Title: Global pattern of nest predation is disrupted by climate change in shorebirds

Authors: Vojtěch Kubelka1,2,*, Miroslav Šálek3, Pavel Tomkovich4, Zsolt Végvári5,6, Robert P. Freckleton7, Tamás Székely2,8,9,10,*

Affiliations:

1Department of Ecology, Charles University in Prague, Vinicna 7, 128 44, Prague, Czech Republic.

2Milner Centre for Evolution, University of Bath, Claverton Down, Bath BA2 7AY, UK.

3Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamycka 129, 165 21, Prague, Czech Republic.

4Zoological Museum, Moscow MV Lomonosov State University, Bolshaya Nikitskaya Str 6, Moscow 125009, Russia.

5Department of Conservation Zoology, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary.

6Hortobágy National Park Directorate, Sumen u. 2, H-4024 Debrecen, Hungary.

7Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK.

8Department of Evolutionary Zoology and Human Biology, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, Hungary.

9State Key Laboratory of Biocontrol and College of Ecology and Evolution, Sun Yat-sen University, Guangzhou 510275, China.

10Ministry of Education Key Laboratory for Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, China.

*Corresponding author. E-mail: kubelkav@gmail.com (V.K.); T.Szekely@bath.ac.uk (T.S.).
Abstract: Ongoing climate change is thought to disrupt trophic relationships with consequences for complex interspecific interactions, yet the effects of climate change on species interactions are poorly understood and such effects have not been documented at a global scale. Using a unique database of 38,191 nests from 237 populations, we found that shorebirds have experienced a worldwide increase in nest predation over the last 70 years. Historically, there existed a latitudinal gradient in nest predation with the highest rates in the tropics, however, this pattern has been recently reversed in the Northern hemisphere, most notably in the Arctic. This increased nest predation is consistent with climate-induced shifts in predator-prey relationships.

One Sentence Summary: Climate change increases offspring mortality in shorebirds globally.

Main Text: Climate change is impacting organisms at a global scale in several ways (1–4), including directly altering demographic parameters such as adult survival (5) and reproduction (1), or via altered trophic interactions (1, 6, 7). Successful recruitment counters mortality and maintains viable populations, thus disruption of reproductive performance can have detrimental effects on wild populations (8–10). Alterations in demographic parameters have been attributed to recent climate change (1, 5, 11), especially in the Arctic, where the consequences of warming are expected to be more pronounced (6, 12). However, the evidence for impacts of climate change on species interactions is mixed, and to date there is no evidence that such interactions are changing globally (1–3).

Offspring mortality due to predation has a pivotal influence on the reproductive performance of wild populations (8, 13–15) and extreme rates of predation can quickly lead to population declines or even species extinction (16). Thus nest predation is a good indicator of the potential for reproductive recruitment in bird populations (10). Disruption to annual productivity through increased nest predation could have a detrimental effect on population dynamics and lead to increased extinction risks (9). To
explore changes in spatial patterns of reproduction and potential alterations in trophic interactions due to changes in climate, we use nest predation data from shorebirds, a globally distributed group of ground-nesting birds that exhibit high inter-specific similarity in nest appearance to potential predators and are exceptionally well-studied in the wild including ecology, behaviour and demography (10, 17, 18). We collected data from both published and previously unpublished sources that included 38,191 nests in 237 populations of 111 shorebirds species from 149 locations encompassing all continents across a 70-year time span (fig. S1 and table S1).

Using our comprehensive dataset in a spatio-phylogenetic framework (19), we show that rates of nest predation increased over the last 70 years. Daily nest predation, as well as total nest predation (reflecting the full incubation period for a given species), have increased overall worldwide since the 1950s (Fig. 1, Fig. 2A, Fig. 2B, fig. S2A, fig. S2B and table S2). Thus total nest predation was historically (until 1999) on average 43% ± 2% (SEM), and this has increased to 57% ± 2% since 2000. However, the extent of change shows considerable geographical variation. In the tropics and South temperate areas, changes in daily and total nest predation were not statistically significant, whereas in the North temperate zone, and especially the Arctic, the increase was pronounced (Fig. 1, Fig. 2A, Fig. 2B, fig. S2A, fig. S2B and table S2). This pattern holds across major clades of shorebirds (Fig. 2C, Fig. 2D, fig. S2C, fig. S2D and table S3) and is also observed within local populations with daily and total nest predation increasing significantly in well-monitored North temperate and Arctic breeding populations (Fig. 2E and Fig. 2F). Thus the total nest predation was historically 35% ± 6% that increased to 64% ± 5% in recent years for these long-term monitored populations (Fig. 2F, table S4 and table S5).

Life-history theory predicts that species that breed close to the Equator should exhibit higher rates of nest predation than species breeding in temperate and polar latitudes, in part owing to the higher diversity of potential nest predators in the tropics, and there is an empirical support for this prediction (14, 15, 20, 21). In line with theoretical expectations, historic rates of nest predation in shorebirds follow the
parabolic relationship between both daily and total rates of nest predation and latitude (Fig. 3, fig. S3 and table S6).

