Beneficial Synergy of Adsorption-Intercalation-Conversion Mechanisms in Nb$_2$O$_5$@Nitrogen-Doped Carbon Frameworks for Promoted Removal of Metal Ions via Hybrid Capacitive Deionization

Guizhi Wang1, Tingting Yan1, Junjie Shen2, Jianping Zhang1, Liyi Shi2, and Dongsong Zhang*

Capacitive deionization (CDI) is an emerging water purification technology, but the ion adsorption capacity of traditional carbon-based CDI electrodes is still unsatisfactory. Herein, a novel faradaic electrode by anchoring Nb$_2$O$_5$ nanoparticles on the nitrogen-doped carbon frameworks as anodes and activated carbon (AC) as cathodes in a hybrid capacitive deionization (HCDI) system was originally developed to capture Na$^+$ ions via the adsorption-intercalation-conversion mechanisms. The synergetic effects of nanostructure and carbon coating were beneficial to enhancing electrical conductivity and offering fast Na$^+$ ions diffusion pathways. Impressively, the HCDI system demonstrated an excellent ion adsorption capacity of 35.4 mg g$^{-1}$ in a 500 mg L$^{-1}$ NaCl solution at 1.2 V as well as stable regeneration ability. In situ Raman and ex situ XPS measurements unraveled that the mechanism of ions removal from water was the reversible redox reaction of Nb$_2$O$_5$. The new overall understanding of synergetic effects opens opportunities for the design of HCDI systems for efficient removal of metal ions from saline water.

1 Introduction

In recent decades, the shortage of clean water has become a global issue as a consequence of population growth and climate change.1,3 Less than 3% of all water on earth is fresh water, and only 1.2% of all fresh water is surface water which can be directly utilized. With this limited amount usable fresh water, desalination of saline water and brackish water offers a promising solution to the supply of clean water.4,5 Traditional desalination methods have been examined to remove ions from seawater efficiently. Unfortunately, some of the methods suffer from various drawbacks including massive energy consumption, high cost and significant environmental impact.6,7 Therefore, it is imperative to develop cost-effective and eco-friendly desalination technologies as promising alternatives. Capacitive deionization (CDI) has gained increasing attention due to its unique advantages of low energy consumption, low cost, rapid regeneration, and environmentally harmless.8,9 When applying a low potential on the two electrodes, the ions in solution can be quickly adsorbed and harvested in the oppositely-charged electrodes. Thus, the clean water is obtained.10,11

The ion removal capacity of CDI is closely dependent on the electrode materials. Carbon-based materials, such as carbon aerogels, carbon nanotubes, activated carbon, mesoporous carbon, and reduced graphene, have been extensively explored as CDI electrode materials due to the advantages of high surface area, porous structure, and electrochemical stability.$^{12-15}$ Unfortunately, one of the major limitations of carbon-based materials is the unsatisfactory ion adsorption capacity.16,17 In carbon-based electrodes, the ions removed from solution are reserved on the carbon surface based on the electric double layer (EDL) theory, in which the removal capacity is mainly determined by the pores and surface area. In addition, the co-ions effect would restrain more ions from gathering and cause absorbed ions to easily return to the solution.18,19 To overcome the drawback, hybrid capacitive deionization (HCDI) has been developed. HCDI systems consist of one carbon electrode and one faradaic electrode.20,21 In general, anions (such as Cl$^-$_ ions) are electrostatic adsorbed on the carbon-based materials. But cations (such as Na$^+$ ions) are not only removed by surface adsorption, but also captured through a charge transfer reaction.22,23 Compared with those EDL-based electrodes, HCDI systems deliver higher ion removal capacity and faster ion removal rates.24,25 The selection of faradic materials for HCDI systems usually favored those with substantially improved energy storage domains.26,27 Back in
2012, Pasta et al. selected Na$_2$A$_{Mn_5}$O$_{10}$ and Ag as the electrodes and obtained good desalination performance. After that, a series of faradic electrode materials, such as MnO$_2$, TiO$_2$, SnS$_2$, MoS$_2$, Na$_4$Ti$_9$O$_{20}$, Na$_2$Ti$_2$(PO$_4$)$_3$, and Prussian blue, have been developed and proved to gain excellent ion removal capacities. Wang et al. used the hollow carbon@MnO$_2$ to capture Na$^+$ ions through redox reaction and obtained a high removal capacity of 30.7 mg g$^{-1}$. Our former work synthesized MoS$_2$−graphene materials to reserve/convert Na$^+$ ions via faradaic reaction. The obtained electrodes demonstrated a high volumetric adsorption capacity of 14.3 mg cm$^{-3}$ in a 500 mg L$^{-1}$ NaCl solution at 1.2 V.

