Citation for published version:

DOI:
10.1509/jm.16.0247

Publication date:
2018

Document Version
Peer reviewed version

Link to publication

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 15. Sep. 2023
An Empirical Analysis of the Joint Effects of Shoppers’ Goals and Attribute Display on Shoppers’ Evaluations

ABHIJIT GUHA

ABHIJIT BISWAS

DHRUV GREWAL*

SANDEEP BHOWMICK

JENS NORDFÄLT

Abhijit Guha is Assistant Professor of Marketing, Department of Marketing, Darla Moore School of Business, University of South Carolina, Columbia, SC 29208. Tel: 313-522-0064. Email: abhijit.guha@moore.sc.edu

Abhijit Biswas is the Kmart Endowed Chair and Professor of Marketing, Department of Marketing and Supply Chain Management, Wayne State University, 5201 Cass Avenue, Detroit, MI 48202. Tel: 313-577-1499. Email: A.Biswas@wayne.edu

Dhruv Grewal is the Toyota Chair in E-Commerce and Electronic Business and Professor of Marketing, Department of Marketing, Babson College, Babson Park, MA 02457. Tel: 781-239-3902. Email: dgrewal@babson.edu

Sandeep Bhowmick is Assistant Professor of Marketing, Scott College of Business, Indiana State University, 200 North Seventh Street, Terre Haute, IN 47809. Tel: 812-237-2012. Email: Sandeep.Bhowmick@indstate.edu

Jens Nordfält is Assistant Professor of Marketing and Strategy, Stockholm School of Economics, SE-113 83 Stockholm, Sweden. Tel: 46-8-736-9463. Email: Jens.Nordfalt@hhs.se

*Corresponding author. Guha, Bhowmick, and Nordfält collected data. Guha, Bhowmick, and Biswas analyzed data. All authors contributed to the writing of the manuscript.
An Empirical Analysis of the Joint Effects of Shoppers’ Goals and Attribute Display on Shoppers’ Evaluations

Abstract

This paper develops a decision-making framework which highlights how display of numeric attribute information (e.g., display of calorie information) and shoppers’ goals (i.e., having a diet-focus versus a taste-focus) jointly influence shoppers’ choices and preferences. Across two sets of studies, including a field study involving the launch of a new Coca-Cola product, the authors show that when food items are displayed in an aligned manner, i.e., when food items with lower-value calorie information are displayed below food items with higher calorie values, shoppers assign more importance weight to calorie gap information. In turn, higher importance weight assigned to calorie gap information leads diet-focused shoppers to relatively prefer low-calorie food items, but leads taste-focused shoppers to relatively prefer higher-calorie food items. The third set of studies shows that the above decision-making framework has widespread applicability, and is relevant in any domain where advertising, retail and online displays show comparisons of numeric attribute information.

Keywords: Numeric attributes, Vertical display differences, Goals
In mid-2014, Coca-Cola launched Cola-Cola Life in Sweden, a reduced-calorie cola drink that differs from diet colas with zero calories because it does not contain aspartame (which many perceive as unhealthy; Dean 2014). Reacting to an increased health focus among shoppers, launching Coca-Cola Life was part of Coca-Cola’s efforts to reduce the average calorie content of its drinks portfolio while still avoiding the use of aspartame. Some months prior to the launch, one of the authors of this paper was in discussions with Coca-Cola managers about which factors were likely to influence shoppers’ choices between regular Coke and Coca-Cola Life. One factor discussed was in-store signage. Would signage indicating that Coca-Cola Life has lower calorie content be effective, despite past research showing that merely indicating calorie values does not automatically lead shoppers to make healthier choices (Loewenstein 2011; also see Haws, Davis, and Dholakia 2016). This article was motivated, in part, by these discussions and the real-world challenges the authors (and firms like Coca Cola) seek to examine.

To better understand what factors influence the choice of healthier food items, we start with the foundation that shoppers’ food choices depend on both individual differences among shoppers and the presentation format for the nutritional information (Haws, Davis, and Dholakia 2016; Loewenstein 2011; Mohr, Lichtenstein, and Janiszewski 2012). Most prior work focuses on evaluations of single food items (e.g., Gomez, Werle, and Corneille 2017; Graham and Mohr 2014; Mohr, Lichtenstein, and Janiszewski 2012); in contrast, in this paper, we consider how shoppers choose among food items, which represents a normative shopping situation. For example, shoppers often choose among various entrees in restaurants, multiple soup cans in supermarkets, or numerous soft drinks in convenience stores.

We focus on two specific drivers of food item choice. We start by examining shoppers’ goals, which may be conceptualized either as individual differences, or differences primed by the
product category or shopping environment (e.g., Escaron et al. 2013; Newman, Howlett, and Burton 2014). A significant amount of prior research highlights goals related to dietary restraint, that is, the extent to which shoppers have diet goals which leads them to prefer food items with fewer calories1 (Howlett et al. 2012; Visschers, Hess, and Siegrist 2010) and consume fewer calories (Cavanagh and Forestell 2013). In this paper we propose differently, making two points. First, rather than posit that shoppers might be more or less focused on diet goals, we posit that shoppers focus on diet goals versus taste goals. Second, building from work that supports an unhealthy = tasty intuition (Raghunathan, Naylor, and Hoyer 2006), we argue that taste-focused shoppers intuit that unhealthy food items will better satisfy their taste goals, so their choice decisions appear to favor food items with more calories. Thus, we take a different perspective vis. prior work, and so we contrast shoppers with diet goals versus taste goals.

Next, in grocery store settings, choices often involve a comparison between a focal, healthy food item and a comparison food item (Suri et al. 2012); in response, food manufacturers often provide comparisons that highlight the “nutritional gap.” For example, Better’n Peanut Butter Banana advertises that it has “40% fewer calories”, and Trop50 orange juice proclaims that it has “50% less sugar and calories”, relative to comparable products. However, in many cases, only calorie information appears in the front-of-pack (FOP) information, and so shoppers must perform calorie gap calculations themselves. In turn, building from work in numeric cognition (e.g., Biswas et al. 2013) and work on heuristics (e.g. Shah and Oppenheimer 2007), we propose that differences in the vertical display of food items could prompt different perceptions of the importance of the calorie gap. If a focal food item, with fewer calories, appears below another food item (i.e., if the focal food item is displayed in an aligned manner),

1 In this section, we contrast a focal food item with fewer calories against a comparison food item with more calories. The theory advanced herein also extends to other comparisons between all types of items described using numerical attribute information.
then the subtraction task to calculate the calorie gap is easier. And if calculating the calorie gap is easier, then shoppers are likely to attach more importance to calorie gap information during their evaluations. Thus, displaying a focal food item in an aligned manner should increase the importance weight that shoppers place on the calorie gap. Among shoppers with diet goals, this increased importance weight shifts shoppers’ choices toward the focal food item, but among taste-focused shoppers, this increased importance weight may shift the choice share away from the focal food item, toward the higher calorie option. By combining the propositions above, we posit that when food items are displayed in an aligned (vs. nonaligned) manner, diet-focused shoppers relatively prefer low-calorie food items, but taste-focused shoppers make choices as if they relatively prefer higher calorie food items. This non-intuitive proposition is the central hypothesis of our article, and we test it across multiple studies, including a field study involving the choice between regular Coca-Cola and the lower calorie Coca-Cola Life.

More generally, in this paper we focus on product domains wherein advertising, retail and online displays show comparisons of numeric attribute information. The food domain is one such domain, and involves comparisons of numeric nutritional information relating to calories (and sodium), but other exemplars which involve comparisons of numeric attribute information include domains such as: (i) product price comparisons, as is frequently seen in basket comparisons posted in supermarkets (e.g., Publix versus Walmart), in online comparative advertisements (Dyson versus Shark vacuum cleaners), and on price comparison tools (e.g., hotel rates on Trivago.com); (ii) advertisements for robotic vacuum cleaners (e.g., Neato vs. Roomba), involving attributes like operating time and charging time, (iii) advertisements for cellular networks (e.g., T-Mobile vs. Verizon), involving attributes like internet speed, and (iv) advertisements for cellphones (e.g., Apple iPhone vs. Samsung Galaxy), involving attributes like
screen size, standby time, talk time etc.

