Parental cooperation in an extreme hot environment:

natural behaviour and experimental evidence

Monif AlRashidi a,1, András Kosztolányi b,2, Mohammed Shobrak c,3, Clemens Küpper d,4 and Tamás Székely a,5,*

a Department of Biology and Biochemistry, University of Bath

b Department of Ethology, Eötvös Loránd University

c Department of Biology, Taif University

d Department of Organismic and Evolutionary Biology, Harvard University

* Correspondence: T. Székely, Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.

E-mail address: T.Szekely@bath.ac.uk

1 Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK and Department of Biology, College of Science, University of Hail, P. O. 2440, Hail, Saudi Arabia.

2 Department of Ethology, Eötvös Loránd University, Budapest, Pázmány Péter sétány 1/c. H-1117, Hungary.

3 Department of Biology, College of Science, Taif University, P. O. 888, Taif, Saudi Arabia.

4 Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St, Cambridge, MA 02138, USA.

5 Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.

Word count: 4625 words (text, including title and abstract)

Keywords: parental care, incubation, harsh environment, Kentish plover, Charadrius alexandrinus
One of the most apparent examples of cooperation between unrelated individuals is biparental care whereby the male and the female parent share the rearing of the offspring. Theoretical models of care predict that selection should favour biparental care if it substantially improves the survival of the offspring. Although various ecological factors have been proposed to necessitate biparental care, experimental evidence is scant given the challenges of manipulating ecological factors in the natural habitat of animals. We carried out one such experiment in a small shorebird, the Kentish plover *Charadrius alexandrinus*, that breeds in an extreme desert environment. Nest cover and thus exposure to solar radiation vary between nests, and we show that parents at exposed nests spend more time incubating than those at nests shaded by a bush (covered nests). Experimental removal and supplementation of nest cover gave results consistent with the observational data; at experimentally exposed nests both males and females increased incubation effort and they changed over incubation more frequently, whereas at experimentally covered nests we observed the opposite. We conclude that exposure to extreme solar radiation influences biparental care and necessitate parental cooperation in the Kentish plover. Furthermore, since parental care often co-evolves with mating strategies, we conjecture that where the environment puts less pressure on the parents and provides the opportunity for reduced care, both mating systems and parental care can diversify over evolutionary time.
Biparental care, i.e., provisioning of the young by both the male and female parents, is a prominent example of cooperation and conflict in social behaviour of animals and humans (Alexander 1974; Maynard Smith 1982; McNamara and Weissing 2010). By cooperating, the parents improve the survival of their offspring, whereas by withholding care they may preserve their resources to survive and breed later in life (Trivers 1972; Houston et al. 2005; Kvarnemo 2010). Animals have adopted various solutions to balance the conflict and cooperation, as evidenced by the diverse parental behaviours exhibited by a variety of insects, fishes, frogs, birds and mammals (Clutton-Brock 1991; Duellman 1992; Tallamy 2001; Reynolds et al. 2002; McGraw et al. 2010). Theoretical models of parental care consistently predict that if care by two parents improves the survival of the young substantially more than by a single parent, biparental care is expected (reviewed by Clutton-Brock 1991; Székely et al. 1996; Houston et al. 2005; Kvarnemo 2010), assuming phylogenetically and physiologically flexible behaviours.

The ecological and social factors influencing the evolution of parental care have been the subject of contention for decades (Trivers 1972; Wilson 1975; Maynard Smith 1982), and debates concerning this issue continue (Kvarnemo 2010; Jennions & Kokko 2010; McGraw et al. 2010). One long-standing hypothesis posits that parents should jointly rear their young (biparental care, a form of parental cooperation defined here as behavioural actions by a male and a female that target improving offspring survival) in an environment that is hostile for the developing young (Lack 1968; Wilson 1975; Jones et al. 2002; Carey 2002). Extreme weather conditions, food scarcity, intense competition between neighbours, desiccation of eggs and high predation of the offspring may select for enhanced biparental care (Wynne-Edwards 1998; Amat et al. 1999; Kosztolányi et al. 2006; Tieleman et al. 2008; Brown et al. 2010).

Testing the harsh environment hypothesis, however, is challenging for two reasons. First, it has proven difficult to identify specific ecological factors that select for biparental care in natural populations. Ecological factors tend to act in concert, and teasing apart which are the key elements require long-term data on both ecology and parental behaviour. Second, experimentally altering the hypothesized component of the environment to induce changes in parental behaviour is often
extremely difficult, and previous studies were therefore observational or carried out in the laboratory, except a recent study by Brown et al. (2010) that used a combination of phylogenetic analyses and field experiments in tropical frogs to test whether biparental care is influenced by pool size of the developing tadpoles.