Orthorhombic Nb$_2$O$_5$ (T-Nb$_2$O$_5$), as a representative Na$^+$ ions capture material with intercalation-conversion type, is a promising candidate HCDI electrode due to the intrinsic structural advantage. The (001) planes of Nb$_2$O$_5$ has a larger interplanar spacing (3.9 Å) than the size of Na$^+$ ions (2.04 Å), which may be suitable for Na$^+$ ions diffusion. Unfortunately, the low electrical conductivity ($\approx 3 \times 10^{-6}$ S cm$^{-1}$) and the sluggish diffusion of Na$^+$ ions from aggregation tendency may hinder the further application of Nb$_2$O$_5$. Two effective methods can be adopted to enhance the electrical conductivity and decrease the diffusion length for electrons/ions: (1) nanostructure engineering can turn the materials into low dimensions, which offers shorter pathways and faster Na$^+$ ions diffusion; (2) composite with carbon can stabilize the materials and form an interconnected network for fast transport of electron and Na$^+$ ions. Throughout all sorts of carbon-based supports, graphene gains much attention due to large surface area, good chemical/physical stability, and superb electrical conductivity. Moreover, the heteroatoms (such as nitrogen) doped in the carbon skeleton could boost electrical conductivity, introduce more defects, and improve hydrophilicity. Graphitic carbon nitride (g-C$_3$N$_4$), as a suitable nitrogen precursor, has a relatively high nitrogen content of 57% and sp2 hybridized carbon structure. The high level of pyridine type nitrogen can offer abundant lone electron pairs to capture Nb atoms as benign ligands. Methylimidazole, as another benign N ligand, can coordinate with Nb and prohibit the large aggregation of Nb$_2$O$_5$ nanocrystals during the heating process at elevated temperature.

Herein, we originally designed Nb$_2$O$_5$ anchored on nitrogen-doped carbon frameworks (denoted as Nb$_2$O$_5$@N-C) via simple assembly and pyrolysis as anodes and activated carbon (AC) as cathodes. The obtained Nb$_2$O$_5$@N-C had uniform Nb$_2$O$_5$ nanoparticles tightly anchored on the graphene networks. The N-doping improved the electrical conductivity and produced localized highly-reactive regions. Benefiting from the synergetic effects of structure optimization (nanostructure) and surface engineering (nitrogen-doped carbon coating), the Nb$_2$O$_5$@N-C electrode demonstrated superior CDI performance in terms of ion adsorption capacity and ion adsorption rates. Furthermore, in situ Raman and ex situ XPS analysis were conducted to verify the adsorption-intercalation-conversion mechanism of ion removal from water during the CDI process.