In domains involving numeric attribute information, we investigate the impact of two factors on shoppers’ choice decisions. First, numeric attribute information may be displayed in an aligned (vs. nonaligned) manner, whereby aligned display involves showing the low-value numeric information below the higher-value numeric information e.g., lower prices displayed below higher prices. Second, shoppers may have differential goals, perceiving attributes as either more-is-better (MIB; preferring items having higher attribute values) or less-is-better (LIB; preferring items having lower attribute values). For example, those shoppers who view price as a measure of sacrifice perceive price as an LIB attribute, whereas those who view price as a measure of quality perceive price as an MIB attribute (Dodds, Monroe and Grewal 1991; also see Miyazaki, Grewal and Goodstein 2005). In the domain of robotic vacuum cleaners, operating time is an MIB attribute, but charging time is an LIB attribute; in the domain of laptops, many would perceive battery life as an MIB attribute, but perceive laptop weight as an LIB attribute.

Building from the central hypothesis outlined earlier, we posit that when items are displayed in an aligned (vs. nonaligned) manner, those shoppers who perceive the displayed attribute as an LIB (MIB) attribute would relatively prefer the item with the lower (higher) value attribute.

This paper seeks to make the following contributions. Generally speaking, this paper outlines a parsimonious framework that examines how shoppers react to advertising, retail or online displays in (a wide variety of) product domains involving numeric attribute information. It identifies two elements that jointly determine shoppers’ reactions: (i) whether shoppers view the displayed attribute as an LIB attribute or a MIB attribute, and (ii) whether the attribute information displayed in an aligned or nonaligned manner, which influences the importance weight shoppers put on this attribute information. We suggest that firms can use this framework
to better design advertising, retail and online displays. While Biswas et al. (2013; work on the subtraction principle) provides an initial examination of aligned (vs. nonaligned) displays, their stated process mechanism does not easily extend beyond the price promotion domain, and was only examined in LIB contexts. This paper substantially modifies and broadens the process mechanism underlying the subtraction principle, to allow for it to extend into multiple product domains. Moreover, this paper now explicitly contrasts LIB versus MIB contexts, outlining exactly how shoppers’ attribute perceptions (i.e., LIB vs. MIB) and display alignment jointly influence shoppers’ choices and perceptions.

Also, specific to the food domain, we seek to make two specific contributions. Not only is the food domain important from both a firm perspective and a shopper perspective, but also the growing importance of how best to motivate individuals to make healthy food choices has prompted increased research focus in this domain. First, prior research suggests that individuals with non-diet goals pay less attention to calorie information (e.g., Bialkova, Sasse, and Fenko 2016; Cavanagh and Forestell 2013; Mohr, Lichtenstein, and Janiszewski 2011). In contrast, we show that individuals with non-diet goals (i.e., taste goals) do indeed pay attention to calorie information, but because of the unhealthy = tasty intuition, these shoppers behave as if they prefer food items with more calories. Second, as a novel point not evidenced in prior research, we show that whether or not shoppers make goal-consistent choices, is contingent on whether or not food items are displayed in an aligned manner.

We now proceed to develop our propositions, and then we test these propositions across multiple product domains, including testing these propositions in a field study involving the choice between regular Coca-Cola and the newly launched, low-calorie Coca-Cola Life.

Conceptual Development
Shoppers’ Goals during Food Item Choices

What goals do shoppers have when they make food item choices? To answer this question, we turn to literature at the intersection of food-related research and research into goals. On the one hand, there may be individual differences (i.e., “trait differences”) across shoppers, and these differences should lead to shoppers having different goals when making food item choices. Specifically, some shoppers can have diet goals (Herman and Polivy 2004; Howlett et al. 2012; Naylor, Droms, and Haws 2009) and so would prefer food items with fewer calories or less sodium (LIB behavior).

Prior research has examined the extent to which shoppers focus on diet goals (Haws, Davis, and Dholakia 2016; Mohr, Lichtenstein, and Janiszewski 2012; Naylor, Droms, and Haws 2009; van Herpen and van Trijp 2011), and the subsequent impact on food item choices and consumption. This prior research indicates that individuals with taste goals tend to pay less attention to nutritional information. Thus, Mohr, Lichtenstein, and Janiszewski (2012; pg. 66) show that when presented with less versus healthier food items, individuals with higher levels of dietary concerns were significantly more likely to choose the healthier food item, but individuals with low levels of dietary concerns were relatively indifferent across food items (“significantly higher purchase intentions… for all values of dietary concern above 3.80” vs. “no significant differences below…. the Johnson-Neyman point”). Similarly, Cavanagh and Forestell (2013; pg. 508) found that individuals who were restrained eaters consumed more of the (relatively healthy) Kashi cookies than Nabisco cookies, “whereas the unrestrained eaters did not differ in their consumption of the two brands”. Finally, Bialkova, Sasse, and Fenko (2016; pg. 44) asked participants chose between (relatively healthy) cereal bars and (relatively unhealthy) potato chips. They found that “consumers highly concerned about health preferred to buy cereal bars (p
=.018), while less concerned consumers selected to buy chips and cereals with equal probability (p > .4)**. All of the above indicates that individuals with low levels of dietary concerns are relatively indifferent between the less healthy food item and the healthier food item. In this paper however we posit differently, and so we make two distinct points.

Shoppers’ goals. Rather than describing shoppers’ goals on a continuum, anchored by high versus low levels of diet concerns, in this paper we propose that the relevant anchors should be diet goals versus taste goals. As a novel point, we emphasize not only the absence or low levels of diet goals but also the explicit presence of taste goals, consistent with Andrews, Netemeyer, and Burton’s (1998) use of a taste goal prime as a control condition.

Prior literature indicates that shoppers with higher levels of diet intentions pay attention to nutrition information (Bialkova, Sasse, and Fenko 2016; “consumers who expressed a great concern for … dietary eating … made more active use of the health label information”; pg. 40), and so are more likely to prefer food items with fewer calories. However, distinct from prior literature, we propose that shoppers with low levels of diet intentions (i.e., those with taste goals) also pay attention to nutrition information, but use nutrition information differently, such that they choose food items with more calories. We clarify that we are not claiming that shoppers with taste goals deliberately seek out food items with more calories; rather, we suggest that these shoppers intuit that high-calorie food items are tastier (unhealthy = tasty intuition); so in their quest for taste, select relatively higher calorie food items.

To make the above prediction, we build from research into behavioral traits (related to food preferences, and related to impulsivity) and perceptions of food. First, we build from work that connects dietary restraint to impulsiveness. The work of van Koningsbruggen, Stroebe and Aarts (2013; Table 1; pg. 83) indicates that those low on dietary restraint are more likely to be
impulsive. Second, those more impulsive are likely to prefer tasty food, noting here that (i) those more impulsive are both more likely to pick up (tasty) cookies (Ramanathan and Menon 2006; Figure 3, pg. 638), and also more likely to choose (tasty) cake over salad (Sengupta and Zhou 2007; Study 2, pg. 301). Third, unhealthy foods are more likely to be perceived as tasty (work on the unhealthy = tasty intuition\(^2\) - Mai and Hoffman 2015; Raghunathan, Naylor, and Hoyer 2006). Putting all the above together, we posit that those individuals low on dietary restraint (i.e., those with taste goals) may well behave as if they prefer (relatively) unhealthy food items.

Individual differences versus state differences. Beyond just individual differences (e.g., extent of diet intentions), environmental factors may also prompt differences in (diet vs. taste) goals, which we term as “state differences”. Product category differences may trigger differences in goals, with shopping for health-focused foods potentially triggering diet goals, but shopping for candy potentially triggering taste goals. Advertising differences may also prompt differences in goals. Foods advertised as health foods or diet foods, or foods packaged reflecting “green” foods may trigger diet goals, whereas foods advertised as comfort foods may prompt taste goals. Thus, it is very possible that the very same person may have diet goals when examining a certain type of food item, and yet may have taste goals when examining a different type of food item.

