Citation for published version:

DOI:
10.1021/acs.organomet.8b00907

Publication date:
2019

Document Version
Peer reviewed version

Link to publication

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.

University of Bath

Alternative formats
If you require this document in an alternative format, please contact: openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Pt-M (M = Au and Tl) Dative Bonds Using Bis(cyclometalated)platinum(II) Complexes

Sheida Rajabia, Sirous Jamaliab, Soroosh Naseri,a Ali Jamjah,a Reza Kia,a Hamidreza Samoueib, Piero Mastrorilli,c Hamid R. Shahsavarid, Paul R. Raithbye

aChemistry Department, Sharif University of Technology, P.O. Box 11155-3516, Tehran, Iran; bDepartment of Chemistry, Texas A&M University, PO Box 30012, College Station, TX 77842-3012; cDICTATECh, Politecnico di Bari, I-70125 Bari, Italy; dDepartment of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran; eDepartment of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK

Abstract: Symmetrical and unsymmetrical bispalladium complexes [Pt(ptpy)\textsubscript{2}], 1, and [Pt(ptpy)(bppy)], 2, in which ptpy = deprotonated 2-(p-tolyl)pyridine and bppy = deprotonated 2-(3-bromophenyl)pyridine, have been prepared from the reaction between tris(pentafluorophenyl)borane, B(C\textsubscript{6}F\textsubscript{5})\textsubscript{3}, and one equivalent of monocyclometalated complexes [PtMe(ptpy)(ptpyH)], B, and [PtMe(ptpy)(bppyH)], C, respectively. The solid state structures of 1 and 2 have been determined by X-ray crystallography. The reaction of 1 with one equivalent of TIPF\textsubscript{6} or [Au(PPh\textsubscript{3})]OTF resulted in the production of heteronuclear complexes [Pt(ptpy)\textsubscript{2}Tl]PF\textsubscript{6}, 3 and {Pt(ptpy)\textsubscript{2}[Au(PPh\textsubscript{3})]}OTF, 4, respectively. X-ray diffraction data showed that in solid state, complex 4 exists as a mixture of supported and unsupported PtII-AuI bonded structures, whereas complex 3 consists of an infinite helical chain structure built up by unsupported Pt-Tl dative bonds. Absorption, emission and NMR spectroscopy data showed that both Pt-Tl and Pt-Au bonds in 3 and 4 have dynamic behavior. The low temperature 1H, 31P{1H} and EXSY NMR of 4 revealed two dynamic behaviors involving the rupture of the Au-C\textsubscript{ipso} bond as well as the dissociation-association of the [Au(PPh\textsubscript{3})]+ and Pt(ptpy)\textsubscript{2} fragments. All complexes displayed bright emission in the solid state and their absorption and emission properties have been investigated both experimentally and by TD-DFT calculations.

Introduction

Metal-metal bonding interactions have been employed as important tools for the synthesis of multinuclear complexes, extended structures and self-assembled systems and provide opportunities for tuning the chemical and physical properties of these compounds.1 Transmetalation is an important reaction step in palladium catalyzed C-C bond coupling reactions. It has been shown that these reactions proceed through intermediates containing a M(d8)-M'(d10) bond.2 Very recently, bis(cyclometalated)palladium(II) complexes containing PdII-ZnII and PdII-CuI have been prepared and their solid state structures have been determined using X-ray crystallography.3 In addition, cyclometalated platinum(II)-gold(I) and platinum(II)-silver(I) complexes have been recently described displaying unusual Pt-Au and Pt-Ag bonds that are supported by Au-C\textsubscript{ipso} and Ag-C\textsubscript{ipso} bonds, respectively and are considered as snapshots of
transmetalation of an aryl group between the platinum and gold or silver centers. On the other hand, d^4-d^{10} and d^{8}-s^2 metal-metal interactions play a key role in the synthesis as well as in the emission properties of metal-metal bonded chains and entities. For example, helical chains \{[\text{Pt}(\text{C}^\text{N})_2][\text{Ag}(_\text{acetone})])_2\}_{n} (\text{ClO}_4)_{2n}\text{.n acetone, in which C}^\text{N} = \text{deprotonated 2-phenylpyridine or 2-(2-thienyl)pyridine}, have been built up by Pt-Ag dative bonds formed from the reaction between the corresponding cyclometalated platinum complex Pt(C^N)_2 and AgClO_4. It has also been demonstrated that platinum(II) complexes containing C_6F_5 or alkynyl ligands and thallium(I) salts can form linear or helical chains [−Pt^{II}−Tl^{I}−]_\infty via Pt-Tl dative bonds. These entities and extended chains display interesting optical properties such as mechanochromic, solvochromic and thermochromic luminescence behaviours.

We have recently reported a tetranuclear linear Pt_2Tl_2 chain that is formed by Pt^{0}Tl^{I} dative bonds and a strong Tl^{I}−Tl^{I} closed-shell interaction, indicating an intense red emission originated from a platinum to thallium−thallium charge-transfer excited state. However, these metal-metal bonding interactions are rather weak and undergo a dynamic cleavage and recombination in solution. The dynamic nature of these noncovalent interactions plays an important role in many research areas such as supramolecular self-assembly, molecular switching, optoelectronic materials and transmetalation reactions. In this area, a great number of complexes containing dynamic Pt-M (M = Tl) bonding interactions have been investigated. Recently, it has been shown that the cationic phosphide-bridged complexes of the type \{[M'PtM(μ-PPh_2)(C_6F_5)_2(PPh_3)]\}^+ , in which M = Pd or Pt and M' = Ag or Au, display a dynamic behavior of the coordinated fragment M'(PPh_3) (Scheme 1). 31P{1H} EXSY spectroscopy showed that the dynamic process for M' = Ag, involves a dissociation-association (Scheme 1, path a) of the two fragments (C_6F_5)_2Pt(μ-PPh_2)M(PPh_3) and [Ag(PPh_3)]^+, while for M' = Au, it involves an intramolecular rearrangement (Scheme 1, path b) of the [Au(PPh_3)]^+ fragment.
These NMR data showed a lower lability of the [Au(PPh₃)]⁺ than those of [Ag(PPh₃)]⁺. Dynamic processes involving [Ag(PPh₃)]⁺ adducts of anionic or neutral phosphido bridged diplatinum complexes have been also described. The lower lability of the [Au(PR₃)]⁺ fragment in comparison to [Ag(PR₃)]⁺ has been also shown in bis-cyclometalated platinum(II) complexes of type [PtL'(bdt){Au(PCy₃)}], in which L' = 2-phenylpyridine or 1-(4-tertbutylphenyl)isoquinoline, bdtd = 1,2-benzenedithiolate. Similarly, in the cyclometalated complex [(CNC)(PPh₃)PtAu(PPh₃)](ClO₄), in which CNC = 2,6-diphenylpyridine, a lower lability for [Au(PPh₃)]⁺ fragments is observed. This complex underwent intramolecular rearrangement dynamic processes involving the migration of the [Au(PR₃)]⁺ units between the S atoms or C₆ipso atoms of the dithiolate or 2,6-diphenylpyridine ligands, respectively.

