs and information affect judgmental model selection or model-build. The information provided in each round is as follows:

- Only the out-of-sample forecasts (point forecasts for the next 12 months) were provided.
- The out-of-sample forecasts and the in-sample forecasts (model fit) were provided.
- The out-of-sample forecasts and the value of the AIC, which refers to the fit of the model penalized by the number of parameters, were provided.
- The out-of-sample forecasts, the in-sample forecasts, and the value of the AIC were provided.

Table 2

Participants per role and experiment.

<table>
<thead>
<tr>
<th>Role</th>
<th>Model Selection</th>
<th>Model-Build</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>UG students</td>
<td>139</td>
<td>137</td>
<td>276</td>
</tr>
<tr>
<td>PG students</td>
<td>103</td>
<td>108</td>
<td>211</td>
</tr>
<tr>
<td>Researchers</td>
<td>13</td>
<td>31</td>
<td>44</td>
</tr>
<tr>
<td>Practitioners</td>
<td>46</td>
<td>44</td>
<td>90</td>
</tr>
<tr>
<td>Other</td>
<td>40</td>
<td>32</td>
<td>72</td>
</tr>
<tr>
<td>Total</td>
<td>341</td>
<td>352</td>
<td>693</td>
</tr>
</tbody>
</table>

2 http://fluidsurveys.com/university/response-rate-statistics-online-surveys-aiming/
of the AIC were provided.

The order of the rounds, as well as the order of the time series within each round, was randomized for each participant. Attention checks (Abbey and Meloy, 2017) were not performed. To maximize participant attention, round-specific instructions were given at the beginning of each round so that the participants were able to identify and potentially use the information provided.

Our experiment has both a between-subjects factor (model selection vs. model-build) as well as a within-subjects factor (information provided). Since the latter produced little meaningful variation, our analysis focuses on the former. We chose this design since we believed that the difference between model selection vs. model-build could introduce significant sequence effects (making this more suited for between-subjects analysis), but we did not believe that differences in information provided would lead to sequence effects (making this more suited for within-subjects analysis).

3.5. Measuring forecasting performance

The performance of both algorithmic (based on AIC) and judgmental model selection is measured on the out-of-sample data (12 monthly observations) that were kept hidden during the process of fitting the models and calculating the AIC values. Four metrics were used to this end. The first metric was a percentage score based on the ranking of the selections. This was calculated as follows: A participant receives 3 points for the best choice (the model that leads to the best forecasts) for a time series, 2 points for the second best choice, and 1 point for the third best choice. Zero points were awarded for the worst (out of four) choices. The same point scheme can be applied to both judgmental forecasting approaches (model selection and model-build) once the identified patterns are translated to the respective model. The mean absolute error (MAE) was used as the cost function for evaluation. The range of points that anyone could collect is (given the number of time series) 0–96, which was then standardized to the more intuitive scale of 0–100. The percentage score of each participant, along with a pie chart presenting the distribution of best, second best, third best, and worst selections, was presented at the very last page of the experiment.

Apart from the percentage score based on the selections, we also use three formal measures of forecasting performance: (1) Mean Percentage Error (MPE) is a measure suitable for measuring any systematic bias in the forecasts, (2) Mean Absolute Percentage Error (MAPE) and (3) Mean Absolute Scaled Error (MASE; Hyndman and Koehler, 2006) are suitable for measuring the accuracy of the forecasts. Although the MAPE suffers from several drawbacks (Goodwin and Lawton, 1999), it is intuitive, easy to interpret, and widely used in practice. MASE is the Mean Absolute Error scaled by the in-sample Mean Absolute Error of the naive method that uses the last observed value as a forecast. The intuition behind this scaling factor is that it can always be defined and only requires the assumption that the time series has no more than one unit root, which is almost generally true for real time series. Other scaling factors, such as the historical mean, impose additional assumptions, such as stationarity. MASE has desirable statistical properties and is popular in the literature. In particular, MASE is scale independent without having the computational issues of MAPE. It is always defined and finite, with the only exception being the extreme case where all historical data would be equal. Note that MAE and MASE would both give the same rankings of the models within a series and, as a result, the same percentage scores. However, MAE is a scale-dependent error measure and not suitable for summarizing across series. For all three measures, MPE, MAPE, and MASE, values closer to zero are better. Moreover, whereas MPE can take both positive and negative values, the values for MAPE and MASE are always non-negative.