The discussions above suggest that those with diet goals (i.e., low levels of diet intentions) should prefer lower calorie food items, whereas those with taste goals should (based on the unhealthy=tasty intuition) behave as if they seek out higher calorie food items. We further propose that differences in how food items are displayed impact the extent to which shoppers’ goals impact food item preferences. We elaborate on this point next.

Differences in Display Format

\(^2\) Similarly, other, somewhat less well-known research indicates that individuals often assume that the presence of increased sodium levels is associated with better taste (e.g., Henney, Taylor, and Boon 2010).
Food items are only seldom evaluated in isolation; instead, such evaluations often involve a comparison of a focal food item with potential alternatives (Suri et al. 2012). In many cases, nutritional information is available FOP, and so shoppers can calculate the attribute gap (e.g., calorie gap, sodium content gap). For example, a grocery shopper looking to buy cereal may find a focal food item, which has fewer calories, displayed either below or above a higher calorie food item. Both food items display calorie content FOP. If the propensity to engage in calorie gap calculations depends on whether the food items are presented in an aligned (vs. nonaligned) display, then such display differences may influence food item choice. We first consider whether differences in the display format influence shoppers’ propensity to initiate a subtraction task to calculate the calorie gap, and then we discuss how this propensity might influence the importance weight shoppers attach to the calorie gap for their evaluations.

Impact on propensity to initiate the subtraction task. Generally, a comparison of two attributes that feature numeric information involves subtraction (Thomas and Morwitz 2009). However, prior research has not fully explored how presenting a smaller number below versus above some larger number influences subtraction calculations. We integrate research in numeric cognition with pricing research to examine this question. First, in the subtraction task $A - B$, A is the minuend, and B is the subtrahend. People generally perceive that it is normative to present a larger minuend above a smaller subtrahend, and prior research affirms that fewer computational errors occur with this format (Fuson and Briars 1990). Second, in a study of how people verify addition problems, Yip (2002) finds that inaccurate equations that fail to conform to conventional presentation norms are perceived as harder to verify as correct (e.g., it is harder to check that $7 = 3 + 5$ is correct than whether $3 + 5 = 7$ is correct). Accordingly, we posit that subtraction equations in which a smaller value subtrahend appears below (above) the minuend
are easier (harder) to verify. Third, because people do not like to work on overly challenging problems (Oppenheimer 2008), locating a smaller value subtrahend above the minuend—contrary to the norm in contexts involving difference calculations—may reduce the propensity to perform a subtraction task. In research on price promotions, Biswas et al. (2013) propose the subtraction principle, a somewhat similar information processing sequence. They proposed that when sale prices are displayed to the right of the original price (i.e., smaller number to right of larger number), shoppers perceive the subtraction task as cognitively easier and so are more likely to calculate the discount depth. However, if sale prices appear to the left of the original price, shoppers perceive the subtraction task as cognitively harder and so are less likely to initiate a subtraction task. Rather, shoppers would approximate discount depth at around 10%–12% (reflecting a discount depth benchmark from Blair and Landon 1981).

Now assume that two (competing) cereals explicitly provide FOP calorie information. Building on the above, if the focal, healthy cereal is displayed in an aligned manner, then shoppers can calculate the calorie difference relatively easily. But if the focal cereal is displayed in a nonaligned manner, shoppers may perceive the subtraction task as harder and so may be less likely to initiate the subtraction task to calculate the calorie gap.

Importance weight attached to the calorie gap during evaluations. During evaluations, individuals grant easy-to-process cues higher importance weights (Shah and Oppenheimer 2007, pgs. 371-372; also see Oppenheimer 2008). This point has roots in prior work on heuristics, which shows that individuals more heavily weight easier-to-access cues. For instance, individuals use brand name perceptions as proxy for product quality (Maheswaran, Mackie, and Chaiken, 1992), use ease-of-imagability of attributes (like hallways) as an input for making apartment evaluations (Keller and McGill 1994), etc. Therefore, if shoppers perceive that
calculating the calorie gap is relatively easier, then during evaluations they assign more importance weight to the calorie gap. Continuing with the cereal example, if the focal, low-calorie cereal is displayed in an aligned manner, then during evaluations shoppers attach relatively higher importance weight to calorie gap information.

The mechanism proposed above substantially enhances the generalizability of the subtraction principle mechanism proposed in Biswas et al. (2013). The subtraction principle predicts that displaying the sale price in a nonaligned manner increases subtraction difficulty. In turn, due to subtraction difficulty, shoppers who are less likely to initiate the subtraction task to calculate discount depth assume a 10%–12% discount depth (benchmark from Blair and Landon 1981). This mechanism, especially the point about the assumed discount depth, is fairly specific to the pricing domain. We modify the subtraction principle mechanism, and propose that shoppers who are more (less) likely to initiate the subtraction task attach more (less) importance weight to discount depth information (more generally, attribute gap information). Consequent to this modification, the subtraction principle can apply beyond the pricing domain, to a wide variety of other product domains.

Furthermore, the studies in Biswas et al. (2013) focus exclusively on the domain of price promotions, and imply that shoppers generally prefer an overall lower price, in effect implying that price is an LIB attribute. We point out that there are contexts wherein price may be perceived as an MIB attribute, often for reasons relating to signaling of quality (Dodds, Monroe and Grewal 1991; Miyazaki, Grewal and Goodstein 2005; Monroe 1973). In this paper, we generalize the work of Biswas et al. (2013), examining both LIB and MIB attributes, as also examining attributes – like calories - perceived by some as LIB and perceived by others as MIB.

Appendix 1 pulls the above points together, and shows the various ways in how this
paper modifies and broadens the prior conceptualization of the subtraction principle.

Setting up the Hypotheses

Displaying a focal, healthy food item in an aligned (vs. nonaligned) manner should increase the perceived importance weight of the calorie gap during evaluations. For shoppers with diet goals, the increased importance weight of the calorie gap should increase preference for the focal food item. For shoppers with taste goals though, the increased importance weight of the gap should enhance their preference for the comparison food item with higher levels of calories, and reduce their preference for the focal food item. Formally, we propose H₁:

H₁: For shoppers with diet (taste) goals, displaying a focal, healthy food item in an aligned manner increases (decreases) choice share of the focal, healthy food item.

H₁ is the central hypothesis of this paper, stating that presenting food items in an aligned (vs. nonaligned) manner increases goal-consistent food choices and preferences. The next two hypotheses (H₂ – H₃) outline the mechanism underlying this central hypothesis. We propose (i) H₂ - during evaluations, presenting food items in an aligned (vs. nonaligned) manner increases the importance weight placed on the calorie gap, and (ii) H₃ - during evaluations, increased importance weight placed on the calorie gap increases the propensity to make goal-consistent food choices (i.e., increases the propensity that shoppers with diet (taste) goals are more (less) likely to choose the focal, healthy food item).

H₂: Displaying the focal, healthy food item in an aligned (vs. nonaligned) manner increases the importance weight of attribute gap information during evaluations.

H₃: For shoppers with diet (taste) goals, increased importance weight of attribute gap information increases (decreases) choice share of the focal, healthy food item.

Study 1 is a field study in a supermarket, and is an initial test of H₁. It involves shoppers choosing between regular Coca-Cola and the newly launched Coca-Cola Life. In Study 2a, we reexamine H₁ in a lab study, using a chocolate context, wherein we associate chocolate with
either diet goals or taste goals. In Study 2b, we examine the full process model \((H_1 - H_3)\), using a soup can choice context. Given that Studies 1 and 2 relate to the food domain, in Studies 3a and 3b we generalize our findings by examining other product domains. Stimuli exemplars (for all studies) are provided in Appendix 2.

Study 1: A Field Study

Method

This study was run over four days in a supermarket in Stockholm. Coca-Cola (Sweden) provided us with bottles of regular Coca-Cola (CCR, more calories = 879 KJ) and of the newly launched soft drink Coca-Cola Life (CCL, fewer calories = 565 KJ, focal drink). We had access to an end-of-aisle shelving, which we modified to display two different display versions that alternated every few hours, displaying CCL in either an aligned manner (i.e., CCR on the shelf above and CCL on the shelf below) or a nonaligned manner. The shelf-signs clearly showed the KJ values associated with each drink (note: in Sweden, nutritional values are provided in kilojoules (KJ) and not in calories; 1 calorie \(\approx\) 4.18KJ). We specifically clarify that each shopper saw only one of the two display versions.