Here we test the harsh environment hypothesis by experimentally manipulating nest cover in a small ground-nesting shorebird, the Kentish plover Charadrius alexandrinus. Nest environment has been experimentally investigated previously (Martin & Ghalambor 1999; Reid et al. 2000; Cresswell et al. 2004; Amat & Masero 2004a; Kim & Monaghan 2005; D’Alba et al. 2009), although our experiment is novel because we are focusing on the behaviour of both parents and thus are interested in cooperation behaviour, whereas the aforementioned experiments investigated the responses of a single parent, usually the female, since only one parent incubates or the authors were not able to distinguish the sexes. The distinction between single-parent and biparental systems is important, because the theoretical frameworks for the responses are fundamentally different; game-theoretic versus non-game-theoretic approach. Furthermore, experimental studies showed that the joint response of both parents is often different from individual responses; for instance handicapping one parent in biparental species found diverse joint responses by the pair, since the manipulated parent’s mate reduced, increased or maintained their level of care (Harrison et al. 2009).

The Kentish plover is an ideal species to test the harsh environment hypothesis, since it breeds in deserts where ground temperatures may exceed 60 °C (Amat & Masero 2004a; AlRashidi et al. 2010). Both parents incubate the eggs, although incubation behaviour varies between populations (Vincze, O., C. Küpper, A. Kosztolányi, M. AlRashidi & T. Székely unpublished data). The parents exhibit flexible behaviour: they carefully adjust their own incubation in response to their mate’s behaviour (Kosztolányi et al. 2009). The eggs are laid on the ground, so both the eggs and the incubating adults are directly exposed to the ambient environment. Finally, some nests are under bushes and thus the eggs are protected from direct solar radiation, whereas others are in the open and thus fully exposed to it. This behavioural flexibility and natural variation in nest sites provide excellent opportunities to test the responses of parents to experimental manipulation of the ambient...
environment. Due to its amenability to experimental manipulations and its wide geographic range, the Kentish plover is becoming an avian model species to understand conflict and cooperation in the context of breeding system evolution (Lessells 1984; Amat & Masero 2004a; Kosztolányi et al. 2006; Székely et al. 2007; AlRashidi et al. 2010). Males tend to incubate during the night whereas females do most of the daylight incubation (Fraga & Amat 1996; Kosztolányi & Székely 2002), however, there is substantial variation in incubation behaviour between populations especially at midday (Amat & Masero 2004a, AlRashidi et al. 2010). Some of this variation appears to be related ambient temperature since in hot locations the nests are almost constantly covered in mid-day (AlRashidi et al. 2010), and the parents appear to struggle incubating long stints presumably due to the risk of overheating (Amat & Masero 2004b).

The current study has two objectives. First, we compared the level of biparental care between naturally exposed and covered nests. We predicted that parents nesting at exposed sites will exhibit more biparental care. In addition, they will have more frequent nest changeovers especially during the hottest part of the day (AlRashidi et al. 2010). Second, we manipulated the environment of the nests by either covering or exposing them. We predicted that at experimentally exposed nests the parents will increase their incubation effort and make more frequent nest changeovers, whereas at experimentally covered nests we expected the opposite.

METHODS

Study Site and General Field Procedures

Fieldwork was carried out in two years (17 April - 4 July 2008, 15 May – 4 July 2009) in Farasan Island in the Red Sea (Kingdom of Saudi Arabia, 16° 48’ N 41° 53’ E) over a period that coincided with peak breeding activity of Kentish plovers. Farasan Island has a subtropical desert climate and the average annual precipitation is less than 50 mm (NCWCD 2000). Halophytic plants (Halopeplis perfoliata, Zygophyllum album, Zygophyllum coccineum, Zygophyllum simplex,
Limonium axillare, Suaeda monoica) cover large areas of salt marsh and sand dunes, providing
nesting sites for plovers (NCWCD 2000).