However, in recent years, daily nest predation changed only modestly in the tropics and Southern hemisphere (Fig. 3 and fig. S3), although it increased nearly two-fold in the North temperate zone and three-fold in the Arctic compared with historic values (Fig. 2A, Fig. 3). Thus 70% of nests are now being depredated in the Arctic (Fig. 2B). As a consequence of latitude-dependent changes in nest predation, predation rates now increase from the equator to the Arctic, in contrast to the historic parabolic latitudinal pattern (Fig. 3, fig. S3 and table S6). Although data from Southern hemisphere are scanty, they suggest no major changes in nest predation in southern regions (Fig. 1).

It is thought that climate change has influenced trophic interactions (1, 6, 7, 12), therefore to investigate whether altered rates of nest predation are driven by climate, we calculated the changes in ambient temperature in each shorebird population and tested whether the temperature changes predict the shifts in nest predation at a global scale (19). We used two proxies of climate change: the slope of annual mean temperature regressed against time, and the standard deviation of annual mean temperatures measured over 30 years for each shorebird population. Higher rates of both daily and total nest predation were associated with increased ambient temperatures and temperature variations (Fig. 4). Importantly, these results are robust to the choice of climatic variables over periods of 20, 30 or 40 years (table S7).

Since predation is the most common cause of breeding failure (13, 14), our results imply declining reproductive success in a widely distributed avian taxon. This decline, unless compensated by higher juvenile or adult survival and/or increased production of clutches, will drive global population declines when recruitment is not sufficient to maintain existing population sizes (9, 10). However, adult survival of long-distance migrants are also decreasing due to recent habitat loss at staging areas (22, 23), and declining chick survival has been reported across Europe (24). Therefore, high latitude breeders are squeezed by both poor breeding performance and reduced adult survival. Whilst tropical shorebirds may
increase the number of breeding attempts and thus compensate for low breeding success, such compensation is limited at higher latitudes by short polar summers (6, 12). Since most shorebirds are already declining (18, 23, 25), our results suggest that an important correlate of this decline is the elevated nest predation.

Climate change may influence nest predation rates in several ways (1, 6, 12). First, lemmings (*Lemmus* spp., *Dicrostonyx* spp.), small rodents that represent the key component of the Arctic food web, have experienced a crash in their abundances and population cycling due to unsuitable snow cover resulting from ambient temperature increase and fluctuations (26–28). This change was documented over vast Arctic areas around the year 2000 (26–28), and the pattern was similar for temperate voles in Europe (*Microtus* spp., *Myodes* spp., 29, 30). Changes in rodent abundances may have led to alterations in predator-prey interactions in Northern hemisphere, where predators normally consuming mainly rodents increased predation pressure on alternative prey, including shorebird nests (12, 28). Second, the behavior and/or distribution of nest predators may have changed due to climate-change, for instance the distribution or densities of nest predators such as foxes (*Vulpes* spp.) may have increased, or their behavioral activity have changed making them more successful egg-consumers (4, 6, 12). Third, vegetation structure may have changed around shorebird nests leading to increased predation (6, 12, 25).

The demographic changes we report here have two major implications. First, migrating birds have been presumed to benefit from breeding in the Arctic as a consequence of lower predation pressure (31). Currently, however, the productivity of Arctic populations is declining due to high rates of nest predation, which suggests that energy demanding long-distance migration to northern breeding grounds is no longer advantageous from a nest predation perspective. Thus the Arctic now represents an extensive ecological trap (32) for migrating birds with a predicted negative impact on their global population dynamics.

Second, Arctic birds are likely to decline in the future due to the synergistic effects of the climatically-driven increase of predation pressure at their breeding grounds, a trophic mismatch during chick rearing
period due to delayed chick hatching relative to the peak of food abundance (6, 33), predicted shrinkage of suitable habitat (6, 12) and reduced adult survival during migration (22, 23). A future scientific challenge with crucial consequences for species conservation lies in disentangling the effects of these drivers on the overall viability of bird species.

We have demonstrated that rapid alterations in species interactions are occurring at a global scale and that these changes are related to altered climate. This underlines the need for understanding the effects of climate change not only for individuals and their populations, but also for interactions in complex ecosystems including prey and predators.
References and notes:

12. H. Meltofte et al., *Effects of Climate Variation on the Breeding Ecology of Arctic Shorebirds* –

19. Materials and methods are available as supplementary materials.

74. R Development Core Team, R: A language and environment for statistical computing (2017); http://www.r-project.org.

76. W. Jetz, G. H. Thomas, J. B. Joy, K. Hartmann, A. O. Mooers, The global diversity of birds in...
The page contains a list of references, each numbered and formatted in a citation style. The references are in the following fields:

- 82. T. Therneau, The lmekin function (2018); https://cran.r-project.org/web/packages/coxme/vignettes/lmekin.pdf.