The values of MPE, MAPE, and MASE for a single time series across forecast horizons are calculated as

$$\text{MPE} = \frac{100}{H} \frac{1}{H} \sum_{i=1}^{H} \frac{y_{it} - f_{it}}{\hat{y}_{it}},$$

$$\text{MAPE} = \frac{100}{H} \sum_{i=1}^{H} \left| \frac{y_{it} - f_{it}}{\hat{y}_{it}} \right|,$$

$$\text{MASE} = \frac{(n-1) \sum_{i=1}^{H} \left| y_{it} - f_{it} \right|}{H \sum_{t=1}^{n} \left| y_{t} - \hat{y}_{t-1} \right|},$$

where y_t and f_t refer to the actual and the forecasted value at period t, n is the size of the training sample, and H is the forecast horizon.

4. Analysis

4.1. Individuals’ performance

We next examined the performance of the judgmental model selection and judgmental model-build approaches. We contrasted their performance with the algorithmic model selection by AIC (Hyndman and Khandakar, 2008).

How do judgmental model selection and judgmental model-build perform based on the percentage score? The left panel of Fig. 3 presents the percentage scores of the participants under the two approaches. The performance of each participant is depicted with a dot marker (blue for the

![Fig. 3. Performance of model selection and model-build in terms of scores and distributions of best/worst selections.](Image)
practitioner participants, gray for all other participants), and the respective box-plots are also drawn. The square symbol represents the arithmetic mean of the percentage score for each approach. The horizontal (red) dashed line refers to the statistical benchmark (performance of automatic model selection based on AIC). Generally, participants performed better under the model-build approach than the model selection approach. In essence, the average participant in model-build performs as well as the participant in the 75th percentile of the model selection approach. More importantly, participants under the model-build approach perform on average as well as the statistical selection. However, the differences in scores between individuals are large, with the range spanning between 32% and 83%.

Do humans select similarly to the algorithm? The middle and right panels of Fig. 3 present, respectively, how many times the participants selected the best, second best, third best, and worst models under the model selection and model-build approaches. The differences in performance (in terms of percentage scores) between model selection and model-build derives from the fact that model-build participants were able to identify the best model more frequently. By comparing how frequently algorithms (red squares) and humans make the best and worst model selection, we can observe that humans are superior to algorithms in avoiding the worst model, especially in the model-build case. The differences are statistically significant according to t-tests for both best and worst selections and both strategies, model selection and model-build ($p < 0.01$). The frequencies that algorithms and humans selected each model are presented in Table 3, along with how many times each model performs best in the out-of-sample data. We observe that algorithms generally select the level models (SES and Seasonal SES with seasonality) more often compared to their trended counterparts. AIC, as with other information criteria, attempts to balance the goodness-of-fit of the model and its complexity as captured by the number of parameters. More uniform distributions are observed for human selection and out-of-sample performance.

How do the judgmental approaches perform based on error measures? Fig. 4 presents the performance of all 693 participants for MPE, $MASE$, and ASE, the three error measures considered in this study. In both the model selection and the model-build treatments, human judgment is significantly better (less biased and more accurate) than statistical selection in terms of MPE and MAE. At the same time, although the judgmental model-build performs on a par with statistical selection for $MASE$, the judgmental model selection performs worse than the statistical selection. Differences in the insights provided by the different error measures can be attributed to their statistical properties.

It is noteworthy that statistical selection is, on average, positively biased (negative values for MPE). However, this is not the case for all participants. In fact, slightly more than 30% of all participants (42% of those that were assigned in the model selection experiment) are, on average, negatively biased. The positive bias of statistical methods is consistent with the results of Kourentzes et al. (2014) who investigated the performance of statistical methods on all M3-competition data.

Do the results differ if only the practitioners’ subgroup is analyzed? Independent sample t-tests were performed to compare the performance of practitioners and students. The results showed that differences are not statistically significant, apart from the case of model-build and $MASE$ where practitioner participants perform significantly better. The similarities in the results between student and practitioner participants are relevant for the discussion of the external validity of behavioral experiments using students (Deck and Smith, 2013). Similar to Kremer et al. (2015), our results suggest that student samples may be used for (at least) forecasting behavioral experiments.