2 Materials and methods
First of all, graphene oxide (GO) was prepared by a modified Hummer’s method, and C6N4 was obtained by a thermal decomposition/polymerization process. Specifically, 0.02 g of GO and 0.1 g of C6N4 were mixed in 50 mL of methanol after ultrasonic treatment for 1 h. Next, 0.11 g of NbC3 was added into the mixture after ultrasonic treatment for 0.5 h to form solution Alpha. Meanwhile, 0.17 g of 2-Methylimidazole (2-MeIM) was dispersed in 30 mL of methanol after ultrasonic treatment for 0.5 h to form solution Beta. Then, solution Beta was dropwise added into solution Alpha with stirring, and the mixed solution was left at room temperature for 12 h. The Nb/2MeIM/g-C6N4/GO precursors were gained by centrifugation with methanol and drying at 60 °C for 12 h. After that, the dried material was calcined at 800 °C (3 °C/min) for 2 h under an N2 condition to obtain NbO2@N-C-1 (NbC3 and 2-MeIM with mole ratio of 1:1) composite. Simultaneously, NbO2@N-C-2 (0.11 g of NbC3 and 0.085 g of 2-MeIM with mole ratio of 2:1), NbO2@N-C-0.5 (0.11 g of NbCl5 and 0.34 g of 2-MeIM with mole ratio of 1:2), NbO2 (only utilization of NbC3) and N-C (without utilization of NbCl5) were synthesized through similar procedure.

3 Results and discussion
3.1 Characteristics Analysis
These NbO2@N-C composites were synthesized via an assembly approach followed by a pyrolysis method at 800 °C under a N2 condition, as shown in Figure 1. In the assembly process, Nb5+ ions were readily adsorbed on the surface of the negative charged GO/g-C6N4 complex and further coordinated with 2-Methylimidazole (2-MeIM) to form the Nb/2MeIM/g-C6N4/GO precursors (Figure S1a, b). After the pyrolysis treatment, the NbO2@N-C composites were successfully prepared. The morphology and microstructure of the obtained samples were observed and verified by SEM and TEM (Figure S2). These electron microscopes images revealed that NbO2 nanoparticles with an average size of around 50 nm (Figure S2c, S2f, and S2i) were tightly anchored on the nitrogen-doped graphene sheets. Besides, the density of NbO2 nanocrystals increased with the improvement of Nb5+ utilization, from Nb2O5@N-C-0.5 (Figure S2a, b), Nb2O5@N-C-1 (Figure S2d, e) to Nb2O5@N-C-2 (Figure S2g, h). The contact between Nb2O5 nanoparticles and graphene network (Figure 2a) could supply numerous pathways for ion diffusion and electron transfer, which would improve the electrochemical performance. The HRTEM image of Nb2O5@N-C-1 (Figure 2b) displayed lattice fringes with a spacing of 0.393 nm, which were well attached to the (001) planes of the orthorhombic Nb2O5 phase. In Figure S3, prominent diffraction rings were observed in the selected area electron diffraction (SAED) patterns, which confirmed the existence of (001), (180), and (200) planes of the orthorhombic Nb2O5 phase. Furthermore, the relevant elemental mapping images of Nb2O5@N-C-1 demonstrated uniform distributions of C, N, O, and Nb elements over the selected area, which proved that the Nb2O5 nanoparticles were homogeneously anchored on the nitrogen-doped graphene networks (Figure S4).