Shoppers were intercepted and asked to participate in the study. In return, they would receive either CCR or CCL, whichever they preferred. Shoppers examined the display, then chose a CCL or CCR bottle (note: the experimenters restacked the shelf each time, so shoppers always saw fully stacked CCL and CCR shelving.) Next, shoppers moved to another area, where they completed a short survey. The survey included a short-version Diet Intentions scale, with two items from Stice 1998 (“I take small helpings in an effort to control my weight”, “I limit the amount of food I eat in an effort to control my weight”; 1–5 scale, with “1” = never and “5” = always; \(r = .59, p < .05\)), and also included demographics (age and gender). In all, 352 shoppers
(Median age = 20.0 years; 67.9% women) participated in this 2 (display: aligned vs. nonaligned) × continuous (diet intentions scale) between-subjects study.

Results

We used PROCESS (Model 1; Hayes 2013) to investigate the interaction. The dependent variable was soft drink choice (CCR = 0, CCL = 1), and the two independent variables were diet intentions (mean-centered at M = 2.31) and display (nonaligned = –1; aligned = 1). In the logistic regression for soft drink choice, we found significant main effects of diet intentions (b = .34, se = .12, z = -2.91, p < .05), no significant main effects of display (z = -.94, p = .35), and (more important) a significant interaction effect (b = .32, se = .12, z = 2.72, p < .05). The positive interaction term indicated that for those with higher diet intention scores, presenting CCR and CCL in an aligned manner increased choice of CCL (the focal, lower calorie drink).

A floodlight analysis (Figure 1) revealed that for those with relatively high diet intention scores (mean-centered scores > 1.68, 7.95% of sample), the simple effect of displaying CCL in an aligned display condition was significantly positive (at score of 1.68: b = .44, se = .22, z = 1.96, p = .05), implying increased choice share for the lower calorie CCL. However, for those with low diet intention scores (mean-centered scores < –.43, 30.1% of sample), the simple effect of displaying CCL below CCR in an aligned display was significantly negative (at score of -.43: b = -.24, se = .12, z = -1.96, p = .05), implying decreased choice share for the lower calorie CCL (and increased choice share for the higher-calorie CCR). Study 1 results are consistent with H1.

-insert Figure 1 about here-

Studies 2a and 2b: Follow-Up Tests

Study 2a
In Study 1, shoppers differed in the extent of their diet intentions, reflecting trait dispositions. Moving beyond traits, in Study 2a we acknowledge that shoppers may differ in their (taste vs. diet) goals, contingent on the food item category. That is, the very same shopper could have different goals, conditional on differences between food item categories etc. Some sets of food items (e.g., health foods) may prompt diet goals, but others (e.g., desserts) may be associated with taste goals. To the extent that products prompt different goals, the effects of presenting food items using an aligned (vs, nonaligned) display may differ. To examine this point, in Study 2a we prime participants to associate the very same product (in this case, chocolates) with either a taste goal or a diet goal.

Method. This was a 2(goal association: taste goal vs. diet goal) x 2(display: aligned vs. nonaligned) between-subjects design, involving 255 undergraduates (65.1% women) taking a survey in a behavioral lab. Participants were told that the survey was about beliefs and preferences about chocolate. First, chocolate was primed with either being associated with a taste goal or with a diet goal, using a mechanism outlined in prior work (e.g. Roggeveen et al. 2015; Dhar and Wertenbroch 2000). For the taste goal, participants were told that “there are many reasons why people eat chocolate. And yet, what is often comes down to, is that people eat chocolate because it makes them happy. At the end of a long day, eating a piece of chocolate is the perfect reward.” Next, participants were asked to write a few words about why (based on the above) people should eat chocolate. Participants generally responded in ways consistent with a taste goal e.g. “People should eat chocolate because it makes them happy. It feels rewarding to have some at the end of a day”, “It's a well-earned reward at the end of a long day”, “Eating chocolates make people happy. They think its perfect reward”. For the diet goal, participants were told that “there are many reasons why people eat chocolate. Interestingly, and this may not
be well known, people should eat chocolate for health reasons. Medical studies have shown that not only can chocolate end up reducing LDL (bad cholesterol) and increasing HDL (good cholesterol), but also that chocolate can reduce the incidence of stroke.” Next, participants were asked to write a few words about why people should eat chocolate. Participants generally responded in ways consistent with a diet goal e.g. “It is good for your cholesterol and can prevent strokes”, “People should eat chocolate because it can improve aspects of your health”, “reduce LDL / increase HDL / reduce chance of a stroke”.

Next, participants were shown two chocolate boxes. Each chocolate in box W had about 91 calories, and each chocolate in box K had about 68 calories. Participants were either shown the two boxes in an aligned manner or in a nonaligned manner (box W displayed below box K).

Finally, participants were asked which box of chocolates they would prefer to take a piece of chocolate from (single-item, 11-point scale; -5 = box K and +5 = box W).

Results. We ran an ANOVA for chocolate preference. We found no significant main effects for display ($F (1,251) = .02, p > .8$), significant main effects for goal association ($F (1,251) = 18.9, p < .05$), and a significant two-way interaction between goal association and display ($F (1,251) = 10.3, p < .05$).

When chocolate was associated with taste goals, participants’ preference for low calorie chocolate box K was weaker when box K was displayed in an aligned manner ($M_{aligned} = .68$ (SD = 3.54), $M_{not\ aligned} = -.69$ (SD = 3.86), $F (1,251) = 4.67, p < .05$). Put another way, when chocolate was associated with a taste goal, participants’ preference for the higher calorie chocolate box W was significantly stronger when box W was displayed in an aligned manner. In contrast, when chocolate was associated with a diet goal, participants’ preference for low calorie chocolate box K was significantly stronger when box K was presented in an aligned manner.
\(M_{\text{aligned}} = -2.70\ (SD = 3.02),\ M_{\text{not aligned}} = -1.20\ (SD = 3.79),\ F(1,\ 251) = 5.64,\ p < .05\). These results are consistent with \(H_1\), which is the central hypothesis of this paper.

Study 2b

In Study 2b, we test the full process model, across \(H_{1-3}\). Also, while Studies 1 and 2a involved some version of the attribute “calories”, Study 2b involves the attribute “sodium”.

Method. 261 U.S. undergraduates (56.7% women) participated in a two-part study, for course credit. First, as part of a set of multiple studies, participants filled out the short, 5-point (1=never; 5=always), six-item Diet Intentions scale (Stice 1998; \(\alpha = .91\)). The six items were “I take small helpings in an effort to control my weight”, “I limit the amount of food I eat in an effort to control my weight”, “I hold back at meals in an attempt to prevent weight gain”, “I sometimes avoid eating in an attempt to control my weight”, “I skip meals in an effort to control my weight”, “I sometimes eat only one or two meals a day to try to limit my weight”.

Second, a week later, the same undergraduates participated in a soup choice study. Because the popular press tends to highlight the negative influences of sodium on health, we did not expect many participants to know that higher sodium (also) can be associated with better taste. Therefore, we asked each participant to read a couple of paragraphs that summarized extracts from various publications, stating that though sodium is associated with obesity and high blood pressure, it also tends to be associated with better taste and aroma. All participants read both paragraphs, such that all participants received two-sided information.

Next, participants observed two (similar-looking) cans of chicken soup, next to which we showed the respective sodium levels (can \(N = 477\) mg; can \(B = 664\) mg). Participants also learned that the cans typically contained about two servings each, had 90–100 calories per can, and were similar in their content weight (about 19 oz.). These soup cans appeared in either an aligned
manner (can N below can B) or a nonaligned manner (can N above can B), leading to a 2
(display: aligned vs. nonaligned) × continuous (diet intentions scale) between-subjects design.

Participants first chose their preferred soup can, and then indicated the importance weight
of various factors for their choice decision, by allocating five points across (i) sodium content,
(ii) number of servings per can, and (iii) whether the soup contained chicken. Participants could
allocate points however they wished, as long as the total points allocated across the three
elements totaled “5”.