4.2. Effects of individuals’ skill and time series properties

Going beyond the descriptive presented thus far, we constructed a linear mixed effects model to account for the variability in the skills of individual participants, as well as for the properties of each time series that was used. We model values of $MASE$ (containing the performance of the participants on each individual response: 693 participants \times 32 time series) considering the following fixed effects: (i) experimental condition (model selection or model-build); (ii) interface information (out-of-sample only, in- and out-of-sample and these options supplemented with fit statistics; see section 3.4); and (iii) the role of the participants (see Table 2 in which both under- and postgraduate students were grouped together). We accounted for the variation between participants as a random effect that reflects any variability in skill. Similarly, we consider the variability between time series as a second random effect, given that they have varying properties.

To conduct the analysis we use the lme4 package (Bates et al., 2015) for R statistical computing language (R Core Team, 2016). We evaluated the contribution of each variable in model by using two information criteria (AIC and BIC). To facilitate the comparison of the alternative model specification using information criteria, we estimated the model using maximum likelihood. We found only marginal differences between the models recommended by the two criteria, a result suggesting that the most parsimonious option was the better choice.

We concluded that only the effect of the experimental condition was important, and that the interface information and role of participant did not explain enough variability to justify the increased model complexity. Consequently, these two effects were removed from the model. Both random effects were deemed useful. We investigated for random slopes as well, but found that such slopes did not explain any additional variability in $MASE$. Therefore, they were not considered further.

The resulting fully crossed random intercept model is reported in Table 4. The estimated model indicates that model-build improves $MASE$ by 0.0496 over model select, which is consistent with the analysis so far. The standard deviations of the participant and series effects, respectively, are 0.0314 and 0.5551 (the intraclass correlations are 0.0026 and 0.8178). This shows that the skills of the participants account for only a small degree of the variability of $MASE$. This helps explain the insignificant role of the participant background. To put these values into perspective, the standard deviation of $MASE$ on individual time series responses is 0.6144.

4.3. 50% statistics + 50% judgment

The seminal work by Blattberg and Hoch (1990) suggested that combining the outputs of statistical models with managerial judgment will provide more accurate outputs than each single-source approach (model or manager), while a 50-50% combination is “a nonoptimal but pragmatic solution” (Blattberg and Hoch, 1990, p. 898). Their result has been confirmed in many subsequent studies. In this study, we considered the simple average of the two predictions, i.e., the equal-weight combination of the forecasts produced by the model selected by the statistics (AIC) and the model chosen by each participant.

How does a 50-50 combination of statistical and judgmental selection perform? Fig. 5 presents the performance of the simple combination of statistical and judgmental selection for the three error measures considered in this study and categorized by the two judgmental approaches. We observed that performance for both judgmental model selection and model-build was improved significantly compared with using statistical selection alone (horizontal dashed red line). In fact, the combination of the statistical + judgmental selection is less biased than statistical selection in
86% of the cases and produces lower values for MAPE and MASE for 99% and 90% of the cases, respectively. Moreover, the differences in the performance of the two approaches are now minimized.

Table 4
Linear mixed effects model output.

<table>
<thead>
<tr>
<th>Mixed effect model statistics</th>
<th>Estimate</th>
<th>Standard Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>1.0313</td>
<td>0.0982</td>
</tr>
<tr>
<td>Experiment setup</td>
<td>−0.0496</td>
<td>0.0042</td>
</tr>
<tr>
<td>Random effects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participant (intercept)</td>
<td>0.0314</td>
<td></td>
</tr>
<tr>
<td>Time series (intercept)</td>
<td>0.5551</td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>0.2601</td>
<td></td>
</tr>
<tr>
<td>Model statistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AIC</td>
<td>3742.3</td>
<td></td>
</tr>
<tr>
<td>BIC</td>
<td>3782.3</td>
<td></td>
</tr>
<tr>
<td>Log Likelihood</td>
<td>−1866.1</td>
<td></td>
</tr>
</tbody>
</table>

Does a 50-50 combination bring robustness? On top of the improvements in performance, an equal-weight combination also reduces the between-subject variation in performance. Focusing, for instance, on MASE and the judgmental model-build approach, Fig. 4 suggests a range of 0.314 (between 0.882 and 1.196) between best and worst performers. The comparable range according to Fig. 5 is 0.136 (between 0.864 and 1). Therefore, a 50-50 combination renders the judgmental selection approaches more robust.