Pursuing our studies on the synthesis of cyclometalated platinum complexes and on homo- and heteronuclear metal-metal bonding interactions in these systems, in this study, we report a new synthetic method for the preparation of symmetrical and unsymmetrical bis(cyclometalated)platinum(II) complexes [Pt(ptpy)₂], 1, and [Pt(ptpy)(bppy)], 2, respectively, in which ptpy = deprotonated 2-(p-tolyl)pyridine and bppy = deprotonated 2-(3-bromophenyl)pyridine. This type of bis-cyclometalated complex which reveal interesting emission features has been used as a triplet emitter dopant in OLEDs and has served as a case study for the characterization of the triplet substates. The metal-metal interactions in these complexes can be utilized to generate interesting multinuclear complexes or extended chains and to change optical properties of the parent complexes. In the following, we have examined the reactions of 1 with TIPF₆ and [Au(PPh₃)]⁺ that yielded to the extended helical chain [−Ptᴵᴵ−Tlᴵ−]ₙ, 3, and the binuclear Ptᴵᴵ−Au¹ complex, 4, respectively.

Result and Discussion

Synthesis and Characterization

Zelewsky et al. have reported the synthesis of bis(cyclometalated)platinum complexes from lithiated ligands and PtCl₂(SEt₂)₂. In their proposed method, the lithiated ligands must be prepared from the corresponding halides which are usually synthesized as a mixture of regioisomeric products and require difficult techniques for their separation and purification. Very recently, González-Herrero and co-workers reported a facile approach for synthesizing homogeneous and heteroleptic bis(cyclometalated) platinum(II) complexes by photochemical C-H bond activation in methylplatinum(II) complexes. However, it should be noted that the crystal structure of the above mentioned complexes had not been determined. Besides, one cannot expect to obtain good quality single crystals when the complexes are prepared based on the previously mentioned photochemical method. As shown in Scheme 2, the reaction

Scheme 1

These NMR data showed a lower lability of the [Au(PPh₃)]⁺ than those of [Ag(PPh₃)]⁺. Dynamic processes involving [Ag(PPh₃)]⁺ adducts of anionic or neutral phosphido bridged diplatinum complexes have been also described. The lower lability of the [Au(PR₃)]⁺ fragment in comparison to [Ag(PR₃)]⁺ has been also shown in bis-cyclometalated platinum(II) complexes of type [PtL'(bdt){Au(PCy₃)}], in which L' = 2-phenylpyridine or 1-(4-tertbutylphenyl)isoquinoline, bdtd = 1,2-benzenedithiolate. Similarly, in the cyclometalated complex [(CNC)(PPh₃)PtAu(PPh₃)](ClO₄), in which CNC = 2,6-diphenylpyridine, a lower lability for [Au(PPh₃)]⁺ fragments is observed. This complex undergone intramolecular rearrangement dynamic processes involving the migration of the [Au(PR₃)]⁺ units between the S atoms or C₆ipso atoms of the dithiolate or 2,6-diphenylpyridine ligands, respectively. Pursuing our studies on the synthesis of cyclometalated platinum complexes and on homo- and heteronuclear metal-metal bonding interactions in these systems, in this study, we report a new synthetic method for the preparation of symmetrical and unsymmetrical bis(cyclometalated)platinum(II) complexes [Pt(ptpy)₂], 1, and [Pt(ptpy)(bppy)], 2, respectively, in which ptpy = deprotonated 2-(p-tolyl)pyridine and bppy = deprotonated 2-(3-bromophenyl)pyridine. This type of bis-cyclometalated complex which reveal interesting emission features has been used as a triplet emitter dopant in OLEDs and has served as a case study for the characterization of the triplet substates. The metal-metal interactions in these complexes can be utilized to generate interesting multinuclear complexes or extended chains and to change optical properties of the parent complexes. In the following, we have examined the reactions of 1 with TIPF₆ and [Au(PPh₃)]⁺ that yielded to the extended helical chain [−Ptᴵᴵ−Tlᴵ−]ₙ, 3, and the binuclear Ptᴵᴵ−Au¹ complex, 4, respectively.
of the dimeric platinum(II) complex \([\text{Pt}_2\text{Me}_4(\mu-\text{SMe})_2]\) with 2 equivalent of ptpyH ligand yields the cyclometalated platinum(II) complex of type \([\text{PtMe(SMe}_2)(\text{ptpy})]\), A. Complex A has a labile dimethyl sulfide ligand that can be replaced by N atom of a similar (ptpyH) or of a different (bppyH) cyclometalating ligand leading to methylplatinum(II) complexes \([\text{PtMe(ptpy)(ptpyH)}]\), B, and \([\text{PtMe(ptpy)(bppy H)}]\), C, respectively. Removing the free dimethylsulfide by purging the solution with Ar for several hours, followed by the addition of tris(pentafluorophenyl)borane, leads to the production of bis(cyclometalated)platinum(II) complexes, 1 and 2 in good yields. The C-H bond activation by platinum(II) complexes in the presence of \(\text{B(C}_6\text{F}_5)_3\) is a well-known process and has been reported by several research groups over the past two decades.18Bis-cyclometalated complexes 1 and 2 were stable in acetone solution for several days and were characterized using NMR spectroscopy in solution and by X-ray crystallography in solid state. The NMR spectra of 1 were the same as reported previously (Figures S1-S3).17 The NMR spectra \([^1\text{H}, ^{13}\text{C} \text{ and } (^{1}\text{H},^{1}\text{H})-\text{COSY-DQ}]\) of the new complex 2 confirmed the structure of the complex in solution (Figures S4-S6).