The formation and crystalline structure of the Nb2O5 nanocrystals in these Nb2O5@N-C composites were verified by the XRD analysis, as shown in Figure 2c and Figure S5. These characteristic diffraction peaks located at 22.6°, 25.7°, 28.4°, 28.9°, 36.6°, 37.0°, 46.2°, 50.9°, and 54.9°, could be appropriately indexed to (001), (041), (180), (200), (181), (201), (002), (331), and (371) planes of the orthorhombic Nb2O5 phase (PDF#30-0873). To figure out the composition and structural properties of the correlative carbon supports, Raman analysis of the obtained samples was conducted (Figure 2d). Two typical carbon-based characteristic peaks of disordered carbon (D band) and sp2 bonded ordered graphitic carbon (G band) were observed at around 1350 and 1599 cm⁻¹. The value of I_D/I_G was normally related to the degree of structural disorder and the number of defects. The I_D/I_G values of Nb2O5@N-C-0.5, Nb2O5@N-C-1, and Nb2O5@N-C-2 were 1.19, 1.16, and 1.11, revealing the abundant vacancies and defects. Moreover, the degree of disorder decreased with the increase of metal contents. Besides, the three small peaks at 121, 248, and 660 cm⁻¹ were the characteristic bands of Nb2O5, which corresponded to the vibrations of octahedrons, the bending vibration of Nb-O bond, and the stretching vibration of Nb-O bond, respectively. The pore structure characteristics of Nb2O5@N-C composites were obtained by N2 adsorption/desorption measurements. Both the BET specific surface area and pore volume decreased as the amount of NbO2 in the composite increased (Table S1). Nb2O5@N-C-0.5 gained the largest BET specific surface area of 78.6 m² g⁻¹, in comparison of Nb2O5@N-C-1 of 34.1 m² g⁻¹ and Nb2O5@N-C-2 of 29.5 m² g⁻¹ (Figure S5a). Moreover, the pore size distribution plots indicated the mesoporous structures of the three samples, which could supply abundant diffusion channels for ions transportation. Specifically, Nb2O5@N-C-1 showed a similar pore size and volume distribution compared to Nb2O5@N-C-0.5, much higher and richer than Nb2O5@N-C-2 in the range of 2-10 nm (Figure S5b). To further investigate the surface chemical elements and bonding states of the Nb2O5@N-C composites, XPS analysis was conducted, as shown in Figure S7. The Nb 3d, C 1s, N 1s, and O 1s signals
were obviously seen in the full-scan spectra of Nb$_2$O$_5$@N-C-0.5, Nb$_2$O$_5$@N-C-1, and Nb$_2$O$_5$@N-C-2, proving the successful integration of Nb$_2$O$_5$ in the structure of carbon frameworks. Moreover, the formation of C-N bond (Figure S8) confirmed the insertion of N atoms into the carbon plane. The N 1s peak consisted of four types of N, namely pyridinic N, pyrrolic N, graphitic N, and oxide N (Figure S9). The Nb-O bond (Figure S10) verified the presence of Nb$_2$O$_5$. The atomic percentage of Nb element (Table S2) increased from Nb$_2$O$_5$@N-C-0.5 to Nb$_2$O$_5$@N-C-2, which was consistent with the Nb precursors utilization in the synthesis process. Since the electrochemical properties and CDI performance were tested in NaCl aqueous solution, the hydrophilicity of the electrode materials was also a vital indicator. We evaluated the hydrophilicity by dynamic water contact angle test (Figure S1). The results showed that Nb$_2$O$_5$@N-C-1 had a smaller contact angle (74.29°) than Nb$_2$O$_5$@N-C-0.5 (75.42°) and Nb$_2$O$_5$@N-C-2 (84.14°). The good hydrophilicity of Nb$_2$O$_5$@N-C-1 was due to the porous structure and abundant N content within the carbon frameworks.