We anticipated that presenting the soup cans in an aligned manner will lead participants
to place increased importance weight on sodium content. Among those who scored high on the
diet intentions scale, participants who assigned more weight to the sodium content should be
more likely to choose low sodium can N. But if participants scored low on the diet intentions
scale, such that they likely focus more on taste, then those who placed more weight on sodium
content should be more likely to choose higher sodium can B (due to the unhealthy = tasty
intuition) and so should be less likely to choose can N/ more likely to choose can B.

Results. First, we ran a logistic regression for soup choice (can B = 0; can N = 1), in
which the independent variables were the diet intentions score (mean-centered at M = 2.21) and
display (not aligned = –1; aligned = 1). The main effect of mean-centered diet intentions score
was significant (b = .77, se = .18, z = 4.34, p < .05), the main effect of the vertical display was
not significant (z = .30, p = .76) and the interaction effect was significant (b = .69, se = .18, z =
3.86, p < .05). The positive interaction term indicated that those with higher diet intention scores
were more likely to choose the low-sodium soup can in the aligned display condition.

Second, the floodlight analysis (PROCESS Model 1) depicted in Figure 2 revealed that
for those with mean-centered diet intention scores greater than .36 (34.9% of sample), soup can
N was relatively more preferred in the aligned display condition (at score of .36: b = .29, se = .14, z = 1.96, p = .05). However, for those with (mean-centered) scores less than −.54 (32.2% of sample), the lower sodium soup can N was relatively less preferred in the aligned display condition (at score of −.54: b = −.33, se = .17, z = −1.96, p = .05), and higher sodium soup can B was relatively more preferred. This was consistent with results in prior studies, and with H1.

Next, the importance weight that participants assigned to sodium content information was higher in the aligned display condition (\(M_{\text{aligned}} = 3.22, SD = .91; M_{\text{nonaligned}} = 2.02, SD = .72; F(1, 259) = 140.3, p < .05\)); this result was consistent with H2. As an important point, prior work (Bialkova, Sasse, and Fenko 2016) had indicated that those with higher (lower) levels of diet concerns paid more (less) attention to nutrition information, whereas we had asserted that this was not the case, that those with taste goals (i.e., with lower levels of diet concerns) would continue to pay attention to nutrition information. Consistent with our assertion, there was no correlation between diet intention scores and importance weight for sodium (r = .02, p > .7).

Third, for those with mean-centered diet intentions scores greater than .87 (i.e., with scores 1 SD above the mean diet intentions scale score), the PROCESS (Model 14; Hayes 2013) output indicated that the mediating effect of the importance weight assigned to sodium was significantly positive (95% confidence interval [CI] = .07 to .74). Thus, if participants scored higher on the diet intentions scale (i.e., had diet goals) and also placed more importance weight on sodium during the choice process, they were more likely to choose can N. But for participants with mean-centered diet intention scale scores less than −.87 (i.e., with scores 1 SD below the mean diet intentions scale score), the PROCESS (Model 14) output indicated that the mediating effect of the importance weight for sodium was significantly negative (95% CI = −.57 to −.01).
Thus, if participants scored lower on the diet intentions scale (i.e., had taste goals) and also placed more importance weight on sodium during the choice process, they were less likely to choose lower sodium can N, and more likely to choose the higher sodium soup can B. The above results were consistent with H₃.

Studies 3a and 3b: Generalizing the Results

Studies 1 and 2 focused on the food domain. To generalize the results, we now examine other product domains. First, in Study 3a, we present an incentive-compatible study involving an LIB scenario that examines choice between two kitchen implements. Next, in Study 3b - in an MIB scenario - we examine a choice between cellphone accessories. In Study 3b, we also examine factors that may moderate the effects in this paper.

The hypotheses (H₁ – H₃) are fairly specific to the food domain. However, these hypotheses can easily be modified to extend to any product domain. In Study 3a, for instance, the prediction is that using an aligned display would increase choice share of the focal item.

Study 3a

Method. We administered this two-cell (sale price display: aligned vs. nonaligned) between-subjects design to attendees of three sessions of a cooking class held in a gourmet food store in an upscale U.S. neighborhood, whom we asked to participate in a five-minute (voluntary) study. Approximately two-thirds attendees chose to participate. Among these 43 participants, the median age group were those >50 years, 79.1% were women, and median household income was $100,000–$200,000.

All participants were given a study booklet. The first page showed two upscale “Wusthof” brand cooking knives. On the left side of the page, we presented a picture of knife A (comparison knife), along with a brief description and a sale price of $71; on the right side of the
we presented a picture and a brief description of knife B (focal knife), showing an original price of $114 and a sale price of $77. In nonaligned display condition, the sale price appeared above the original price, whereas in the aligned display condition, the sale price was shown below. Participants indicated which knife they preferred. On the second page, we provided another set of two Wusthof brand knives (knife C and knife D), with a similar presentation, but here the focal knife was on the left side of the page. The focal knife, knife C, had an original price $102, and a sale price of $75. Knife D (on the right side of the page) served as the comparison knife, with a sale price of $68. Participants again indicated which knife they preferred. Finally, participants provided their gender, age range, and household income range. To ensure that participants took the task seriously, we told participants (prior to starting the study), that they should make careful choices because (in each session) one participant would be randomly selected and would actually receive one of the two knives selected.

Results. Consistent with results in Studies 1 and 2, participants preferred the focal knife relatively more when the sale price was shown in an aligned manner. When sale price was shown below, the choice shares for both focal knives B and C were 84.0%; when sale price appeared above, choice shares for the focal knives fell to 33.3% (knife B) and 61.1% (knife C). These choice share differences were significant for knives A versus B ($\chi^2(1) = 11.49, p < .05$) and directionally significant for knives C versus D ($\chi^2(1) = 2.88, p = .09$).

Study 3b

This study involved a cellphone battery scenario wherein participants were provided with numeric information on battery life, an MIB attribute. Our incoming expectation was that relative preference for the focal item, with longer battery life, would be more when it was presented in an aligned (vs. nonaligned) manner. Further, a key element of our theory is that if
the focal item and the comparison item are displayed in an aligned manner, then it is relatively easier for the shopper to perform the difference calculation. However, if the difference calculation is upfront very easy, then alignment differences should not impact the perceived ease of performing difference calculations, and thus negate our proposed effects.

Methods. Participants \(N = 250\) mTurk participants, 37.8% women, median age group 26-30, median annual income $25-50,000) took a Qualtrics survey. After an instructional manipulation check question (IMC; see Oppenheimer, Meyvis and Davidenko 2009), the survey outlined a scenario wherein the participants used their cellphone a lot, and so participants were looking to buy a cellphone case with an integrated cellphone battery. Then participants read brief descriptions of two cellphone cases with batteries. Case / Battery H (the comparison item) had been on the market for six months, earned good reviews, and offered an incremental battery life of 246 minutes. Case/ Battery J (the focal item) was a bit thicker, and given that it had just launched, reviews were not available, but the manufacturer claimed an incremental battery life of 331 minutes. The participants were randomly assigned to a 2 (display: aligned vs. nonaligned) × 2 (calculations: harder vs. easier) between-subjects design. In the harder difference calculation condition, the battery lives were 246 minutes (H) and 331 minutes (J); in the easy difference calculation condition, battery lives were 250 minutes (H) and 350 minutes (J). We elicited relative preference on a seven-point scale (1 = strong preference for H, 7 = strong preference for J), as also we elicited demographics.

Results. 35.6% participants gave incorrect responses to the IMC (consistent with ranges in Oppenheimer et al. 2009), and so were removed from the analyses (consistent with recommendations in Oppenheimer et al. 2009). An ANOVA for relative preference revealed significant main effects (for both display and difference calculations, \(F(1,157) > 3.9, p < .05\), as
well as a directionally significant interaction effect \(F(1,157) = 3.31, p = .07 \). When battery life differences were harder to calculate, using an aligned display (i.e. locating J above H) led to significantly increased preferences for the focal, longer life battery J \((M_{above} = 3.98 \text{ (SD = 1.93)} \) vs. \(M_{below} = 2.70 \text{ (SD = 1.59)} \), \(F(1,157) = 9.38, p < .05 \)). In contrast, when difference calculations were easy, locating J above H did not significantly influence relative preferences \((M_{above} = 4.03 \text{ (SD = 2.19)} \) vs. \(M_{below} = 3.85 \text{ (SD = 1.89)} \), \(F(1,157) = .17, p > .6 \)).