Kentish plovers breed up to 1 km away from the seashore. For each nest we recorded clutch
size, photographed the nest and determined its geographic (UTM) coordinates using a hand held GPS
unit. Nests were allocated to five categories: exposed nests that had no vegetation cover (0), < 25%
cover (1), 25-50% cover (2), 51-75% cover (3) and >75% cover (4). We checked the repeatability of
nest cover classification (Harper 1994): one observer (MAR) scored cover in the field and took
photographs, and two observers (AK, CK) re-scored these photographs twice blindly to nest ID. Nest-
cover scores were highly repeatable between the three observers \(r = 0.939, F_{31,64} = 47.837, P < 0.001 \).

Date of egg-laying was estimated by floating the eggs in lukewarm water (Székely et al. 2008). The
sea was the only water source for the birds, and UTM coordinates were used to estimate the
perpendicular distance between the nest and the nearest coastline.

Recording Incubation Behaviour and Ambient Temperature

Both parents were captured on the nest on the same day or on subsequent days using funnel
traps, and they were marked with 1-3 colour rings and one metal ring provided by Saudi Wildlife
Commission. All breeding birds were individually ringed, no individual was included more than once
in the two-year data set. Adults have sexually dimorphic plumage (Fig 1): males have black eye-
stripes, frontal bars and breast-bands, whereas females are drab (Cramp & Simmons 1983). Behaviour
was only recorded at nests category 0 (which we shall term ‘exposed nests’), or at 3 and 4 (‘covered
nests’). Incubation data were collected at 32 nests (17 and 15 covered and exposed nests,
respectively).

Incubation was recorded by either a Trovan Flex™ Transponder, LID665 decoder (Dorset
identification B.V., Aalten, Netherlands), or by using a digital video camera (Sony Handycam
HC44E, Sony Corporation, Japan). The transponder system consisted of a small chip (approx 0.4 g; =
1 % of adult body mass) with unique identification code which was glued on the tail of each parent.

The antenna of the transponder decoder was buried approximately 3-5 cm under the nest, and
connected to a data logger. The system recorded every 20s whether each parent was on the nest for at
least 24h (n = 27 nests).

The video camera was used to record the incubation behaviour at five nests in 2008. The
camera was positioned about 1 m from the nest, and it recorded an image every 20s and was changed
manually to night-shot mode for night-time images. The camera was covered by a small cardboard
and some vegetation, and all other parts of the system (including the battery) were buried under the
ground. The installation of the transponder and camera systems (15-20min) was carried out early in
the morning, or late afternoon to avoid heat stress. The parents returned to the nest after a few
minutes.

Ambient ground temperature was measured at all nests (n = 32 nests) by a thermo-probe which
was placed about 25 cm from each nest scrape at ground level in an open, un-shaded area. The probe
was connected to a data logger (Tinytag, Gemini Data Loggers Ltd.) that recorded the temperature
every 20s for at least 24h. The minimum and maximum ground temperatures were 23.8 °C and 60.3
°C, respectively, during the study (Fig. 1 C). Sitting tight on the ground exposed to solar radiation is a
major challenge for desert-nesting birds (Grant 1982). Amat and Masero (2004a) showed that the
operative temperatures (the sum of radiative and convective factors) were 10-15 °C higher at exposed
nests of Kentish plovers than at covered nests, and consistently, the incubating parents exhibited
behaviours indicating heat stress (e.g. panting, belly-soaking; see Fig 1).

Nest Cover Manipulation

At 27 nests where the transponder system was used, we used a control period of 24h to estimate
natural behaviour, then we experimentally manipulated nest cover for another 24h by completely
removing cover from covered nests (‘cover-removed nests’), or by covering exposed nests with
bushes which shaded the nest (‘cover-added nests’, Fig.2). Data from 20 nests were used in the analyses (11 covered nests and 9 exposed nests), because seven nests were predated before the trials terminated (3 covered and 4 exposed nests). Parents took 1-107 min to return to the manipulated nests. We gave parents at least 6h to adjust to the manipulation of their nest cover before we started to record incubation behaviour. After 24h of recording, the transponder system was removed and nests were returned to their natural cover-type by returning the original bush to the covered nests, and removing bushes from exposed nests.

Data Analysis

24-hour recordings were considered as the unit of analysis and each day was divided into twelve two-hour time periods. Following AlRashidi et al. (2010) four behavioural variables were calculated for each period: (1) total incubation, i.e. % of time when the eggs were incubated by either parent; (2) male incubation, i.e. % of time when the eggs were incubated by the male, (3) female incubation, i.e. % of time when the clutch was incubated by the female, (4) number of changeovers, i.e. the number of events when one parent was relieved by the other parent. The average ground temperature outside the nests was taken as the ambient temperature for each period.