3.2 Electrochemical Performance

The electrochemical performance of Nb$_2$O$_5$@N-C composites was firstly evaluated by cyclic voltammetry (CV). The CV plots were obtained at scan rates ranging from 1 to 100 mV s$^{-1}$ (Figure S12a-c). For every composite, the integrated area of CV curve was gradually enlarged with the increase of scan rates. At the same scan rate, the Nb$_2$O$_5$@N-C-1 curve had the largest integrated area, followed by the Nb$_2$O$_5$@N-C-0.5 and Nb$_2$O$_5$@N-C-2 curves. As a result, the Nb$_2$O$_5$@N-C-1 possessed the highest specific capacitance among these composites at any scan rate (Figure S12d). To gain a deeper insight into the charge transfer mechanisms in Nb$_2$O$_5$@N-C-1, we quantitatively divided the contributions of capacitive and diffusion-controlled effects from CV plots by using a slower scan rate of 0.1 mV s$^{-1}$. In Figure 3a, a redox peak appeared at around -0.13 V, demonstrating a faradic reaction of Na$^+$ ions inserting into the Nb$_2$O$_5$@N-C-1 electrode. Therefore, the Na$^+$ ions are removed by the synergetic effects of electro-adsorption of the nitrogen-doped carbon frameworks and faradic reaction of Nb$_2$O$_5$ (Figure S13). The surface capacitive (shade areas) and diffusion-controlled contributions of Nb$_2$O$_5$@N-C-1 at 0.1 mV s$^{-1}$ were 64.3% and 35.7%, respectively.$^{37, 40}$ The results confirmed that Nb$_2$O$_5$ played a leading role in capturing Na$^+$ ions. Figure S14a-c indicated the galvanostatic charge-discharge (GCD) plots of Nb$_2$O$_5$@N-C-0.5, Nb$_2$O$_5$@N-C-1, and Nb$_2$O$_5$@N-C-2 at a current density of 0.2, 0.4, 0.6, 0.8, 1.0 and 1.2 A g$^{-1}$. The GCD plots demonstrated analogous symmetric triangular shapes, exhibiting benign electrochemical reversibility. Besides, when the current density was raised from 0.2 to 1.2 A g$^{-1}$, the Nb$_2$O$_5$@N-C-1 electrode showed the longest discharge time, which manifested the largest capacitance in accordance with the CV results. Additionally, Nb$_2$O$_5$@N-C-1 showed a lower potential drop (ir) than other materials at the initial discharge process (Figure S14d), suggesting a better electrical resistance. Cycling stability was another vital parameter for electrode materials. In Figure 3b, the GCD plots maintained the original shape after 10000 cycles at 10 A g$^{-1}$, manifesting an outstanding cycle-to-cycle durability. The superior electrochemical property of Nb$_2$O$_5$@N-C-1 was further demonstrated by electrochemical impedance spectroscopy (EIS), as shown in Figure 3c. The Nyquist plots consisted of a semicircle in the medium frequency region corresponding to charge-transfer resistance (R_{ct}), and a straight segment in the low frequency region corresponding to Warburg diffusion impedance (W). An equivalent circuit (inset of Figure 3c) was employed to simulate these EIS curves, in which R_{ct} and CPE$_{ct}$ represented solution resistance and constant phase part, respectively.40 Nb$_2$O$_5$@N-C-1 demonstrated the smallest semicircle among the three electrodes, indicating the lowest charge-transfer impedance. According to the fitting results (Table S3), the R_{ct} values were 14.66, 18.52, and 23.94 Ω for Nb$_2$O$_5$@N-C-1, Nb$_2$O$_5$@N-C-0.5, and Nb$_2$O$_5$@N-C-2, respectively. Furthermore, the diffusion coefficient (D_{Na^+}) of Nb$_2$O$_5$@N-C-1 was 4.18×10^{-15} cm2 s$^{-1}$, much larger than those of Nb$_2$O$_5$@N-C-0.5 (2.49×10^{-15} cm2 s$^{-1}$) and Nb$_2$O$_5$@N-C-2 (2.27×10^{-15} cm2 s$^{-1}$), indicating an enhanced Na$^+$ ions diffusion and adsorption (Figure 3d). Therefore, the excellent electrochemical properties may endow Nb$_2$O$_5$@N-C-1 with good CDI performance.