Scheme 2
Figure 1. Molecular structures of complex 1 (a) and 2 (b) and the crystal packing diagrams of 1 (c) and 2 (d).

Crystals of 1 and 2, suitable for X-ray crystallography were obtained by slow vapor diffusion of n-hexane into acetone solutions of 1 and 2, respectively. These complexes crystallized in the monoclinic system, with space group P2₁/n. The molecular crystal structures and crystal data of 1 and 2 are shown in Figures 1a, 1b and Tables S1-S6, respectively. The cyclometalated ligands in the complexes 1 and 2 have different substituents on the phenyl ring and show different interactions in the solid state. For example, the crystal structure of 1 shows only C–H...π interactions while π...π and Pt...H interactions were observed in the solid state structure of 2. These complexes present different packing diagrams caused by the above mentioned interactions (Figures 1c and 1d). The electrospray ionization mass spectra (positive ions mode) of complexes 1 and 2 displayed peaks at m/z 381, 532, 597, 613, (Figures S7-S9) that, according to simulated patterns, are ascribable to the species [Pt(ptpy)(H₂O)]⁺, [Pt(ptpy)₂]⁺, [Pt(ptpy)(bppy)]⁺ and [Pt(ptpy)(bppy)(H₂O)]⁺, respectively. Complexes 1 and 2 possess an electron-rich platinum center which provides the possibility of preparing new bi- or multinuclear complexes containing Pt-M dative bond units. Thus we decided to examine the reactivity of bis-cycometalated complexes 1 and 2 towards Au¹ and Tl¹ species and to carry out comparative structural and photophysical studies. While reactions of 2 with TIPF₆ and [Au(PPh₃)]⁺ did not yield products that could be characterized, the reaction of 1 with one equivalent of TIPF₆ at room temperature in acetone led to the production of Pt²⁺-Tl¹ complex [Pt(ptpy)₂Tl]PF₆, 3, in good yield by the formation of a Pt-Tl dative bond (Scheme 3).

\[
\begin{array}{c}
[\text{Pt(ptpy)}_2] + \text{1 equiv TIPF}_6 \\
\downarrow
\end{array}
\begin{array}{c}
[\text{TlPt(ptpy)}_2]PF_6 \\
3
\end{array}
\begin{array}{c}
\text{1 equiv [Au(PPh}_3])^+ \\
\downarrow
\end{array}
\begin{array}{c}
[\text{Pt(ptpy)}_2Au(PPh}_3])OTF \\
4
\end{array}
\]

Scheme 3

In the ¹H NMR spectrum of complex 3 (Figure S10), the appearance of a broad singlet at δ 7.80, flanked by ¹⁹⁵Pt satellites (³J_PtH = 52 Hz), was assigned to C-H nuclei adjacent to the coordinated C atoms of the cyclometalated ligands. Four other hydrogen atoms of the phenyl rings appeared as two doublets at δ 7.01 and 7.59 ppm which were correlated to each other in ¹H-¹H COSY-DQ NMR spectrum of 3 (Figure S11). A second set of correlations was observed at δ 8.61, 7.48, 8.10 and 7.97 ppm due to hydrogen atoms of the pyridyl rings. The ¹³C{¹H} NMR spectrum is shown in Figure S12. The lack of an observable coupling between Tl and H or C atoms in 3 is not unprecedented and indicates that the Pt–Tl complex is
dynamic on the NMR time scale. Red needle-like crystals of 3 were obtained by vapor diffusion of n-hexane into an acetone solution of 3. The single-crystal X-ray diffraction analysis revealed that the cation of 3 consists of a helical chain built up from alternate 1 and TlI fragments, which are connected by PtII-TlI dative bonds. Figures 2a and 2b show views of the asymmetric unit and helical chain along the crystallographic a-axis, respectively. One cycle of the helix consists of three bis-cyclometalated platinum complex and two TlI metal centers. The pitch of the helix is 11.059 Å, which is equal to the periodicity along the a-axis. X-ray structural data (Tables S7-S9) also verified that compound 3 crystalized in achiral space group P21/n and the crystals contain both the left and right handed helical chains. The asymmetric unit of compound 3 consists of two bis-cyclometalated complexes, 1, two Tl atoms, a coordinated acetone molecule and two hexafluorophosphate counterions. The Pt-Tl distances ([2.925(2)-2.974(2) Å]) are in the range of those found in the previously reported helical and linear chains assembled by PtII-TlI dative bonds. An interesting feature in the solid state structure of 3 is the coordination of half the TlI centers by acetone molecules. This is different from those observed in the solid state structures of the helical and linear chain compounds [{Pt(phpy)2}2{Ag(acetone)}2]n(ClO4)2, [{Pt(bzq)(C6F5)2}Tl(Me2CO)]n and [{Pt(R-C=C)(acac)}2Tl]PF6 in which all silver(I) and thallium(I) centers are coordinated by acetone molecules. The coordination of the acetone molecule to Tl1 centers and the C-H-F interactions in the solid state structure of 3 induces a large separation between two [Pt(ptpy)2] units connected to Tl1 centers [Pt1-Pt2 distance is 5.7 Å] in comparison with two [Pt(ptpy)2] units connected to Tl2 centers [Pt1-Pt2 distance is 5.4 Å]. Moreover, the PtII-TlI vectors around the Tl1 centers are tilted by 0.9° (Pt1-Tl1) and 4.8° (Pt2-Tl1) with respect to the normal line of the platinum(II) coordination planes which are smaller to those observed around the Tl2 centers [14.4° (Pt1-Tl2) and 13.7° (Pt2-Tl2)]. The Pt1-Pt1-Pt2-Pt2 segments are not linear [Tl1-Pt2-Tl2 162.19(7)°, Tl2-Pt1-Tl1 166.46(7)°, Pt2-Tl2-Pt1 131.35(8)°, Pt1-Tl1-Pt2 153.9 °] and the Tl-O bond distance amounts to 2.80(3) Å. ESI-Mass spectrum of 3 (positive ions mode in Figures 3 and S25) is particularly informative and includes peaks at m/z 1267, 1303, 1798 and 1835 that confirm the formation of heterotrinuclear Pt3Tl complexes [{Pt(ptpy)2}2Tl]+, [{Pt(ptpy)2}2Tl(H2O)2]+ and heterotetranuclear Pt5Tl complexes [{Pt(ptpy)2}3Tl]+ and [{Pt(ptpy)2}2Tl(H2O)2]2+. An example of cyclometalated tetranuclear clusters with a Pt3Tl metal core has been reported previously.