Discussion

Consistent with the theory in this paper, and with our a priori expectations, any factor that makes the difference calculation easier should serve as a suitable moderator for our effects. In Study 3b, we examined the specific case of when difference calculations were easy (e.g., 350 – 250), and hence alignment differences should not influence the importance weight that shoppers would generally give to the difference gap. Other instances of when difference calculations should be easy/easier may be when (for example) the difference gap is explicitly stated, e.g., the difference percentage is explicitly shown (“40% more battery life”, “25% less sodium” etc.), or the difference is very large. In all these cases there would be no need for the shopper to perform the difference calculations to figure out that the difference gap is substantial, and so shoppers would generally give the difference gap relatively high importance weight. The factors outlined above, some of which were foreshadowed in Biswas et al. (2013), all (potentially) constitute moderators to our effects.

General Discussion

For shoppers who have diet goals, presenting a focal, healthy food item in an aligned (vs. nonaligned) manner increases its choice share. In contrast, for shoppers with taste goals, presenting the focal food item in an aligned (vs. nonaligned) manner decreases its choice share,
and increases the choice share of the competing, less healthy food item. This nonintuitive interaction result reflects our central hypothesis (H₁), where the extent to which shoppers make goal-consistent food item choices is higher (lower) when the food items are displayed in an aligned (nonaligned) manner. Building from work in food-related research, in goals and in numeric cognition, the underlying process mechanism is outlined in H₂–3. While Studies 1 and 2 illustrate H₁–3 in the food domain, Study 3 shows that the above decision making framework has widespread applicability, potentially extending to any domain wherein advertising, retail displays or online displays involve comparisons of numeric attribute information.

Theoretical Contributions

Our study makes several contributions to the body of work relating to shoppers’ food-related goals, and how shoppers make food choices. First, prior research suggests that people with non-diet goals pay less attention to calorie information (Naylor, Droms, and Haws 2009; van Herpen and van Trijp 2011). For example, Mohr, Lichtenstein, and Janiszewski (2011, p. 64) argue that “those very involved with their dietary choices will ... [be influenced by] nutrition labels,” and they found (p. 66) that differences in purchase intentions across less healthy versus healthier food items arose only among those with higher levels of diet intentions, but not among those with lower levels of diet intentions. Bialkova, Sasse, and Fenko (2016) and Cavanagh and Forestell (2013) found similar effects, that individuals who were more concerned about health were more likely to prefer healthy food items over less healthy food items, but those individuals less concerned about health expressed no clear preference. In contrast, we propose that individuals with non-diet goals (i.e., taste goals) do indeed pay attention to nutrition labels, but because of the unhealthy = tasty intuition, these shoppers behave as if they prefer food items with more calories or sodium. This explanation better reflects the interaction result in Studies 1–
2, implying a specific disordinal (cross-over) pattern. If shoppers with taste goals merely ignored (or, paid less attention to) nutrition information, the interaction pattern in Studies 1–2 would be different, and reflect an ordinal pattern. Contrasting away from prior research, we find that it is possible to find cases wherein those score lower on the Diet Intentions scale behave as if they may prefer higher calorie food items – especially when attribute information is presented in an aligned manner. This point highlights a key contribution of this paper.

Second, prior research into shoppers’ food choices has tended to ignore the impact of display differences (and other contextual differences) related to the presentation of calorie information. Specifically, even as prior research posits that individuals with diet goals focus more on low-calorie items, it ignores the possibility that these effects may be weaker if lower calorie food items are displayed in a nonaligned manner. In Studies 1 and 2, the effect of Diet Intention scores (or diet vs. taste primes in Study 2a) on choices and preferences is moderated by differences in attribute-display. In essence, shoppers are more likely to make goal-consistent choices when food items are displayed in an aligned manner. This point is both new and nontrivial. Beyond the implications for practice (as we discuss subsequently), this finding may explain null results that arise when differences in diet intentions do not prompt different choices or preferences. For example, consider Study 2b. We reanalyze the data and, purely for illustrative purposes, median split the diet intentions variable. If we consider just the two cells reflecting the nonaligned display condition, the relative choice shares for the low-sodium soup can were 39.7% (low diet intentions) versus 43.1% (high diet intentions) ($\chi^2(1) = .15, p = .69$). Examining just these cells might lead a researcher to conclude that differences in diet intentions do not affect shoppers’ choices. But when we consider the other two cells, involving aligned food item displays, the relative choice shares shift to 22.2% (low diet intentions) versus 70.7% (high diet
intentions \((\chi^2(1) = 30.65, p < .05) \). Thus, examining just the data pertaining to an aligned display would lead a researcher to a very different conclusion, that differences in diet intentions significantly affect shoppers’ choices. Both points above are contributions over and above modifying and broadening the subtraction principle, and are highlighted as such in Appendix 1.

The findings in this paper also contribute to the numerical cognition literature. By examining the impact of display differences, we determine that vertical display differences lead to varying importance weights that shoppers assign to the attribute gap when making evaluations. Displaying a focal food item in an aligned (vs. nonaligned) manner, such as below (vs. above) comparison food items, leads shoppers to attach more importance weight to the attribute gap in their evaluations. We tested these effects not only within the food domain (Studies 1 and 2), but also in other domains (Study 3), indicating that these effects have predictive applicability across a wide variety of domains wherein advertising, retail displays and online displays involve comparisons of numeric attribute information.

Considering concerns about obesity and associated health problems (Howlett et al. 2012), there is much interest in understanding when shoppers might use calorie and sodium information to make healthier choices. One challenge is to motivate shoppers to embrace diet goals, which can increase their consumption of healthier foods. But assuming shoppers have diet goals, another challenge is to ensure that available calorie (or sodium content) information is displayed in ways that nudge shoppers toward healthier, rather than less healthy, food choices. Our findings suggest that display differences related to the location of food items can encourage shoppers’ healthy choices. As the studies reported indicate, diet-focused shoppers are more likely to make healthy choices if nutrition information is displayed in an aligned manner.

Finally, and most important, this paper outlines a parsimonious decision making
framework that examines how shoppers react to advertising, retail or online displays in a wide variety of product domains involving comparisons of numeric attribute information. Building from, modifying and expanding the work in Biswas et al. (2013), it identifies two key elements that jointly determine shoppers’ evaluations (i) whether shoppers perceive the attribute as an LIB attribute or a MIB attribute, and (ii) whether the attribute information displayed in an aligned or nonaligned manner. Firms can use this framework to better design advertising, retail and online displays. The effects in this paper apply across a variety of product domains, as evidenced in the marketplace examples we cite and in the range of studies we present (Appendix 1).

Managerial Implications

Differences in shelf displays affect shoppers’ purchase intentions (Grewal et al. 2011). As more firms adopt the voluntary FOP nutrition labeling system called Facts Up Front, and as more retailers display food items to showcase such FOP information, a key question is how retailers and category captains should organize the display of food items on retail shelves. The insights in this paper offer provide some guidance. Imagine a retailer that seeks to promote the new low-calorie Coca-Cola Life soft drink. If most shoppers (at this retailer) have diet goals, or if the retailer is able to prime diet goals through in-store signage or suitably created advertising, then based on this paper the retailer will increase sales by putting cans of Coca-Cola Life below cans of Coca-Cola Regular. If a retailer primarily attracts shoppers with diet goals, but its profit margins are better on regular soups, then it might choose to put the regular soup cans below the lower sodium soup cans, to encourage relatively more sales of regular soup, despite its primarily “diet-goal” shopper segment. Finally, depending on food item categories/ advertising/ packaging etc., shoppers may have different goals. To the extent a retailer knows these goals, or to the extent firms can use advertising/ packaging to prime such goals, firms can use display
differences to increase sales of the more profitable products within the category. For example, if
the candy category prompts taste goals, and if margins are higher on candy products with more
calories, then retailers should display higher calorie candy-items above other candy-items, to
maximize sales of these more profitable products. Thus, the findings in this paper can aid
retailers and category captains as they optimize in-store shelf displays. Contingent on shoppers’
goals, numeric values relating to calorie content or to sodium, and relative food item
profitability, retailers can display food items in ways that “push” certain high-profit food items
over others. Similarly, the findings in this paper may also inform how online retailers should
display food items on their webpages, and how supermarkets and grocery items should display
food items on flyers.