3.3 Capacitive Deionization of Water

The batch-mode CDI experiments were conducted to evaluate the removal capacity of the electrode pairs. In Figure 4a, the deionization behaviors of Nb$_2$O$_5$@AC, Nb$_2$O$_5$@N-C-0.5//AC, Nb$_2$O$_5$@N-C-1//AC and Nb$_2$O$_5$@N-C-2//AC were analyzed in a 500 mg L$^{-1}$ NaCl solution at 1.2 V. It was observed that the ion adsorption capacity (IAC) increased quickly at first and then the trend is gradually slowdown within the required time. The Na$^+$ ions were removed through electro-adsorption
and electrochemical reactions with Nb\textsubscript{2}O\textsubscript{5}@N-C, while the negatively charged Cl- ions were electrically-adsorbed by the AC electrode. After 120 min, the IAC of Nb\textsubscript{2}O\textsubscript{5}@N-C-1/AC reached 35.4 mg g-1, much higher than those of Nb\textsubscript{2}O\textsubscript{5}@N-C-0.5/AC, Nb\textsubscript{2}O\textsubscript{5}@N-C-2/AC, and Nb\textsubscript{2}O\textsubscript{5}/AC which were 29.2 mg g-1, 19.4 mg g-1, and 10.4 mg g-1, respectively. The result confirmed that the combinations of Nb\textsubscript{2}O\textsubscript{5} composite with nitrogen-doped carbon framework can enhance the removal capacity of pure metal oxides. In addition to IAC, the ion adsorption rate (IAR) is another key indicator of the CDI performance. Figure 4b showed the Ragone plots of IAR vs. IAC of the four electrodes. IAR was located at a high level firstly and moved downwards with the increase of IAC. The Ragone plot of Nb\textsubscript{2}O\textsubscript{5}@N-C-1/AC was located at the top right corner, suggesting that Nb\textsubscript{2}O\textsubscript{5}@N-C-1/AC had the fastest ion adsorption rate as well as the highest removal capacity among the four electrode materials. Additionally, to demonstrate the advantages of Nb\textsubscript{2}O\textsubscript{5}@N-C-1/AC over simple carbon substrate and the advantages of nitrogen-doped carbon framework over commercial AC, the desalination behavior of Nb\textsubscript{2}O\textsubscript{5}@N-C-1//AC along with N-C//AC and AC//AC were tested in a 500 mg L-1 NaCl solution at 1.2 V. Unsurprisingly, the Nb\textsubscript{2}O\textsubscript{5}@N-C-1//AC composites exhibited the largest IAC and the quickest IAR (Figure S15). The outstanding performance of Nb\textsubscript{2}O\textsubscript{5}@N-C-1//AC was further confirmed in Figure S16 where Nb\textsubscript{2}O\textsubscript{5}@N-C-1//AC exhibited the greatest concentration reduction (CR) (0.88 mM) and the fastest average ion adsorption rate (AIAR) (0.50 mg g-1 min-1) among all the electrode materials. The charge utilization and energy loss in the CDI process could be measured by charge efficiency. The charge efficiencies of Nb\textsubscript{2}O\textsubscript{5}@N-C-0.5//AC, Nb\textsubscript{2}O\textsubscript{5}@N-C-1//AC, Nb\textsubscript{2}O\textsubscript{5}@N-C-2//AC, and Nb\textsubscript{2}O\textsubscript{5}/AC were calculated using the current transient curves in a 500 mg L-1 NaCl solution at 1.2 V. As shown in Figure 4c, Nb\textsubscript{2}O\textsubscript{5}@N-C-1//AC had a higher charge efficiency (0.70) than Nb\textsubscript{2}O\textsubscript{5}@N-C-0.5//AC (0.58), Nb\textsubscript{2}O\textsubscript{5}@N-C-2//AC (0.46) and Nb\textsubscript{2}O\textsubscript{5}/AC (0.31). A series of trade-off curves between the inverse of specific energy consumption (SEC-1) and IAR were also recorded in a 500 mg L-1 NaCl solution at 1.2 V. In Figure 4d, the trade-off curve of Nb\textsubscript{2}O\textsubscript{5}@N-C-1//AC was always above the curves of Nb\textsubscript{2}O\textsubscript{5}@N-C-0.5//AC, Nb\textsubscript{2}O\textsubscript{5}@N-C-2//AC, and Nb\textsubscript{2}O\textsubscript{5}/AC. This means Nb\textsubscript{2}O\textsubscript{5}@N-C-1//AC reached the fastest IAR in the same SEC-1 compared with other electrodes, demonstrating the most efficient energy utilization. The synergetic effects of electro-adsorption of nitrogen-doped carbon framework and faradaic reaction of Nb\textsubscript{2}O\textsubscript{5} facilitated ion diffusion and ions adsorption. The deionization property of Nb\textsubscript{2}O\textsubscript{5}@N-C-1//AC was further analyzed at various initial concentrations of NaCl solution and different applied voltages. In Figure 4e, it was clear that the IAC of Nb\textsubscript{2}O\textsubscript{5}@N-C-1//AC increased from 18.1, 27.4, to 35.4 mg g-1 as the NaCl concentrations increased from 100, 300, to 500 mg L-1 at 1.2 V. In general, a higher NaCl concentration reduced the ionic resistance and facilitated fast ion adsorption. Compared with other reported metal-based electrode materials (Table S4), Nb\textsubscript{2}O\textsubscript{5}@N-C-1 exhibited excellent deionization behavior with high ion adsorption capacity. Moreover, the Ragone plot moved to the top right with the increase of NaCl concentration, verifying a faster IAR and a higher IAC in a 500 mg L-1 solution (Figure S17a). Figure 4f presented the IAC of Nb\textsubscript{2}O\textsubscript{5}@N-C-1//AC at distinct applied voltages of 0.8, 1.0, and 1.2 V. The change of voltages was consistent with the change of NaCl concentrations. Notably, IAC increased from 4.9, 19.1, to 35.4 mg g-1 when the voltage was raised from 0.8, 1.0, to 1.2 V. The Ragone plots (Figure S17b) also showed a faster IAR and a higher IAC at a higher voltage. The enhanced deionization performance was due to the stronger electrostatic force at a higher applied voltage. The comparison between CR and AIAR in different combinations of NaCl concentration and voltage also showed that the best performance was achieved when the initial NaCl concentration was 500 mg L-1 and the applied voltage was 1.2 V (Figure S18). The regeneration ability was crucial to justifying a deionization material for further applications. The continuous cyclic adsorption-desorption experiments of Nb\textsubscript{2}O\textsubscript{5}@N-C-1//AC were conducted in a 100 mg L-1 NaCl solution (Figure S19). The adsorption process was started by applying a 1.2 V voltage, and the subsequent desorption process was realized by short circuiting at 0 V. In every cycle, the electrical conductivity dropped to a low level during the adsorption process and recovered to the initial level.
3.4 Mechanisms of Ions Removal