The reaction of the bis-cyclometalated platinum complex 1 with one equivalent of [Au(PPh3)]OTF [prepared in situ from AuCl(PPh3) and Ag(OTF) in acetone] gave rise to the heterobinuclear PtII-AuI complex, {Pt(ptpy)2[Au(PPh3)]}OTF, 4 (Scheme 3). Yellow crystals of 4 were obtained by vapor diffusion of n-hexane into a dichloromethane solution of 4. X-ray diffraction analysis showed that the heterobinuclear complex 4 crystallizes in monoclinic system, with space group P21/c. A view of the
molecular structure of 4 is depicted in Figure 4, and the bond lengths and angles are listed in Tables S10-S12. The asymmetric unit of 4 is composed of four heterobinuclear PtII-AuI complexes and four triflate counterions.

Figure 2. A view of asymmetric unit of 3 (a) and its helical chain structure along a axis (b). The anions (PF$_6$), solvents of crystallization and H atoms are omitted for clarity.
Each pair of these complexes are linked together by π⋯π, C-H⋯π and Pt⋯Pt (3.282 Å and 3.252 Å) interactions and show two different types of Pt-Au bonds: short and long. The long Pt-Au bonds [Pt1-Au1 2.7311(5) Å, and Pt4-Au4, 2.6457(5) Å] are supported by strong Au-Cipso bonds [Au1-C13 (2.297(9) Å) and Au4-C140, 2.456(9) Å]. However, as far as we know, only one example of this type of unusual Pt–Au bonding has been reported\(^3\) that can be considered as an intermediate for the transmetalation step in bimetallic reactions. The bond distances for the short bonds Pt2-Au2 and Pt3-Au3 amount to 2.5864(5) and 2.552(3) Å respectively, which are very shorter than those observed in the previously reported Pt\(^{II}\)-Au\(^{I}\) compounds\(^22\) and are in the range of those observed in the previously reported Pt\(^0\)-Au\(^1\) complexes.\(^23\)

ESI-Mass spectrum of 4 (Figure S13) shows a base peaks at m/z 990 which confirms the formation of cationic Pt-Au complex \{Pt(ppy)\(_2\)[Au(PPh\(_3\))]\}\(^+\). DFT calculations on the supported and unsupported Pt-Au bond forms of 4, were performed at the B3LYP level of theory based on experimental geometries. The calculated energy difference between them was 0.9 kcal/mol, in favor of the supported form, indicating the probability of the presence of a dynamic process in solution between these structural forms.

Figure 3. Positive ion mode ESI mass spectrum of 3.

Figure 4. Molecular structure of complex 4. The triflate anions, solvents of crystallization and H atoms were omitted for clarity.
The 31P(1H) NMR of complex 4 (Figure S14) at 323 K showed a singlet signal at δ 25.1. 1H,1H-COSY DQ and 1H NMR spectra of 4 (Figures S15, S16) at the same temperature showed four sets of correlations in the aromatic region (8.87, 7.65, 8.16 and 8.18 ppm for pyridyl rings; 7.81 and 7.18 ppm for p-tolyl ring protons, 8.17 ppm for CH groups adjacent to coordinated C atoms; 7.13, 7.43 and 7.58 for the phenyl protons of the PPh$_3$ group). Lowering the temperature to 273 K splits the phosphorus singlet signal into two singlet signals at δ 22.8 and 33.0 without platinum satellites and broadens the observed aromatic proton signals (Figures 5 and S18). These observations revealed that 4 undergo a dynamic process in solution. Thus, the 31P(1H) NMR spectrum of complex 4 was monitored as a function of temperature in the acetone-d$_6$ solution (Figure 5). A change in the relative intensities and broadness of two phosphorus signals was observed upon cooling from room temperature to 213 K. As the temperature was lowered, the phosphorus resonance at δ 22.8 became more broadened and shifted to upfield, while the phosphorus resonance at δ 33.0 became sharp and didn’t show any coupling with the platinum atom. Consistently, the 31P(1H) EXSY NMR spectrum of 4 (Figure 6a) at 213 K in acetone-d$_6$ showed cross-peaks between two phosphorus resonances. Thus, we suggest that Pt-Au bond in 4 is labile and both of the free and platinum-coordinated forms of [Au(PPh$_3$)]$^+$ are in a dissociation-association equilibrium (Scheme 4) and the phosphorus resonances observed at δ 33.0 and 23.8 ppm can be assigned to the P atoms of the free and platinum-coordinated fragment [Au(PPh$_3$)]$^+$, respectively. This is in contrast to the previously reported heterobinuclear Pt-Au(PR$_3$) complexes that showed only dynamic intramolecular rearrangements. A second dynamic process was observed at lower temperature with platinum-coordinated fragment [Au(PPh$_3$)]$^+$. When the temperature was decreased to -193 K, signals due to the platinum-coordinated fragment [Au(PPh$_3$)]$^+$ shifted to downfield and appeared as a singlet signal at δ 18.7 ppm which was coupled to platinum atoms to give satellites with $J_{	ext{PP}}$ = 785 Hz. It is important to note that this resonance does not show correlation with the resonance of the phosphorus atom of the free fragment [Au(PPh$_3$)]$^+$ in the 31P(1H) EXSY NMR spectrum of 4 at 193 K (Figure 6b). These NMR data, therefore, show that platinum-coordinated fragment [Au(PPh$_3$)]$^+$ at 193 K rearranges to a new Pt-Au bond complex that does not dissociate to platinum and gold fragments and persists in solution at this condition. Based on the represented NMR data, the crystal structure of 4 and the previously reported cyclometalated PtII-AuI complex that exhibited persistent of Pt-Au bond in solution, we proposed that Pt-coordinated fragment [Au(PPh$_3$)]$^+$ forms a strong Au–C$_{ipso}$ bonding interaction in solution at 193 K, as shown in Scheme 4. However, the tilting (45°) of the platinum satellites in the 31P(1H) EXSY NMR spectrum of 4 at 193 K (Figure 6b) can be attributed to the migration of the platinum-coordinated fragment [Au(PPh$_3$)]$^+$ between two C$_{ipso}$ atoms of two ptpy ligands; note that ptpy ligands have different orientations and are twisted toward each other and can form Au-C$_{ipso}$ bonds with different bond distances. Furthermore, we were not able to obtain a good 195Pt NMR spectrum of 4 due to the occurrence of two fast dynamic processes at
room temperature. However, the 195Pt NMR spectrum of 4 at 193 K showed a broad signal at δ -3589 ppm that shifted to upfield in comparison with the starting complex 1 at δ -3553 ppm (Figures S19-S20).