The influence of natural nest cover on incubation behaviour (response variable) was investigated using linear mixed-effects models (Pinheiro & Bates 2000). Nest identity was included as a random factor, since parental behaviour is not independent between two-hour time periods for a given nest. The following fixed effects were included in the initial models: nest cover (factor with two levels: exposed or covered), time period (factor), sea distance (covariate), year (factor), egg laying date (covariate, given as no. of days since 1 March), age of clutch in days (covariate). Conway and Martin (2000) found that incubation behaviour and ambient temperature are not linearly associated, thus ambient temperature was included in the models as second degree orthogonal polynomial covariate. The effect of temperature on incubation may vary over the day (AlRashidi et al. 2010), and therefore the interaction between time period and ambient temperature was also included in initial
models. In the initial models of male and female incubation, incubation by the other sex was also included as fixed term because in shared incubation systems the behaviour of a parent is influenced by the behaviour of its mate (Kosztolányi et al. 2009). Furthermore, nest cover type × time period interaction was included in all initial models to test whether cover type may have different effect depending on the time of the day.

Experimental data were also investigated using linear mixed-effects models. We used the difference in incubation behaviour after manipulation minus before manipulation for the behavioural variables (1-4 variables as defined above) as response variables. Initial models included nest identity as a random factor, treatment (with two levels: cover-added and cover-removed), time period and period × treatment interaction as fixed terms. Each nest served as its own control, therefore confounding variables (see above) were not included in models of experimental data. In the initial models of male and female incubation, the incubation by the other sex was also included as fixed covariate (see rationale above).

Percentage variables (converted to proportions) were arcsine square-root transformed, and number of changeovers was ln(x + 1) transformed to normalize residual distributions. Initial models were fitted using maximum likelihood method. Model selection was carried out using the function stepAIC in MASS package. We report the final model refitted using Restricted Maximum Likelihood (REML). The amount of variance explained by the random effect was investigated by comparing the final model with a Generalized Least Squares (GLS) model containing the same variables as the final mixed-effects model. We used R version 2.10.0 for statistical analyses (R Development Core team 2010). Values are given as mean ± SE unless stated otherwise.

The distribution of nest types (covered and exposed) was not different between the two years of the study (Fisher’s exact test, P = 0.444). Neither body mass, nor wing length and tarsus length were different between nest cover categories in males or females (MANOVAs, P ≥ 0.190). Finally, average ambient temperature, egg-laying date, age of clutch and distance to sea were not different between nest types (t-tests, P ≥ 413).
Fieldwork and the nest cover manipulation were licensed by the Saudi Ministry of Environment. We targeted a short-term manipulation using minimum sample sizes to minimise the welfare impacts on the subjects. It is unlikely that our experiment substantially influenced the parents’ survival or their reproductive success, since the manipulations were within the natural range of nest cover. Manipulation was carried out early in the morning (five nests) (i.e. between 06:00 and 10:00), or late afternoon (15 nests) (i.e. between 17:00 and 20:00) to reduce the risk of heat stress. Nest predation by white-tailed mongoose (*Ichneumia albicauda*) and stray cats were very high in our study site: 80.1% of the clutches were predated whereas only 14.8% of clutches produced at least one chick (n = 196 nests). Daily survival of experimental nests was 0.87 (95% Confidence Intervals: 0.78 - 0.96), and the confidence intervals include the daily survival of all nests in our study site (0.92, MAR unpublished data). Finally, we did not find any indication that incubating plovers were predated on (or near to) their nests (n = 272 nests, MAR unpublished data).

RESULTS

Incubation at Naturally Exposed and Covered Nests

Both males and females spent significantly more time on incubation at exposed nests than at covered ones over the whole day, and biparental incubation was more extensive at exposed nests (Fig. 3, Tables 1 & 2). The number of changeovers was also higher at exposed nests (Fig. 3, Tables 1 & 2). In addition, both male and female incubation were influenced by time of day, and ambient temperature (Table 2). Incubation behaviour of the mate declined with incubation behaviour of the focal parent (Table 2, see also AlRashidi et al. 2010). Female incubation tended to be higher throughout the day, whereas the males increased at night and reduced during mid-day (Fig. 3). Finally, total incubation,
female incubation, male incubation and number of changeovers all increased with the age of the
clutch (Table 2).