The mechanisms of ions removal from water were investigated by in situ Raman characterization. Figure 5a recorded the in-situ Raman spectra when the CV plots (scan rate of 0.1 mV s⁻¹) reached to different stages of ion adsorption and desorption (Figure S21). During the ion adsorption process from 0.5 to -0.5 V, the evolution of each band could be summarized as follows. (1) the V_Hi band kept nearly constant from 0.5 to 0.1 V. When the potential decreased to -0.1 V, the V_Hi band demonstrated a red shift and the relative intensity increased, which was consistent with the CV curves in which a prominent cathodic peak appeared at this range. (2) the V_Mid band presented a similar trend with the V_Hi band. No noticeable change was observed from 0.5 to 0.1 V. After that, the V_Mid band split into two small bands from -0.1 to -0.5 V. (3) the V_Lo band, after being static at the range from 0.5 to 0.1 V, demonstrated an increased relative intensity from -0.1 V. In contrast, the evolution of the three bands in Na⁺ ions deintercalation process was the exact opposite of the above-mentioned Na⁺ ions intercalation. Specifically, during the ion desorption process from -0.5 to 0.5 V, the V_Hi band was blue-shifted with a reduced intensity; the V_Mid bands merged into one band; and the V_Lo band also decreased in intensity. The opposite evolutions of these Raman band groups of Nb₂O₅ verified the reversible structural conversion via Na⁺ ions intercalation/deintercalation.³¹, ⁵² Moreover, ex situ XPS analysis was used to observe the valence changes in Nb element during the ion adsorption and ion desorption process. As shown in Figure S22, there was a clear blue shift from the pristine state to the adsorption state and the subsequent red shift from the adsorption state to the desorption state. The reversible shift of Nb 3dₓᵧ and Nb 3d₉/₂ revealed that the valence changes of Nb had a strong correlation with the Na⁺ ions conversion process. The Nb 3d XPS spectra of the three states were divided into individual peaks to provide more information about the removal mechanisms (Figure 5b). At the pristine state, Nb⁵⁺ played a significant role while Nb⁴⁺ was in the minority. After that, the majority of Nb⁵⁺ were reduced into Nb⁴⁺ when the electrode adsorbed sufficient Na⁺ ions.