The effects we describe in this paper are driven by differences in (locational) displays of
food items, which lead to differences in importance weight attached to food item attributes, with
downstream consequences. Understanding this information processing sequence has several
implications for consumer welfare and public policy. First, we provide guidance for how diet and
nutrition apps might be structured to help shoppers make healthy choices, noting that those who
use such apps likely already have diet goals. When diet apps provide scores of food items,
whether in grocery stores or restaurants, such diet apps should motivate shoppers to not only
learn exact calorie/sodium information, but also to give this information greater importance
weight in their evaluations. Such efforts might help mitigate any negative impact arising from
retailers’ use of nonaligned displays. Second, from a public policy perspective, young consumers
and children are relatively unlikely to have diet goals (Burton, Wang, and Worsley 2015), and so
using aligned food item displays may well backfire. Specifically, using aligned food item
displays and / or explicitly prompting younger consumers to consider calorie/sodium information
is likely to increase their preference shift toward higher calorie/sodium food items. In such instances, regulatory policies governing advertising and menu signage should (seemingly counterintuitively) recommend using nonaligned display presentations, and should (seemingly counterintuitively – but important) avoid prompting younger consumers to explicitly consider calorie/sodium information. The above points highlight the role of “attribute gap importance weight”, and distinguishes this work from Biswas et al. (2013). Finally, both shoppers and policy makers need to recognize that marketers can present attribute information in ways that may mislead shoppers. For example, if a lower calorie option involves smaller profit margins, a restaurant frequented by patrons with diet goals might display this option above a high-calorie option, to reduce patrons’ weighting of the calorie gap, and thus reduce patrons’ preference shift toward the lower calorie option. Such a practice can be labeled as “providing full information” to patrons, and is not illegal, but public policy experts would note that it may reduce welfare.

The effects outlined in this paper have widespread applicability, extending well beyond the food domain. As stated earlier, the effects in this paper would apply to any product domain involving a comparison of numeric attributes. Thus, for example, the effects would extend to any product domain wherein prices (typically an LIB domain) are displayed, into any domain involving MIB attributes like battery life (e.g. cellphones, tablets, laptops) and internet speed (e.g. cellular networks), and into domains like robotic vacuum cleaners, involving attributes that are MIB (e.g., operating time) and LIB (charging time).

As a specific example, some insurance companies (e.g., Progressive) provide information both about their own rates and the rate from a competitor. Shoppers here would behave similarly to shoppers with diet goals, in the sense that insurance shoppers generally prefer lower insurance rates (insurance rates = LIB attribute). Based on this paper, we would suggest that an insurance
provider should present its own rate quote below the quote from a competitor. If its own rates are lower, this presentation format ensures that insurance shoppers put more weight on the “rate gap”, which increases relative preference for the focal insurance company’s product. If however the competitor’s rates are lower, presenting its own (higher-amount) rates below would lead shoppers to putting less weight on the rate gap, and thus decreasing relative preference for the competitor’s insurance product.

The advice in the previous paragraph is valid when the attributes involved are clearly LIB. However, other attributes may typically be perceived as MIB, e.g., network speed, battery life, and operating time (in robotic vacuum cleaners). In such instances, focal firms should display its information above that of competition (exactly opposite of what is advised when the attribute was LIB). If its competitor’s “scores” are lower, this presentation display ensures that shoppers put more weight on the attribute gap, which increases relative preference for the focal firm’s product. If its competitor’s scores are higher, then this presentation display leads to shoppers putting less weight on the attribute gap, and thus decreasing relative preference for the competitor’s product.

The contrast across the prior two paragraphs highlights the importance of identifying shoppers’ goals, and whether shoppers perceive the attribute as LIB or MIB. As described above, what constitutes the optimal display is conditional on how shoppers perceive attributes. It is for this reason that LIB versus MIB is one of the two independent variables in this paper.

Limitations and Future Research

The effects we find are driven by differences in displays of food items, which lead to varying importance weights assigned to numeric attribute information and further downstream consequences. We reiterate this important point because it helps clarify the conditions in which
the effects we propose may be more versus less evident. To the extent that the effects in this paper are driven by differences in importance weights, they may be more evident if the importance weight of numeric attribute information (e.g., calories, sodium, price) is neither too high nor too low. But in certain conditions, such importance might reach high levels, and it is then that the effects we propose may be less evident. For example, if calorie attributes dominate choice (i.e., have very high importance weight), then display differences likely have minimal effects, due to ceiling effects. Beyond the moderators identified in Study 3b, the above may also constitute moderators of our effects, and are not predicted by Biswas et al. (2013).

Future research can also look at further examining the information processing mechanism outlined in H2 and H3. A key element of this mechanism is that subtraction calculations are perceived as harder when the smaller number is displayed above the larger number. Numerical cognition researchers may also examine if individual differences related to numeracy, math anxiety etc., may moderate the effects noted in H2 – H3.

Also, there are two ways shoppers can perceive numeric attributes (vector attributes vs. ideal point attributes; see Green and Srinivasan 1978; Teas 1993). This paper examines the case wherein shoppers perceive attributes as “vector” attributes, either preferring more of an attribute (MIB, e.g., battery life) or less of an attribute (LIB, e.g., for diet focused shoppers – fewer calories/ less sodium), but does not examine what happens when attributes have ideal point characteristics. What might happen if shoppers believe that an “ideal” number of calories for a sandwich is around 350 calories? Future research could explore whether the effects in this paper sustain when such ideal points exist for key attributes.

In this paper, we assume that consumers who behave as if they prefer food items with more calories do so for taste-related reasons. But other reasons could also be operant, such as
financial reasons that prompt some lower income shoppers to prefer food items with more calories. Examining the behaviors of these shoppers are an important area for research, especially from a policy standpoint, to determine whether lower income shoppers might prioritize calorie amounts over factors like nutrition or health.

Building on an “healthy-left, unhealthy-right” intuition, Romero and Biswas (2016) propose that a food item without nutrition labeling is perceived as healthier, if displayed to the left (vs. right) of a comparison food item. Among shoppers with diet goals, such a display increases the focal, healthy food item’s choice share. However, we propose that when FOP calorie information is shown, displaying the focal, healthy food item to the right of the comparison item (i.e., displaying the food items in an aligned display) may increase the importance weight that shoppers attach to the calorie gap during their evaluations, and so would increase the choice share of this food item. Thus, presence of FOP calorie information may reverse Romero and Biswas’s (2016) results. Research that tests these competing predictions could contribute to both theory and practice.

Implicit in our theory is that many shoppers embrace the unhealthy = tasty intuition. It would be worthwhile to reexamine these effects among populations (e.g., in France; see Werle, Trendel, and Ardito 2013) for whom this intuition may be weaker or even reversed.