![Scheme 4]

Figure 5. VT 31P{1H} NMR spectrum of complex 4 in acetone-d$_6$
Figure 6. The $^{31}\text{P}^{1}\text{H}$ EXSY NMR spectrum of 4 in acetone-d$_6$ at (a) 213 and (b) 193 K.

Absorption and Emission Spectra

UV-vis absorption spectra of the bis-cyclometalated platinum (II) complexes 1 and 2 were obtained in CH$_2$Cl$_2$ solution and in solid state. The obtained spectra are shown in Figure 7a and the numerical data are summarized in Table 1. The complexes 1 and 2 show UV-vis spectra similar to the previously reported homoleptic bis-cyclometalated complexes [Pt(ppy)$_2$], [Pt(bhq)$_2$], [Pt(thpy)$_2$], [Pt(bthpy)$_2$] and heteroleptic bis-cyclometalated complexes [Pt(thpy)(TMS-thpy)] and [Pt(phpz)(thpy)].

Therefore, the intense high-energy absorption bands ($\lambda < 350$ nm) and the strong absorption bands in the visible region (420-430 nm) of the UV-vis spectra of 1 and 2 can be ascribed to ^1LC (ligand centered) and $^1\text{MLCT}$ (metal to ligand charge transfer) transitions, respectively. The diffuse reflectance UV-Vis spectra
of 1 and 2 (Figure 7b) in solid-sate show additional bands at low energy region (500 nm) compared to the spectra taken in dichloromethane solution. These additional bands are tentatively attributed to the ππ* interactions in solid state structures of 1 and 2 complexes. The electronic absorption spectra of 3 and 4 (Figures S21) in CH₂Cl₂ solution are similar to each other and comparable to that observed for the precursor complex 1, indicating the dissociation of the Pt-Tl and Pt-Au bonds in solution. However, the UV-vis spectra of 3 and 4 in solid state (Figure S22) show additional low-energy broad bands with long tails to 700 nm reflecting the presence of the Pt–Tl interaction in 3 and Pt-Au, Pt-Pt or π interactions in 4. Emission data for 1–4 are summarized in Table 1. All complexes display long-lived intense emission at room temperature in the solid state. The bis-cyclometalated complexes 1 and 2 are non-emissive in the fluid solution (298 K) but become emissive in the solid state (Figure S23). The emission spectrum of 1 displays a structured band (547 max, 298 K and 554 max, 77 K), which is typical of the mononuclear cyclometalated platinum complexes and is assigned to an admixture of 3IL/3MLCT excited states.26

Table 1. Absorption and emission data for 1-5.

<table>
<thead>
<tr>
<th>Complexes</th>
<th>λₐbs /nm (10⁻⁴ ε M⁻¹ cm⁻¹)</th>
<th>λₑm /nm (λₑxc /nm)</th>
<th>τ (µs)d</th>
<th>ϕe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>272(3.0), 298 (2.9), 329</td>
<td>530, 547 max.</td>
<td>14.2, 298 K</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>(1.6), 385_ads(0.7), 403 (1.2) CH₂Cl₂a</td>
<td>596_ads (365-500), 298 K</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>269, 316, 409 Solidb</td>
<td>532, 554 max., 597_ads (380-500), 77 K</td>
<td>20.4, 77 K</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>271 (3.2), 293 (2.9), 337 (1.2), 383_ads(0.6), 406</td>
<td>622 (400-440), 298 K</td>
<td>10.1, 298 K</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>(1.2) CH₂Cl₂a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>264, 302, 412 Solidb</td>
<td>610 (380-480), 77 K</td>
<td>13.9, 77 K</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>273 (2.1), 296 (1.8), 311 (1.6), 351 (0.7), 397</td>
<td>640 (400-460), 298 K</td>
<td>12.3, 298 K</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>(0.6) CH₂Cl₂a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>271, 317, 402, 481 tail to 645 Solidb</td>
<td>663 (400-480), 77 K</td>
<td>18.6, 77 K</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>271 (1.1), 297 (0.8), 326 (0.3), 349 (0.2), 403</td>
<td>592 (360-420), 298 K</td>
<td>8.8, 298 K</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>(0.2) CH₂Cl₂a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>323, 414, 494 tail to 630 Solidb</td>
<td>614 (380-450), 77 K</td>
<td>13.1, 77 K</td>
<td></td>
</tr>
</tbody>
</table>

aIn CH₂Cl₂ solution (5 × 10⁻⁵ M) at 298 K. bDiffuse Reflectance in solid state at 298 K. cHighest-energy emission peak in solid state. dEmission lifetime. eAbsolute quantum yield in solid state at 298 K.
Figure 7. (a) Absorption spectra in CH$_2$Cl$_2$ (concentration = 5 × 10^{-5} M) (b) Diffuse reflectance UV-vis spectra in the solid state of complexes 1 and 2 at 298 K

This band in the emission spectrum of 2 is structureless and red shifted (622 nm) compared to its counterpart observed in the emission spectrum of 1 (Figure S24). Complexes 3 and 4 show phosphorescent emissions in solid state with excited state lifetimes in microsecond scale (12.3 μs, 3 and 8.7 μs, 4) and quantum yields of 11% and 6%, respectively. Figures 8a and 8b show the luminescence spectra of 3 and 4 measured at room temperature and 77 K that display structureless low energy bands at λ$_{\text{max}}$ = 640 and 592 nm, respectively. The latter displays a high energy shoulder at λ = 530 nm and its intensity decreases by lowering the temperature down to 77 K. The photophysical properties of 3 and 4 were investigated by time-dependent DFT calculations (PBE0-TDDFT). The singlet excitation spectra of the complexes at their optimized ground state geometries were calculated. The geometries of the lowest energy triplet states were then optimized to investigate their emission features. The calculated photophysical data are listed in Table 2, and the excited state transition densities are shown in Figure 9.