4.4. Wisdom of crowds

An alternative to combining the statistical and judgmental selections is judgmental aggregation – a combination of the judgmental selections of multiple participants. The concept of the “wisdom of crowds” is not new (Surowiecki, 2005) and has repeatedly been shown to improve forecast accuracy as well as the quality of judgments in general.

For example, consider that a group of 10 experts is randomly selected. Given their selections regarding the best model, we can derive...
the frequencies that show how many times each model is identified as best. In other words, experts preferences are equally considered (each expert has exactly one vote, and all votes carry the same weight). This procedure leads to a weighted combination of the four models for which the performance can be measured. We consider groups of 1–25 experts randomly re-sampled 1000 times.

Does judgmental aggregation improve forecasting performance? Fig. 6 presents the results of judgmental aggregation. The light blue area describes the range of the performance of judgmental aggregation for various group sizes when the model-build approach is considered. The middle-shaded blue area refers to the 50% range of performances, and the dark blue line refers to the median performance. In other words, if one considers a vertical line (i.e., for particular group size), the points at which this line intersects provide the minimum, first quartile, median, third quartile, and maximum descriptive summary of the performance. For the judgmental model selection approach, only the median is drawn in the black dotted line, and the performance of statistical selection is represented by a red dashed horizontal line. We observed significant gains in performance as the group size increased, coupled with lower variance in the performance of different equally sized groups. We also observed the convergence of performance, meaning that no further gains were noticed in the average performance for group sizes higher than 20. Judgmental aggregation outperforms both statistical and individual selection.

How many experts are enough? A careful examination of Fig. 6 reveals, on top of the improvements if aggregation is to be used, the critical thresholds for deciding on the optimal number of experts in groups. We observed that if groups of five participants are considered, then their forecasting performance was almost always better than that of the statistical selection on all three measures, regardless of their role (undergraduate/postgraduate students, practitioners, researchers, or other). Of even more interest, the third quartile of groups of size two (undergraduate/postgraduate students, practitioners, researchers, or other) is always outperforms the statistical benchmark. It is not the case, but identical to results from students and other participants.

Note that in this study we consider only unweighted combinations of the judgmental model selections. If the same exercise were carried dynamically (over time), then one could also consider, based on past performance, weighted combinations that have been proven to enhance performance in other forecasting tasks (Tetlock and Gardner, 2015).

How does the model with the most votes perform? Instead of considering a weighted-combination forecast based on votes across the four models, we have also examined a case in which the aggregate selection is the model with the most votes. In case two (or more) models are tied for first place in votes, then an equal-weight combination among them was calculated. The performance of this strategy is worse, in terms of the accuracy measures considered, than the wisdom of crowds with weighted combinations; moreover, the quality of the performance depends heavily on the sample selected (the variance is high even for groups with a large number of experts). However, on average, merely choosing the most-popular model still outperforms statistical selection.

4.5. Evaluation summary and discussion

Table 5 summarizes the results presented in the above sections. As a sanity check, we also provide the performance of four additional statistical benchmarks:

- Random selection refers to a performance obtained by randomly selecting one of the four available choices. We have reported the arithmetic mean performance when such a procedure is repeated 1000 times for each series. This benchmark is included to validate the choice of the time series and to demonstrate that non-random selection is indeed meaningful (in either a statistical or a judgmental manner).
- Equal-weight combination refers to the simple average of the forecasts

Table 5

Summary of the results; top-method is underlined; top-three methods are in boldface.