4 Conclusions

In summary, the exceptional CDI performance of Nb₂O₅@N-C-1 could be explained by the synergetic effects of electro-adsorption of nitrogen-doped carbon framework and faradaic reaction of Nb₂O₅. GO, g-C₃N₄ and 2-MeIM derived nitrogen-

Please do not adjust margins

Figure 5. (a) In-situ Raman tests of Na⁺ ions adsorption/desorption behavior in Nb₂O₅@N-C-1. (b) The corresponding valence change of Nb during the pristine, adsorption, and desorption process, and (c) Schematic illustration of ions removal mechanisms in Nb₂O₅@N-C-1.
cycling stability. Besides, the introduction of N-C enhanced the electrical conductivity of Nb$_2$O$_5$ and realized a better Na$^+$ ions diffusion. Nb$_2$O$_5$ in-situ growth on the N-C framework increased the ion diffusion channels and facilitated the fast transport of Na$^+$ ion. Owing to the combination of electro-adsorption/desorption mechanism of N-C and insertion/extraction process of Nb$_2$O$_5$, the Nb$_2$O$_5$@N-C-1 electrode displayed an excellent ion removal capacity. Inspiredly, the novel HCDI system equipped with Nb$_2$O$_5$@N-C-1//AC exhibited superb IAC (35.4 mg g$^{-1}$ in a 500 mg L$^{-1}$ NaCl solution at 1.2 V), fast IAR, high charge efficiency, low energy loss, and good regeneration ability. In situ Raman and ex situ XPS analysis verified that the mechanisms of ions removal were reversible intercalation and faradaic reaction of Nb$_2$O$_5$. This work presents a new strategy to design highly efficient HCDI systems for water purification.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of China (21906101; 21722704) and the Science and Technology Commission of Shanghai Municipality (19DZ2293100; 18DZ2281400).

Notes and references

23. Y. Zhao, B. Liang, X. Wei, K. Li, C. Lv and Y. Zhao, A core-shell heterostructured CuFe$_{0.5}$NiFe$_{0.5}$ Prussian blue analogue as a novel electrode material for high-capacity and stable capacitive deionization, J. Mater. Chem. A, 2019, 7, 10464-10474.
25. Z. Yue, T. Gao and H. Li, Robust synthesis of carbon@Na$_3$Ti$_5$O$_9$ core-shell nanotubes for hybrid capacitive deionization with enhanced performance, Desalination, 2019, 449, 69-77.
45. R. Wang, T. Yan, L. Han, G. Chen, H. Li, J. Zhang, L. Shi and D. Zhang, Tuning the dimensions and structures of nitrogen-doped carbon nanomaterials derived from sacrificial g-C3N4/metal-organic frameworks for enhanced electrocatalytic oxygen reduction, J. Mater. Chem. A, 2018, 6, 5752-5761.
48. X. Jiao, Q. Hao, X. Xia, Z. Wu and W. Lei, Metal organic framework derived Nb2O5@C nanoparticles grown on reduced graphene oxide for high-energy lithium ion capacitors, Chem. Commun., 2019, 55, 2692-2695.