Incubation at Experimentally Manipulated Nests

Manipulation of nest cover influenced parental behaviour in all response variables (Fig. 4, Table 3).
After manipulation, parents at cover-added nests reduced incubation efforts, whereas parents at cover-
removed nests increased their incubation. Therefore, the level of biparental incubation increased at
cover-removed nests, and decreased at cover-added nests (Fig. 4). As expected, at cover-removed
nests the number of changeovers increased whereas at cover-added it decreased (Table 3), and the
effects were the largest during the hottest part of the day (Fig. 4). Consistent with the results at
unmanipulated nests, the behaviour of mate also influenced both male and female incubation at
experimentally manipulated nests (Table 3).

DISCUSSION

The ecological and social factors influencing the evolution of biparental care is debated (Kvarnemo
2010; Jennions & Kokko 2010; McGraw et al. 2010), although progress has been made in some taxa
(Thomas & Székely 2005; Gonzalez-Voyer et al. 2008; Brown et al. 2010). Here we show that
exposure to solar radiation evokes more parental effort and thus necessitates a higher level of
biparental care especially during mid-day when the nests are exposed to intense solar radiation. Both
observational and experimental data consistently show that nest cover and exposure to solar radiation
significantly influence incubation behaviour of both males and females. The increased total incubation
and changeovers at exposed nests are likely to reduce the risk of overheating to the eggs and to the
parents themselves (Amat & Masero 2004a). By relieving each other frequently from incubation
duties parents can fly to the sea, and wet their ventral plumage (i.e. belly-soaking), so that they can
cool their eggs and themselves (Grant 1982; Amat & Masero 2009). Note that our results are not
directly comparable to the non-experimental study of AlRashidi et al. (2010), since nest cover likely
to change the thermal conditions at the nest over the full day, and this effect may interact with the
time periods and ambient temperature.

The diurnal pattern in behavioural responses, however, was different for total incubation and
nest changeovers. At cover-removed nests changeovers were especially frequent in the hottest part of
the day (between 10.00 and 16.00), whereas total incubation during the same period was hardly
different from the control. We believe this is due to a ceiling effect: in the middle of the day all nests
are covered practically all the time (AlRashidi et al. 2010), although by increasing the frequency of
changeovers at cover-removed nests the parents can reduce the risk of overheating themselves. The
latter result also suggests that parents carefully monitor their mate’s behaviour, and alter their own
care effort to compensate if necessary, consistent with an experimental manipulation of parental
workload (Kosztolányi et al. 2009).

Interestingly, the diurnal contribution of males at exposed nests was less than at covered nests;
possibly because males of exposed nests spent more time incubating the clutch at night. We suggest
two explanations for the higher nocturnal nest attendance of males (and higher total incubation) at
exposed nests. First, an exposed nest may be safer for the incubating parent than a covered nest (Grant
1982; Martin & Roper 1988; Amat & Masero 2004b), since exposed nests may facilitate the detection
of predators at night allowing the parents to incubate for long periods. It also facilitates early escape if
a predator approaches the nest. Second, nocturnal heat dissipation may differ between covered and
exposed nests. Open nests may lose more heat at night than covered nests, and thus incubating parents
should spend more time covering the eggs at night in the open. Consequently, in a desert environment
nest cover by bushes appears to create a thermally favourable condition, although it might imply
higher risks for the nest and/or the incubating adults. Both of these propositions require further field
studies and we suggest that local adjustments in one (or both) of these components may explain
differences between studies in behaviour of parents (Purdue 1976; Amat & Masero 2004a; AlRashidi
et al. 2010; this study).
Our study is one of the few experimental studies that showed environmental harshness promotes biparental care. Brown et al. (2010) found biparental care was essential to tadpole survival in small (but not large) breeding pools in frogs, because small pools had insufficient nutrients for tadpole growth and survival. In the biparental California mouse *Peromyscus californicus* male presence improved pup survival and shortened female interbirth interval, although the effects were only apparent when food was limited (Cantoni & Brown 1997). In the dwarf hamster *Phodopus campbelli* that breeds in an extremely cold environment where ambient temperatures may reach below -30°C, care by both parents was critical to protect pups and parents from hostile weather (Wynne-Edwards 1998).