Table 2. Calculated Photophysical Results for 3 and 4

<table>
<thead>
<tr>
<th>Complex</th>
<th>λ_{abs} $S_0\rightarrow S_1$ (nm)</th>
<th>λ_{em} $T_1\rightarrow S_0$ (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>cal</td>
<td>exp</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 (with Au-C bond)</td>
<td>322</td>
<td>a</td>
</tr>
<tr>
<td>4 (without Au-C bond)</td>
<td>351</td>
<td>a</td>
</tr>
</tbody>
</table>

*a Complexes 3 and 4 undergo dissociation in solution
For complex 3, the calculated $S_0 \rightarrow S_1$ excitation energy is in good agreement with the experimental absorption data. The computational data show that the lowest energy excitation $S_0\rightarrow S_1$ is a LMCT transition with a transfer of electron density from platinum metal centers to ptpy ligands. As shown in Figure 9, the nature of the lowest energy singlet excitations of the Pt-Au complexes with and without supported Au-C$_{ipso}$ bond are similar to that observed in 3. The calculated $T_1 \rightarrow S_0$ emission energies are also in line with the experimental results. For the lowest energy triplet emission in 3, the contribution of the thallium and platinum atoms becomes more significant and the emission is associated with the Pt-Tl chromophore. This emission band slightly red-shifted at 77 K (663 nm) due to the shorter Pt-Tl distance at low temperature. However, there is notable difference in the electron density transition for the lowest triplet emissions $T_1\rightarrow S_0$ of the two structural forms of 4. In the case of the Pt-Au complex with supported Au-C$_{ipso}$ bond, the transition density is mostly centered on the ptpy ligands and platinum atom (MLCT contribution), while the gold atoms play a minor role. On the other hand, for the Pt-Au complex without supported Au-C$_{ipso}$ bond, the ptpy ligands play only a minor role and the triplet emission is actually centered on the gold and platinum atom centers. These computational data are in good agreement with those observed in the emission (at 298 and 77 K), variable temperature 31P NMR and EXSY spectra of 4. As the temperature decreases from 298 K to low temperatures, the intensity of the shoulder band at 530 nm decreases (Figure 8b) and the EXSY and 31P NMR spectra show the conversion of unsupported Pt-Au bond form to supported Pt-Au bond form of 4 (Figures 5 and 6). We therefore suggest that the emission band observed at $\lambda_{max} = 592$ nm and its shoulder at 530 nm can be attributed to the presence of two structural forms of 4, with and without Au-C$_{ipso}$ bonding interaction, respectively.
Figure 8. (a) Normalized excitation and emission spectra of complex 3 in solid states at 298 K (red) and at 77 K (blue) \((\lambda_{\text{exc}} 440 \text{ nm})\). (b) Normalized excitation and emission spectra of complex 4 in the solid state at 298 K (red) and at 77 K (blue) \((\lambda_{\text{exc}} 400 \text{ nm})\).
Figure 9. PBE0-DFT transition densities for the lowest-energy singlet excitations and triplet emissions of 3 and 4. During the electronic transition, the electron density increases in the blue areas and decreases in the red areas.
Conclusion

The biscalometalad platinum(II) complexes 1 and 2 have been prepared using a new synthetic method and their crystal structures have been determined by X-ray crystallography. Different packing patterns in the solid state have been observed which is due to the different substituents on the phenyl rings. The reaction of 1 with Tl\(^+\) and Au\(^+\) species gave rise to the formation of the infinite helical chain \([\text{-Pt}^{II}\text{-Tl}^-\text{-}]_\infty\) compound 3 and the heterobinuclear Pt\(^{II}\)-Au\(^+\) complex 4, respectively. The solid state structure of 4 displayed two different short and long Pt\(^{II}\)-Au\(^+\) bonds. The length of the short bonds were in the range of Pt\(^{II}\)-Au\(^+\) bonds, while the long bonds were supported by strong Au-C\(_{ipso}\) bonds. In contrast to the previously reported Pt\(^{II}\)-Au\(^+\)(PR\(_3\)) complexes\(^4,10,12\) that show less labile Pt\(^{II}\)-Au\(^+\) bond and undergo intramolecular dynamic processes, NMR spectroscopy showed that complex 4 has a Pt\(^{II}\)-Au\(^+\) labile bond at room temperature and undergoes a dissociation-association equilibrium in solution and a second dynamic process at low temperature between supported and unsupported Pt-Au bond forms of 4. The heterobinuclear complexes 3 and 4 exhibit bright red and orange emissions in solid state, respectively. Although the emission of complex 3 originated from a triplet excited state with a Pt-Tl character, the emission band in complex 4 is associated with a high energy shoulder which is due to supported and unsupported Pt-Au bond forms of 4. Calculation data show that intense band due to supported Pt-Au bond form originated from an excited state that concentrate on Au and Pt metal centers while the shoulder band due to unsupported Pt-Au bond form originated from an \(^3\)MLCT excited state.