<table>
<thead>
<tr>
<th>Method</th>
<th>MPE (%)</th>
<th>MAPE (%)</th>
<th>MASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual selection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random selection</td>
<td>2.91</td>
<td>24.52</td>
<td>1.104</td>
</tr>
<tr>
<td>Selection based on AIC</td>
<td>5.93</td>
<td>24.59</td>
<td>0.971</td>
</tr>
<tr>
<td>Judgmental model selection</td>
<td>1.52</td>
<td>23.48</td>
<td>1.031</td>
</tr>
<tr>
<td>Judgmental model-build</td>
<td>2.45</td>
<td>23.30</td>
<td>0.982</td>
</tr>
<tr>
<td>Combination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equal-weight combination</td>
<td>2.90</td>
<td>21.96</td>
<td>0.985</td>
</tr>
<tr>
<td>Weighted combination based on AIC</td>
<td>4.84</td>
<td>23.39</td>
<td>0.931</td>
</tr>
<tr>
<td>Combination of best two based on AIC</td>
<td>4.65</td>
<td>23.12</td>
<td>0.921</td>
</tr>
<tr>
<td>50-50% combination of AIC and judgment</td>
<td>3.96</td>
<td>22.93</td>
<td>0.930</td>
</tr>
<tr>
<td>Wisdom of crowds: 5 humans (model-build)</td>
<td>2.43</td>
<td>21.68</td>
<td>0.903</td>
</tr>
</tbody>
</table>
across all four models. In other words, each model was assigned a weight of one-quarter. It is included as a benchmark of the performance of 50-50 combinations and the wisdom of crowds.

- **Weighted combinations based on AIC** were proposed by Burnham and Anderson (2002) and evaluated by Kolassa (2011). This approach showed improved performance over selecting the model with the lowest AIC. It is used in this study as a more sophisticated benchmark for the wisdom of crowds.

- **Combination of best two based on AIC** refers to the equal-weight combination of the best and second-best models based on the AIC values.

Focusing on the first four rows of Table 5 that refer to selecting a single model with different approaches, random selection performs poorly compared with all other approaches. This is especially true in terms of MASE. Moreover, although it seems to be less biased than statistical selection, random selection’s absolute value of MPE is larger than any of the two judgmental approaches.

The last five rows of Table 5 present the performance of the various combination approaches. First, we observe that the equal-weight combination performs very well according to all metrics, apart from statistical selection, and random selection’s absolute value of MPE is larger than any of the two judgmental approaches.

We also present in boldface the top three performers for each metric. The top performer is underlined. We observe that the wisdom of crowds (which is based on model-build) is always within the top three and ranked first for two of the metrics. The wisdom of crowds based on model selection also performs on par.

5. Implications for theory, practice, and implementation

This work provides a framework for judgmental forecasting model selection, and highlights the conditions for achieving maximal gains. We now discuss the implications of our work for theory and practice as well as issues of implementation.

Statistical model selection has been dominated by goodness-of-fit derived approaches, such as information criteria, and by others based on cross-validated errors (Filides and Petropoulos, 2015). The findings of our research challenge these approaches and suggest that an alternative approach based on human judgment is feasible and performs well. Eliciting how experts perform the selection of forecasts may yield still more novel approaches to statistical model selection. Our research provides evidence that a model-build approach works better for humans. We postulate that model-build implies a suitable structure (and a set of restrictions) that aid selection. Statistical procedures could potentially benefit from a similar framing.

Our findings are aligned with the literature on judgmental forecasting as well as research in behavioral operations. The good performance of the 50-50 combination (of judgment and algorithm) and judgmental aggregation resonates with findings in forecasting and cognitive science (Blatberg and Hoch, 1990; Surowiecki, 2005).

Our research looks at an everyday problem that experts face in practice. Planners and managers are regularly tasked with the responsibility of choosing the best method to produce the various forecasts needed in their organizations. We not only benchmark human judgment against a state-of-the-art statistical selection but also provide insights into how to aid experts. Another exciting aspect of this research is that it demonstrates that expert systems that rely on algorithms to select the right model, such as Forecast Pro, Autobox, SAP Advanced Planning and Optimization - Demand Planning (APO-DP), IBM SPSS Forecasting, SAS, etc., may be outperformed by human experts, if these experts are supported appropriately in their decision making. This has substantial implications for the design of algorithms for both expert systems algorithms and the user interfaces of forecasting support systems.

Judgmental model selection is used in practice because it has some endearing properties. It is intuitive: A problem that necessitates human intervention is always more meaningful and intellectually and intuitively appealing for users. It is interpretable: Practitioners understand how this process works. The version of model-build that is based on judgmental decomposition is easy to explain and adapt to real-life setups. This simplicity is a welcome property (Zellner et al., 2002).