Biparental care is exhibited by several phylogenetically distinct taxa living in different climate conditions; we need further experimental and comparative analyses to understand this trait (Clutton-Brock 1991; Duellman 1992; Reynolds et al. 2002; McGraw et al. 2010). Since the life-histories and the precise nature of ‘environmental harshness’ may vary between populations, careful comparative and experimental analyses are needed (Wilson 1975; Clutton-Brock 1991; McGraw et al. 2010). One could argue that extreme cold (or hot) may not be ‘harsh’ for the organisms that are adapted to live in these seemingly hostile environments, and the ‘harsh’ label may simply reflect a human-biased perception of the animals’ environment. However, the behavioural signs of stress and the carefully tuned behaviours – for instance the ones we report here exhibited by nesting Kentish plovers – suggest extreme habitats are challenging even for those organisms that are physiologically adapted to breed there.

Further investigations of environmental harshness need to consider that environments are complex, and different components may put opposing selection pressures favouring or disfavouring parental cooperation (Kosztolányi et al. 2006; McGraw et al. 2010). For instance, Arctic breeding birds have to cope with sub-zero ambient temperatures even during the short polar summer, and the demands to incubate the eggs and brood the chicks are expected to promote biparental care. However,
using phylogenetic analyses García-Peña et al. (2009) showed uniparental care was more common in Arctic shorebirds than in temperate and tropical ones. They argued that Arctic environments provide exceptionally abundant food for both the chicks and the parents, and thus relax the pressure for biparental care. Therefore one parent can be emancipated from parental duties.

Biparental Care, Conflict and Diversification

Although pioneering works suggested that breeding strategies, including parental care, have far-reaching evolutionary implications (Trivers 1972; Emlen & Oring 1977), we are only beginning to realise how complex these interactions may be (Wilkinson & Birge 2010). Conflict between individuals, for instance sexual conflict, is often seen as an evolutionary process that drives phenotypic diversification and speciation (Queller & Strassman 2009). Sexual conflict and sexually antagonistic coevolution may produce diverse traits (Chapman et al. 2003, Arnqvist & Rowe 2005), whereby the conflicting interests between males and females lead to divergent traits between populations (Gavrilets & Waxman 2002). Therefore, a benign environment where the demand for biparental care is relaxed may facilitate rapid phenotypic evolution. Consistent with these arguments, more intense sexual selection and sexual conflict were associated with higher rates of phenotypic diversification (Thomas et al. 2006; Gonzalez-Voyer et al 2008).

We argue, however, that under certain situations, harsh environments and parental cooperation may also facilitate diversification. Firstly, in harsh environments males and females may keep the same partner throughout their life (mate-retention, Ens et al. 1996), and this likely to reduce gene-flow between breeding locations, and populations can adapt to their local environment unless gene-flow is counter-balanced by immigration or natal dispersal. In contrast, since short pair-bonds and promiscuity are often associated with mate-seeking behaviour and dispersal between populations, these would create a panmictic population that reduces the chance of the evolution of locally adaptive traits. Secondly, harsh environments may demand specific adaptations to live and breed successfully, and closely related organisms may invent different solutions to environmental challenges. For
instance frogs, which seem distinctly unsuited for a terrestrial existence, have adapted in extraordinary ways to life on land and invented over 30 reproductive strategies including direct development, eggs (or tadpole) transport by the parent, foam nests and biparental egg guarding (Duellman 1992, Wells 2007).

In conclusion, our results in a small shorebird that breeds in a desert environment suggest harsh environments influence a social trait, biparental behaviour, since nest exposure in association with extremely hot ambient temperature favoured parental cooperation. Increased parental cooperation appears to be important in a desert environment, since a single parent – as also argued by Amat & Masero (2004) - may not be able to protect the eggs and/or itself from overheating.

Experimental analyses of male-female interactions, measuring the physiological responses of males and females to various manipulations, and comparing the incubation responses of males and females across different populations are needed to reveal the complex relationships between environmental factors and parental cooperation.

Acknowledgements

We appreciate the comments of Juan Amat, an anonymous referee and Tamás Székely Jr on previous drafts. Financial support was provided by the Ministry of Higher Education in Saudi Arabia, and the University of Hail. We thank the Saudi Wildlife Commission (SWC) represented by Secretary-General Prince Bandar bin Saud, for help in logistics and for providing facilities in the field. We also wish to extend thanks to all those who contributed to our work by any means, particularly, Fahed AlRashidi for help with the fieldwork, and James St Clair for help with planning of the experiment. CK was supported by a DAAD postdoctoral fellowship and AK was supported by a Magyary postdoctoral fellowship during manuscript preparation.
References

Table 1: Incubation behaviour (mean ± SE) over 24 hours at Kentish plover nests (17 and 15 naturally covered and exposed nests, respectively).