Experimental

The \(^1\)H, \(^{13}\)C{\(^1\)H}, \(^{31}\)P{\(^1\)H}, \(^{195}\)Pt and 2D NMR spectra were recorded using Bruker Avance DRX 500-MHz Bruker and DPX-400 spectrometers. The operating frequencies and references, respectively, are shown in parentheses as follows: \(^1\)H (TMS), \(^{13}\)C (TMS), \(^{31}\)P (85\% H\(_3\)PO\(_4\)) and \(^{195}\)Pt (Na\(_2\)PtCl\(_6\)). The chemical shifts and coupling constants are in ppm and Hz, respectively. The UV-vis absorption spectra were carried out in a Hewlett-Packard 8453 spectrophotometer. Diffuse reflectance UV-vis (DRUV) data of the pressed powders were recorded on UV/VIS/NIR spectrometer Cary 5-E (Varian). Photoluminescence spectra were recorded on a Perkin-Elmer LS45 fluorescence spectrometer at room and low temperatures and the lifetimes measured in phosphorimeter mode. 2-(p-tolyl)pyridine), 2-(3-bromophenyl)pyridine and TlPF\(_6\) were purchased from commercial sources. [Pt\(_2\)Me\(_4\)(μ-SMe\(_2\))\(_2\)]\(_{28}\) \([\text{AuCl}(\text{PPh}_3)]\)\(_{29}\) and \([\text{Pt(2-(p-tolyl)pyridine)Me(SMe}_2\)]\(_{17}\) were prepared as described previously. Geometry optimizations without symmetry constraints were carried out by using the BP86 functional in conjunction with the D3 dispersion correction suggested by Grimme and co-workers.\(^30\) Platinum, Gold and Thallium atoms were described using the scalar-relativistic Stuttgart-Dresden SDD effective core potentials and their associated double-\(\xi\) basis sets, The 6-31G(d) basis set was used for C, H, N and P.
atoms. This level is denoted BP86-D3/6-31G(d) & SDD+f(Pt, Au). The photophysical properties of 3 and 4 were investigated by time-dependent DFT calculations (PBEPBE-TDDFT). The Au, Pt and Tl atoms were described by a triple-valence-zeta quality basis set with polarization functions (def2-TZVP). The 6-31G(d) basis set was used for C, H, N and P atoms. The geometries of the complexes were taken from the solid-state X-ray structures. All electronic-structure calculations and geometry optimizations were performed with the Gaussian 09 suite of programs.

Crystal Structure Determinations

X-ray intensity data for 1-3 were collected using the full sphere routine by ϕ and ω scans strategy on SMART APEX2 Bruker diffractometer Intensity data were collected a Brucker SMART CCD single-crystal diffractometer with graphite-monochromated MoKα radiation ($\lambda = 0.71073$ Å). Frames were integrated with the SAINT program [SAINT Program Version4, 1994–1996; 6300 Interprise Lane, Madison, WI53719]. Routine LP correction based upon SADABS was applied to the intensity data. X-ray intensity data for 4 Agilent SuperNova dual wavelength EoS S2 diffractometer with mirror monochromated with Cu Kα (1.54184 Å) and Mo Kα radiation ($\lambda = 0.71073$ Å). For all data collections, the crystals were cooled to 150 K using an Oxford diffraction Cryojet low-temperature attachment. The data reduction, including an empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm31 was performed using the CrysAlisPro software package.32 The crystal structures were solved by direct methods using the online version of AutoChem 2.0 in conjunction with OLEX2 suite of programs implemented in the CrysAlis software.33,34 The structures were refined by full-matrix least-squares (SHELXL2014-7) on F^2. The non-hydrogen atoms were refined anisotropically. All hydrogen atoms were positioned geometrically in idealized positions and were refined with the riding model approximation, with $U_{eq}(H) = 1.2$ or 1.5 $U_{eq}(C)$. For molecular graphics the SHELXTL program was used.35 All geometric calculations were carried out using the PLATON software.36 Crystallographic data for the structural analysis has been deposited with the Cambridge Crystallographic Data Centre, No. CCDC-1826422 (1), CCDC-1826421 (2), CCDC-1826423 (3) and CCDC-1826424 (4). In structure 1, the reflection (2 0 0) was affected by beam stop and its contribution to the structure factor was omitted from the refinement cycle. In the case of structure 2, there was a large electron density peak (4.2 eÅ$^{-3}$) near to C8 and C23 carbon atoms of the phenyl ring. We checked the data for merohedral and non-merohedral twinning to explain the presence of such high electron density peak but no sign of twinning was observed. The disorder modeling of Br atom was not correct to fit into a reasonable model; therefore it might be due to the systematic errors. The crystal of 3 was not diffracting enough to get reasonable resolution for its data. The crystal was not optimal with cracked surface and even after successive crystallization it was not possible to obtain a high quality single crystal for X-ray analysis. For structure 3 we used a global SIMU
and DELU restraints to get a better model for ellipsoids. We also applied EADP for second PF₆ counter ion to be the same as first one. The EADP command was also applied to some carbon atoms of the ring. In the case of structure 4, the crystal was brittle and had cracks even after successive crystallization, preventing us from obtaining its optimal single crystal. The diffraction limit of the crystal was also low; thus we had to use lots of different restraints to model the structure. The structure was squeezed with squeeze routine (version 280317) [A. L. Spek, PLATONSQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors, ActaCryst.(2015). C71, 9–18.] in PLATON which showed significant solvent accessible voids of 1039 electrons in the cell, confirming losing a lot of dichloromethane and acetone molecules as solvent of crystallization. We used a global SIMU and DELU restraints to get a better model based on ellipsoids shape. We also tried to apply whole molecule disorder for the phenylpyridine ligands coordinated to Pt3 but the refinement of the modeling was not stable and successful. With such low resolution data we couldn't do better to get a reasonable structure. For structure 4, in one of the Pt-Au complexes in the asymmetric unit, the Pt3 atom was disordered in two positions with refined site occupancies 0.778(8)/0.222(8). The Au atom of the same complex was also disordered over two positions with a refined site occupancy ratio 0.650(14)/0.350(14). On the other hand, one of the triflate counter ions was totally disordered over two positions with a refined site occupancy ratio of 0.645(14)/0.355(14).

\[\text{[Pt(pty)(bppy)], 2}\]