At its most basic form, implementing judgmental model selection requires no investment. Nonetheless, to obtain maximum gains, existing interfaces will need some redesign to allow incorporation of the model-build approach. However, a crucial limitation is the cost of using human experts. Having an expert going through all items that need to be forecasted may not be feasible for many organizations, such as large retailers that often require millions of forecasts. Of course, using the judgmental aggregation approach requires even more experts.

In a standard forecasting and inventory setting, ABC analysis is often used to classify the different stock keeping units (SKUs) into importance classes. In this approach, the 20% most important and the 50% least important items are classified as A and C items, respectively. Additionally, XYZ analysis is used in conjunction with ABC analysis to further classify the products into easy-to-forecast (X items) to hard-to-forecast (Z items). As such, nine classes are considered, as depicted in Fig. 7 (Ord et al., 2017). We propose the application of the wisdom of crowds for judgmental model selection/build on the AZ items (those of high importance but difficult to forecast). This class is shaded with gray color in Fig. 7. In many cases, these items represent only a small fraction of the total number of SKUs. Thus, judgmentally weighted selections across the available models of a forecasting support system should be deduced by the individual choices, either in terms of models or patterns, of a small group of managers; our analysis showed that...
selections from five managers would suffice.

A potential limitation of our current study, especially in the big data era, is the number of series and respective contexts examined. As a future direction, we suggest the extension of our study by increasing the amount of time series represented in each context and the number of contexts to allow the evaluation of the robustness of the superior performance of the judgmental model selection in each context. This could include more and higher frequencies and exogenous information. Such extensions would also benefit the ongoing limitation of controlled experimental studies towards more generalizable results.

6. Conclusions

Model selection of appropriate forecasting models is an open problem. Optimal ex-ante identification of the best ex-post model can bring significant benefits regarding forecasting performance. The literature has so far focused on automatic/statistical approaches for model selection. However, demand managers and forecasting practitioners often tend to ignore system recommendations and apply judgment when selecting a forecasting model. This study is the first, to the best of our knowledge, to investigate the performance of judgmental model selection.

We devised a behavioral experiment and tested the efficacy of two judgmental approaches to select models, namely simple model selection and model-build. The latter one was based on the judgmental identification of time series features (trend and seasonality). We compared the performance of these methods against that of a statistical benchmark based on information criteria. Judgmental model-build outperformed both judgmental and statistical model selection. Significant performance improvements over statistical selection were recorded for the equal-weight combination of statistical and judgmental selection. Judgmental aggregation (weighted combinations of models based on the selections of multiple experts) resulted in the best performance of any approaches we considered. Finally, an exciting result is that humans are better, compared to statistics, in avoiding the worst model.

The results of this study suggest that companies should consider judgmental forecasting selection as a complementary tool to statistical model selection. Moreover, we believe that applying the judgmental aggregation of a handful of experts to the most important items is a trade-off between resources and performance improvement that companies should be willing to consider. However, forecasting support systems that incorporate simple graphical interfaces and judgmental identification of time series features are a prerequisite to the successful implementation of do-it-yourself (DIY) forecasting. This does not seem too much to ask for software in the big data era.

Given the good performance of judgment in model selection forecasting tasks, the emulation of human selection processes through artificial intelligence approaches seems a natural way forward toward eventually deriving an alternative statistical approach. We leave this for future research. Furthermore, we expect to further investigate the reasons behind the difference in the performance of judgmental model selection and judgmental model-build. To this end, we plan to run a simplified version of the experiment of this study that will be coupled with the use of an electroencephalogram (EEG) to record electrical brain activity. Future research could also focus on the conditions (in terms of time series characteristics, data availability, and forecasting horizon) under which judgmental model selection brings more benefits. Finally, field experiments would provide further external validity for our findings.

Acknowledgments

FP and NK would like to acknowledge the support for conducting this research provided by the Lancaster University Management School Early Career Research Grant MTA7690.

Appendix A. Forecasting models

We denote:

\(\alpha \): smoothing parameter for the level (0 \leq \alpha \leq 1).
\(\beta \): smoothing parameter for the trend (0 \leq \beta \leq 1).
\(\gamma \): smoothing parameter for the seasonal indices (0 \leq \gamma \leq 1).
\(\phi \): damping parameter (usually 0.8 \leq \phi \leq 1).
\(\hat{y}_t \): actual (observed) value at period \(t \).
\(\hat{y}_{t+h} \): forecast for \(h \) periods ahead from origin \(t \).
\(l_t \): smoothed level at the end of period \(t \).
\(b_t \): smoothed trend at the end of period \(t \).
\(s_t \): smoothed seasonal index at the end of period \(t \).
\(m \): Number of periods within a seasonal cycle (e.g., 4 for quarterly, 12 for monthly).
\(h \): forecast horizon.