Finally, we only examine cases wherein attribute information is provided using numeric information. But sometimes attribute information is provided using quasi-numeric formats, such as when Verizon contrasts its cellular coverage versus AT&T etc. using a map covered with more (vs. less) dots, without providing information relating to the actual number of dots. Would aligned (vs. nonaligned) display matter in such cases? Examining this and similar questions may further expand the applicability of this work.
References

Miyazaki, Anthony D., Dhruv Grewal, and Ronald C. Goodstein (2005), "The Effect of Multiple

<table>
<thead>
<tr>
<th>Initial conceptualization (Biswas et al. 2013)</th>
<th>Modified, broadened conceptualization (this paper)</th>
</tr>
</thead>
</table>
| **Sale Price display (Right vs. Left → Left = nonaligned display)** | #1 Food item with lower value Nutrition information (lower value of Calories/ Sodium/ Kilojoules etc.) display (Above vs. Below → Above = nonaligned display)
#2 Sale Price display (Above vs. Below → Above = nonaligned display)
#3 Phone case with longer Battery Life display (Above vs. Below → Below = nonaligned display) |
| **Value perceptions, Purchase intentions, Choice (one study)** | When two elements of attribute information are presented in a nonaligned manner → increases subtraction difficulty3 → attribute gap given less importance weight → evaluations
Attribute gap given less importance weight, based on Shah and Oppenheimer (2007); also see Oppenheimer (2008) |
| **Study scenarios involve price comparisons** | **Study scenarios relate to the food domain (attributes – calories, sodium), battery domain (attribute – battery life); there is (also) one study involving price comparisons**
#1 The mechanism, and the important role of importance weight, is applicable across multiple attribute domains (including the price domain)
#2 Acknowledges that participants may have either LIB goals or more-is-better (MIB) goals, contingent on either state (e.g., domain type) or trait (e.g., diet goals vs. taste goals) considerations. Predictions apply to LIB domains (e.g., price), MIB domains (e.g., battery life) and domains where participants can have either LIB goals or MIB goals (e.g., food domain) |
| **#1 Moderators re. subtraction difficulty, e.g., providing subtraction gap amount, having numbers involving easier calculations
#2 Moderators re. price gap, e.g., moderate versus low discount depth** | **Moderators re. subtraction difficulty e.g., having numbers involving easier calculations**
Focus of this paper was on modifying and broadening the subtraction principle |
| **Focus of this paper was the price domain; other domains not considered/not examined** | **#1 Extant literature (e.g., Mohr et al. 2011; Bialkova et al. 2016) indicates that those with non-diet goals pay less attention to nutrition information. In contrast, this paper indicates that those with non-diet goals (i) pay attention to nutrition information, and (ii) make choices as if they prefer higher calorie/high sodium food options**
#2 Extent to which participants make goal consistent food choices is contingent on whether or not food options are displayed in an aligned manner |

Note: 3Nonaligned presentation increases subtraction difficulty (Thomas and Morwitz 2009; also see Fuson and Briars 1990; Yip 2002)
Appendix 2 – Exemplar Stimuli*

Study 1

Study 2a

Box W

Each chocolate piece

91 calories

Box K

Each chocolate piece

68 calories

Study 2b

Each soup can has (i) chicken-based soup, (ii) has 2 servings per can, (iii) has about 96-100 calories per serving, (iv) has the same levels of calories from fat and sugar content, and (v) has similar weight (about 1 oz).

Soup can “B”

Sodium is approximately 664mg* per serving

Soup can “N”

Sodium is approximately 477mg* per serving

*plus/minus 10%

*In all cases above, aligned display conditions are shown.
Appendix 2 – Exemplar Stimuli (continued)*

Study 3a

<table>
<thead>
<tr>
<th>Cooking Knife “A”</th>
<th>Cooking Knife “B”</th>
</tr>
</thead>
<tbody>
<tr>
<td>“strong blade with a new deflecting edge”</td>
<td>“strong blade with bolster and full tang”</td>
</tr>
<tr>
<td>Original price $114</td>
<td>Sale price $77</td>
</tr>
<tr>
<td>Sale price $71</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bread Knife “C”</th>
<th>Bread Knife “D”</th>
</tr>
</thead>
<tbody>
<tr>
<td>“with serrated edge and straight blade”</td>
<td>“with serrated edge and slightly curved blade”</td>
</tr>
<tr>
<td>Original price $102</td>
<td>Original price $70</td>
</tr>
<tr>
<td>Sale price $70</td>
<td>Sale price $68</td>
</tr>
</tbody>
</table>

Study 3b

<table>
<thead>
<tr>
<th>Battery cum phone case</th>
<th>Online reviews</th>
<th>Extra battery life</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>-Just launched</td>
<td>331 minutes (expected, per manufacturer)</td>
</tr>
<tr>
<td></td>
<td>-Online reviews not available</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Very slightly thicker</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>-Been out six months</td>
<td>246 minutes (average across independent tests)</td>
</tr>
<tr>
<td></td>
<td>-Good online reviews</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-Slim</td>
<td></td>
</tr>
</tbody>
</table>

For Study 3a, the aligned display condition is shown. For Study 3b, the aligned display/harder calculation condition is shown.
Figure 1: Johnson-Neyman regions in Study 1

Study 1: Johnson-Neyman Regions

Conditional effect of Alignment on choice of Coca Cola Life, at values of Diet Intentions scale

<table>
<thead>
<tr>
<th>Diet Scale*</th>
<th>Effect</th>
<th>se</th>
<th>Z</th>
<th>p</th>
<th>LLCI</th>
<th>ULCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.3100</td>
<td>-.5238</td>
<td>.1939</td>
<td>-2.7014</td>
<td>.0069</td>
<td>-1.9038</td>
<td>-1.1438</td>
</tr>
<tr>
<td>-1.4310</td>
<td>-.2416</td>
<td>.1303</td>
<td>-1.9600</td>
<td>.0500</td>
<td>-1.4833</td>
<td>.0000</td>
</tr>
<tr>
<td>-1.3100</td>
<td>-.2028</td>
<td>.1737</td>
<td>-1.7262</td>
<td>.0843</td>
<td>-1.4331</td>
<td>.0275</td>
</tr>
<tr>
<td>1.6765</td>
<td>.4348</td>
<td>.2218</td>
<td>1.9600</td>
<td>.0500</td>
<td>.0000</td>
<td>.8696</td>
</tr>
<tr>
<td>1.6900</td>
<td>.4391</td>
<td>.2232</td>
<td>1.9672</td>
<td>.0492</td>
<td>.0016</td>
<td>.8766</td>
</tr>
<tr>
<td>2.6900</td>
<td>.7601</td>
<td>.3311</td>
<td>2.2955</td>
<td>.0217</td>
<td>.1111</td>
<td>1.4090</td>
</tr>
</tbody>
</table>

Participant behavior consistent with:

- *Taste goals* 30.11% of sample
- *Diet goals* 7.95% of sample

*mean-centered values for Diet Intentions scale

Figure 2: Johnson-Neyman regions in Study 2b

Study 2b: Johnson-Neyman Regions

Conditional effect of Alignment on choice of low sodium soup can, at values of Diet Intentions scale

<table>
<thead>
<tr>
<th>Diet Scale*</th>
<th>Effect</th>
<th>se</th>
<th>Z</th>
<th>p</th>
<th>LLCI</th>
<th>ULCI</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.2100</td>
<td>-.7911</td>
<td>.2588</td>
<td>-3.0568</td>
<td>.0022</td>
<td>-1.2984</td>
<td>-1.2839</td>
</tr>
<tr>
<td>-.5414</td>
<td>-.3313</td>
<td>.1690</td>
<td>-1.9600</td>
<td>.0500</td>
<td>-.6625</td>
<td>.0000</td>
</tr>
<tr>
<td>-.2100</td>
<td>-.1033</td>
<td>.1416</td>
<td>-1.7296</td>
<td>.4657</td>
<td>-.3807</td>
<td>.1742</td>
</tr>
<tr>
<td>.3597</td>
<td>.2886</td>
<td>.1472</td>
<td>1.9600</td>
<td>.0500</td>
<td>.0000</td>
<td>.5772</td>
</tr>
<tr>
<td>.7900</td>
<td>.5846</td>
<td>.1913</td>
<td>3.0564</td>
<td>.0022</td>
<td>.2097</td>
<td>.9594</td>
</tr>
<tr>
<td>1.7900</td>
<td>1.2724</td>
<td>.3415</td>
<td>3.7262</td>
<td>.0002</td>
<td>.6031</td>
<td>1.9417</td>
</tr>
<tr>
<td>2.7900</td>
<td>1.9602</td>
<td>.5100</td>
<td>3.8435</td>
<td>.0001</td>
<td>.9606</td>
<td>2.9598</td>
</tr>
</tbody>
</table>

Participant behavior consistent with:

- *Taste goals* 32.18% of sample
- *Diet goals* 34.86% of sample

*mean-centered values for Diet Intentions scale