To a solution of the complex \{PtMe[2-(p-tolyl)pyridine](SMe₂)\} (100 mg, 0.227 mmol) in acetone (15 mL) one equivalent of 2-(3-bromophenyl)pyridine (53.1 mg, 0.227 mmol) was added at room temperature. The mixture was stirred and bubbled with argon gas for 5 h to remove SMe₂ from solution. Then one equivalent of B(C₆F₅)₃ (116.2 mg, 0.227 mmol) was added and the solution was further stirred for 2 h. A bright yellow solution was formed, the solvent was removed under reduced pressure and the residue was triturated with ether. The product as an orange solid was dried under vacuum. Yield: 40%. Anal. Calcd for C₂₃H₁₇N₂BrPt: C, 46.3; H, 2.8; N, 4.7 Found: C, 46.1; H, 2.9; N, 4.9. NMR data in CDCl₃: \(\delta(\text{H})\) 8.8 (d, \(^3\)J₃H₈ = 5.8 Hz, 1H), 8.74 (d, \(^3\)J₃H₈ = 5.8 Hz, 1H), 8.07(d, \(^3\)J₃H₁₁ = 8 Hz, \(^3\)J₃PtH = 49 Hz, 1H), 7.8-7.9 (m, 4H), 7.76 (d, \(^3\)J₃H₁₁ = 2 Hz, 1H), 7.55 (d, \(^3\)J₃H₁₁ = 8, 1H), 7.44 (dd, \(^3\)J₃H₁₁ = 8 and 3 Hz, 1H), 7.35 (t, 1H), 7.28 (t, 1H), 6.99 (d, \(^3\)J₃H₁₁ = 8 Hz, 1H), 2.45 (s, 3H). \(\delta(\text{C})\) 166, 165, 148.4, 147.7, 147.5, 146.9, 146.5, 144.3, 140.1, 139, 138, 137.9, 132.5, 126.2, 124.4, 123.4, 122.7, 121.7, 119.4, 119, 116.9, 21.8.
The reactions of the complexes \{PtMe[2-(p-tolyl)pyridine](SMe\textsubscript{2})\} with 2-(p-tolyl)pyridine and B(C\textsubscript{6}F\textsubscript{3})\textsubscript{3} using the same conditions and workup procedures as above led to the formation of 1 as orange solid, which was isolated in 50\% yield, respectively. The NMR spectra of 1 are the same as reported previously.

[Pt(ptpy)\textsubscript{2}Tl]PF\textsubscript{6}, 3

To a solution of complex 1 (200 mg, 0.376 mmol) in acetone (20 mL) at room temperature under an argon atmosphere was added 1 equiv of TIPF\textsubscript{6} (131.4 mg, 0.376 mmol). The mixture was stirred at this condition for 1 h and the solvent was removed thereafter under reduced pressure. The residue was washed with ether, and the red product was dried under vacuum. Yield: 60\%. Anal. Calcd for C\textsubscript{24}H\textsubscript{30}N\textsubscript{2}F\textsubscript{6}PtTl: C, 32.7; H, 2.3; N, 3.2; Found: C, 32.5; H, 2.4; N, 3.4. NMR data in CDCl\textsubscript{3}: \(\delta\)(1)H 8.61(d, \(^3J_{HH} = 6\) Hz, 2H, CH groups adjacent to coordinated N atoms), 8.1(t, 2H, CH groups on the pyridyl rings), 7.97(d, \(^3J_{HH} = 7\) Hz 2H, CH groups on the pyridyl rings), 7.8(s, \(^3J_{PH} = 52\) Hz, 2H, CH groups adjacent to coordinated C atoms) 7.59(d, \(^3J_{HH} = 7\) Hz, 2H, CH groups on the p-tolyl rings), 7.48(t, 2H, CH groups on the pyridyl rings), 7.01(d, \(^3J_{HH} = 7\) Hz, 2H, CH groups on the p-tolyl rings), 2.39(s, 6H, CH\textsubscript{3} groups on the p-tolyl rings), \(\delta\)(13C) 165.1(coordinated C atoms), 148.3, 145.6, 143.7, 139.7(\(J_{PC} = 72\) Hz), 139.2, 137.4(\(J_{PC} = 96\) Hz), 125.1, 124.2(\(J_{PC} = 39.2\) Hz), 122.8, 119.5, 21.1.

[Pt(ptpy)\textsubscript{2}Au(PPh\textsubscript{3})]OTf, 4

To a solution of complex 1 (200 mg, 0.376 mmol) in acetone (20 mL) at room temperature under an argon atmosphere was added 1 equiv of [Au(PPh\textsubscript{3})]OTf [prepared from Au(PPh\textsubscript{3})Cl and one equiv AgOTf]. The mixture was stirred at this condition for 1 h in the dark, and then the solvent was removed under reduced pressure. The residue was washed with ether, and the red product was dried under vacuum. Yield: 75\%. C\textsubscript{34}H\textsubscript{38}N\textsubscript{2}F\textsubscript{6}PtAu: C, 45.3; H, 3.0; N, 2.5; Found: C, 45.0; H, 3.2; N, 2.8. NMR data in acetone-d\textsubscript{6}: \(\delta\)(1)H 8.87(d, \(^3J_{HH} = 5\) Hz, 2H, CH groups adjacent to coordinated N atoms), 8.09-8.25 (m, 4H, CH groups on the pyridyl rings, 2H and CH groups adjacent to coordinated C atoms), 7.82 (d, \(^3J_{HH} = 8.1\) Hz, 2H, CH groups on the p-tolyl rings), 7.65(t, 2H, CH groups on the pyridyl rings), 7.57(t, 3H, CH groups on the phenyl rings of PPh\textsubscript{3}), 7.43 (t, 6H, CH groups on the phenyl rings of PPh\textsubscript{3}), 7.18(t, 6H, CH groups on the phenyl rings of PPh\textsubscript{3}), 7.14 (d, \(^3J_{HH} = 8\) Hz, CH groups on the p-tolyl rings), \(\delta\)(13C) 164.5 (coordinated C atoms), 149, 146.6, 140.5, 140, 133.5 (d, \(J_{PC} = 15\) Hz, C atoms of PPh\textsubscript{3} group), 132.2 (d, \(J_{PC} = 2.6\) Hz, C atoms of PPh\textsubscript{3} group), 129.4(d, \(J_{PC} = 12\) Hz, C atoms of PPh\textsubscript{3} group), 128.9, 128.3, 127.7, 125 (\(J_{PC} = 30\) Hz), 123.7, 120(\(J_{PC} = 20\) Hz), 21. \(\delta\)(31P) 323 K 25.4 (s, broad). \(\delta\) (195Pt, 193K) -3589 (broad).

Supporting Information
Acknowledgments

We thank Sharif University of Technology Research Council (Grant No. G930615) and Iran national science foundation (Grant No. 96017102) for financial support. RK thanks Prof. Paul R. Raithby and Bath University for visiting research scientist position and provided facilities. PRR is grateful to the Engineering and Physical Sciences Research Council (EPSRC) for continued funding (EP/K004956/1).

AUTHOR INFORMATION

Corresponding Authors E-mail: sjamali@sharif.ir

References