SES, or ETS(A, N,N), is expressed as:

\[l_t = \alpha \hat{y}_t + (1 - \alpha)l_{t-1}, \]
\[\hat{y}_{t+h} = l_t. \]

SES with additive seasonality, or ETS(A,N,A), is expressed as:

\[l_t = \alpha (\hat{y}_t - s_{t-m}) + (1 - \alpha)l_{t-1}, \]
\[s_t = \gamma (\hat{y}_t - l_t) + (1 - \gamma)s_{t-m}, \]
\[\hat{y}_{t+h} = l_t + s_{t+h-m}. \]

DES, or ETS(A,Ad,N), is expressed as:

\[l_t = \alpha \hat{y}_t + (1 - \alpha)(l_{t-1} + \phi b_{t-1}), \]
\[b_t = \beta (l_t - l_{t-1}) + (1 - \beta)\phi b_{t-1}, \]
\[h_t = \phi h_{t-1} + (1 - \phi) s_t. \]
\[\hat{y}_{t+h} = l_t + \sum_{i=1}^{h} \phi_i b_t. \] (A.8)

DES with additive seasonality, or ETS(A,Ad,A), is expressed as:

\[l_t = \alpha (y_t - s_{t-m}) + (1 - \alpha) (l_{t-1} + \phi b_{t-1}), \] (A.9)

\[b_t = \beta (l_t - l_{t-1}) + (1 - \beta) \phi b_{t-1}, \] (A.10)

\[s_t = \gamma (y_t - l_t) + (1 - \gamma) s_{t-m}, \] (A.11)

\[\hat{y}_{t+h} = l_t + \sum_{i=1}^{h} \phi_i b_t + s_{t+m}. \] (A.12)

Appendix B. Participants details

Table B.6

<table>
<thead>
<tr>
<th>University</th>
<th>Module (and keywords)</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bangor University</td>
<td>Applied Business Projects: Operations Management (operations, strategy, competitiveness, supply chain, capacity, planning, inventory, forecasting)</td>
<td>PG</td>
</tr>
<tr>
<td>Cardiff University</td>
<td>Logistics Modelling (business statistics, forecasting, stock control, system dynamics, bull-whip effect, queuing analysis, simulation)</td>
<td>PG</td>
</tr>
<tr>
<td>Lancaster University</td>
<td>Business Forecasting (time series, forecasting, regression, evaluation, model selection, judgment)</td>
<td>UG</td>
</tr>
<tr>
<td>National Technical University</td>
<td>Forecasting Techniques (time series, forecasting, decomposition, univariate and causal models, evaluation, support systems, judgment)</td>
<td>UG</td>
</tr>
<tr>
<td>Universidad de Castilla-La Mancha</td>
<td>Manufacturing planning and control (planning, forecasting, manufacturing, just-in-time, stock control, inventory models)</td>
<td>UG</td>
</tr>
</tbody>
</table>

Table B.7

<table>
<thead>
<tr>
<th>Industry</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consulting (including analytics)</td>
<td>14</td>
</tr>
<tr>
<td>Banking & Finance</td>
<td>11</td>
</tr>
<tr>
<td>Software (including forecasting software)</td>
<td>9</td>
</tr>
<tr>
<td>Advertising & Marketing</td>
<td>9</td>
</tr>
<tr>
<td>Retail</td>
<td>8</td>
</tr>
<tr>
<td>Health</td>
<td>8</td>
</tr>
<tr>
<td>Government</td>
<td>6</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>5</td>
</tr>
<tr>
<td>Food & Beverage</td>
<td>4</td>
</tr>
<tr>
<td>Energy</td>
<td>3</td>
</tr>
<tr>
<td>Logistics</td>
<td>3</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>3</td>
</tr>
<tr>
<td>Automotive</td>
<td>2</td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
</tr>
</tbody>
</table>

References