<table>
<thead>
<tr>
<th></th>
<th>Total incubation (%)</th>
<th>Male incubation (%)</th>
<th>Female incubation (%)</th>
<th>Number of changeovers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covered</td>
<td>74.03 ± 3.04</td>
<td>39.89 ± 2.23</td>
<td>34.15 ± 2.60</td>
<td>15.00 ± 1.20</td>
</tr>
<tr>
<td>Exposed</td>
<td>81.69 ± 1.96</td>
<td>41.50 ± 2.56</td>
<td>40.20 ± 2.40</td>
<td>20.33 ± 1.77</td>
</tr>
</tbody>
</table>
Table 2: Minimal mixed-effects models of incubation behaviour in 32 Kentish plover nests with natural extent of exposure

<table>
<thead>
<tr>
<th>Explanatory variables</th>
<th>Total incubation (%)</th>
<th>Male incubation (%)</th>
<th>Female incubation (%)</th>
<th>Number of changeovers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>df</td>
<td>F</td>
<td>P</td>
<td>df</td>
</tr>
<tr>
<td>Cover type</td>
<td>1, 29</td>
<td>9.048</td>
<td>0.005</td>
<td>1, 29</td>
</tr>
<tr>
<td>Time period</td>
<td>11, 328</td>
<td>11.804</td>
<td><0.001</td>
<td>11, 316</td>
</tr>
<tr>
<td>Temperature</td>
<td>2, 328</td>
<td>10.713</td>
<td><0.001</td>
<td>2, 316</td>
</tr>
<tr>
<td>Time period x temperature</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Time period x Cover type</td>
<td>11,328</td>
<td>2.136</td>
<td>0.018</td>
<td>-</td>
</tr>
<tr>
<td>Female incubation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1, 316</td>
</tr>
<tr>
<td>Male incubation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Age of clutch</td>
<td>1, 29</td>
<td>17.325</td>
<td><0.001</td>
<td>1, 29</td>
</tr>
<tr>
<td>Likelihood ratio test for the</td>
<td>$\chi^2 = 12.795$, df = 1, $P < 0.001$</td>
<td>$\chi^2 = 9.770$, df = 1, $P = 0.002$</td>
<td>$\chi^2 = 11.325$, df = 1, $P = 0.001$</td>
<td>$\chi^2 = 7.446$, df = 1, $P =$</td>
</tr>
</tbody>
</table>
Note: Cover type refers to exposed or covered nests (see Methods), temperature was included as a second order polynomial, \(df\) values are numerator and denominator degrees of freedom, respectively. For the number of changeovers the final model also included the following terms: egg laying date: \(F_{1,27} = 2.830, P = 0.104\), sea distance: \(F_{1,27} = 4.961, P = 0.034\). The empty cells indicate that the variable was either eliminated during model selection, or it was not included in the initial model (see Methods for details). Dash indicates terms that were not included in the final models.
Table 3: Minimal mixed-effects models for experimentally manipulated Kentish plover nests (cover-added, cover-removed).

Explanatory variables	Response variable
Total incubation (%)	Male incubation (%)
df	F
Treatment	1, 18
Time period	-
Time period x Treatment	-
Female incubation	-
Male incubation	-
Likelihood ratio test for the random effect	$\chi^2 = 6.826$, df = 1, P = 0.009

Note: df values are numerator and denominator degrees of freedom, respectively. For legend see Table 2.
Figure legends

Figure 1. Kentish plover parents attending exposed nests, (a) male, (b) female. Note the crouched posture of parents and the wet belly-feathers. (c) Ambient temperature over the day (mean ± SE).

Figure 2. Examples of nest cover manipulations: before and after manipulation at different nests.

Figure 3. Incubation behaviour at naturally covered and exposed Kentish plover nests (17 and 15 nests, respectively). (a) Total incubation (mean ± SE), (b) number of changeovers, (c) male incubation and (d) female incubation.

Figure 4. Incubation behaviour at experimentally manipulated Kentish plover nests: cover-removed nests (n = 11) and cover-added nests (n = 9). (a) Change in total incubation (mean ± SE). (b) Change in number of changeovers.