96. D. B. Jackson, R. E. Green, The importance of the introduced hedgehog (*Erinaceus europaeus*) as

104. C. Bain, “Breeding wader habitats in a upland area of North Wales (Hiraethog)” (Sandy, 1987).

116. S. Kragten, G. R. De Snoo, Nest success of Lapwings *Vanellus vanellus* on organic and

131. Arctic Shorebird Demographics Network, Arctic Shorebird Demographics Network Data Archive (2016); https://www.aoncadis.org/dataset/ASDN.html.

149. T. Székely, I. Karsai, T. D. Williams, Determination of clutch-size in the Kentish Plover

150. L. Pietrelli, A. Tinelli, A. Cannavicci, M. Biondi, Breeding of some Charadriidae at Castelporziano
 and wire mesh predators enclosures management [in Italian with English summary]. Uccelli

151. A. Kosztolányi et al., Breeding ecology of Kentish Plover Charadrius alexandrinus in an

152. M. AlRashidi, A. Kozstolány, M. Shobrak, T. Székely, Breeding ecology of the Kentish Plover,
 Charadrius alexandrinus, in the Farasan Islands, Saudi Arabia. Zology Middle East 53, 15–24
 (2011).

 differs between monogamous and polygamous plovers. Behav. Ecol. Sociobiol. 69, 2035–2042

154. M. AlRashidi, Breeding biology of the Kentish Plover Charadrius alexandrinus in the Sabkhat Al-

 University, Logan, UT (1994).

156. J. R. Rupert, “The brood-rearing habitat, brood home range, and fecundity of the Snowy Plover
 (Charadrius alexandrinus) in coastal Southern Texas” thesis, The University of Texas-Pan
 American, Edinburg, TX (1997).

 thesis, San Jose State University, San Jose, CA (2003).

158. S. A. Demers, C. W. Robinson-Nilsen, Monitoring Western Snowy Plover nests with remote

Funding: We appreciate the following funding sources to V.K. (Charles University Grant Agency, GAUK 927516), M.Š. (Ministry of Education, Youth and Sports of the Czech Republic, Kontakt II LH
Author Contributions: V.K., T.S. and M.Š. conceived the study; V.K. collected the data with the help from P.T., M.Š., Z.V. and T.S.; V.K., T.S., M.Š. and R.F. developed the methods; V.K. and R.F. analysed the data with input from T.S., Z.V. and M.Š.; V.K. wrote the paper with inputs from all co-authors. Competing interests: The authors declare that they have no competing interests. Data and materials availability: Climatic data are freely available at http://www.cru.uea.ac.uk/data. Sources of primary nest predation data are presented in table S1. Data and R codes are available at Dryad at: http://xxxxxxx. – we will provide the Dyad number soon.

Supplementary materials:
Materials and Methods
Figures S1 to S3
Tables S1 to S8
References (34–217)
Fig. 1. Nest predation in shorebirds. (A and B) Historic rates of nest predation (1944–1999, 145 populations). (C and D) Recent rates of nest predation (2000–2016, 102 populations). (E and F) Changes between historic and recent nest predation rates. Dots show study locations. (A, C, and E) Daily nest predation (log transformed, see Materials and methods). (B, D and F) Total nest predation (percentage, see Materials and methods, and fig. S1 for geographic coverage).
Fig. 2. Temporal changes in nest predation of shorebirds. (A and B) Nest predation rates for five latitudinal areas (Arctic n = 86 populations, North temperate n = 96 populations, North tropics n = 17 populations, South tropics n = 14 populations, South temperate n = 24 populations), see (19) for areas definition and model description in table S2. (C and D) Nest predation rates for plovers and allies.
(Charadrii = 110 populations) and sandpipers and allies (Scolopaci = 127 populations), see (19) for clades definition and models description in table S3. (E and F) Local changes in nest predation rates for nine populations, each dot represents mean ± SEM (E) over 2–19 breeding seasons for historic data (blue) and recent data (red), latitude of the population is given next to the recent data, see table S4 and models description in table S5. (A–D) Generalized additive model fits with 95% confidence intervals. (A, C and E) Daily nest predation. (B, D and F) Total nest predation.
Fig. 3. Latitudinal gradient in historic versus recent nest predation of shorebirds. Daily (A) and total (B) nest predation rates (historic data 1944–1999, n = 145 populations; recent data 2000–2016, n = 102 populations), generalized additive model fits with 95% confidence intervals, see (19) for details and model descriptions in table S6.
Fig. 4. Climate change predicts nest predation rates in shorebirds. (A and B) Relationship between daily (A) or total (B) nest predation rates and the slope of mean year temperatures. (C and D) Relationship between daily (C) or total (D) nest predation rates and the standard deviation of mean year temperatures. (A–D) Climatic data over 30 years prior to the last year of data collection, n = 247 values, generalized additive model fits with 95% confidence intervals, see (19) for details and table S7 for model descriptions.