Towards Opto-structural Correlation to Investigate Luminescence Thermometry in an Organometallic Eu(II) Complex

Roberto M. Diaz-Rodriguez,‡ Diogo A. Gálico,†,§ Daniel Chartrand,‡ Elizaveta A. Suturina,¶ and Muralee Murugesu†,*

†Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
‡Department of Chemistry, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
§Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom

ABSTRACT: Lanthanide-based luminescent materials have unique properties and are well-studied for many potential applications. In particular, the characteristic $5d \rightarrow 4f$ emission of divalent lanthanide ions such as EuII allows for tunability of the emissive properties via modulation of the coordination environment. We report the synthesis and photoluminescence investigation of pentamethylcyclopentadienyleuropium(II) tetrahydroborate bis(tetrahydrofuran) dimer (1), the first example of an organometallic, discrete molecular EuII band-shift luminescence thermometer. Complex 1 exhibits an absolute sensitivity of 8.2 cm$^{-1}$ K$^{-1}$ at 320 K, the highest thus far observed for a lanthanide-based band-shift thermometer. Opto-structural correlation via variable-temperature single-crystal X-ray diffraction and fluorescence spectroscopy allows rationalization of the remarkable thermometric luminescence of complex 1 and reveals the significant potential of molecular EuIII compounds in luminescence thermometry.

Introduction

In recent years, materials based on molecular systems have shown remarkable optical/luminescent properties.1–7 If such properties can be used to monitor changes in structure and/or temperature of the material, then applications employing these materials become viable. To that end, control over the interaction between light and matter is key to leading technological advancement in a wide range of fields. Molecular systems offer a remarkable advantage over traditional bulk materials when it comes to probing structural changes at the molecular level, and enable unparalleled flexibility to fine-tune the coordination environment around an emissive metal center. Structural parameters can be probed via single-crystal X-ray diffraction, while thermosensitive optical properties can provide subtle spectral changes with varying temperature. Careful association between the molecular structure and optical features, opto-structural correlation can be performed. Such analysis provides a unique insight into the connection between a material’s structure and its optical properties. By taking advantage of such opto-structural correlation, an understanding of the factors that govern the change in physical properties is achievable, thus subsequent fine-tuneability of the optical properties becomes a reality.

When it comes to luminescent properties, trivalent lanthanide ions reign supreme, as they exhibit long-lived narrow emission lines which enable optical probing.8 That being said, as the most stable divalent lanthanide ion, EuII is by far the most studied with respect to luminescence.9 In contrast to most trivalent lanthanide ions, the presence of a low-lying 5d state gives rise to a strong d→f emission, allowed via selection rules. Luminescent molecular EuII compounds have been known for a long time, however studies involving them mostly focus on basic spectroscopic characterization.10–18 Hence, applications of luminescent molecular EuII compounds14,19–21 remain an underexplored area of study with tremendous potential. One such application is luminescence thermometry, wherein changes in the luminescence behaviour of a chemical probe as a function of temperature are used as a contactless temperature measurement technique.1,2,6,22–29 Luminescence parameters of a probe that may vary with temperature include: emission peak energy; fluorescence lifetime and/or intensity; or the ratio of intensity between multiple emission bands, among others.23,30–32

In the family of divalent lanthanides, SmII and EuII are especially well-suited to this application, as their associated emissive 5d state is very sensitive to the coordination environment.23,34 Although luminescence thermometry has previously been achieved in EuII-containing inorganic materials,35–45 it is surprising to note that no examples of discrete molecular EuII luminescence thermometers have been reported to date. This may be due to the highly air- and moisture-sensitive nature of most molecular divalent lanthanide compounds, making the synthesis, isolation and characterization of systems exhibiting the desired properties quite challenging. This is especially true of organometallic divalent lanthanide compounds, which are nevertheless highly desirable thanks to the unique stereoelectronic characteristics accessible using carbon-donor ligands. We therefore sought to explore avenues toward such compounds.

The small negative reduction potential of the EuII-EuIII redox couple ($E^\circ = -0.35$ V)46 allows the facile synthesis of [EuII(BH$_4$)$_2$(THF)$_2$] from the reaction of EuCl$_3$ with NaBH$_4$, wherein EuIII is reduced in situ.7 This complex is unique among the simple lanthanide tetrahydroborates in that it displays intense blue luminescence in the solid state,7,47 and yellow-green luminescence in THF solution. This observation implies that tetrahydroborate ligands are effective at sensitizing luminescence in EuII, making this compound a good starting point for the application-focused design of luminescent EuII compounds.
Tetrahydroborate ligands are coordinatively flexible and labile, often acting as pseudohalides in salt metathesis reactions, and are consequently well suited to the construction of more sophisticated complexes, including organometallic complexes. Furthermore, EuII is isoelectronic to GdIII (4f7 with an 8S7/2 ground state) and is accordingly highly paramagnetic. However, it is important to note that GdIII is "optically silent", exhibiting no emissive transitions within the visible spectrum. One can, therefore, envision applications employing EuII as a highly tunable luminescent analogue to its isoelectronic trivalent congeners, the GdIII ion. All considered, we surmised that [EuII(BH4)2(THF)2] could be a useful precursor for the preparation of exciting luminescent and optomagnetic molecular compounds.

Herein we report the synthesis, characterization, and photoluminescence of the divalent europium complex [Cp*Eu(μ-BH4)(μ-BH4)(THF)]2 (1). In the solid state, complex 1 acts as a highly sensitive band-shift luminescence thermometer operating over a broad temperature range (60-320 K), properties which are extremely sought-after for viability in such applications. An opto-structural correlation study on this unique EuII luminescence thermometer highlights the versatility of molecular organometallic systems over traditional inorganic materials. The synthetic flexibility and stereoelectronic tunability afforded by organometallic constructs, combined with the remarkable luminescence properties of 1, demonstrate the great potential of molecular EuII systems as luminescence thermometers, with incipient applications in the control of sensitive spintronic devices or organic electronics.

Results

Synthesis and structural characterization. The equimolar reaction of [EuII(BH3)2(THF)]2 with potassium pentamethylcyclopentadienide (K Cp*) in THF led to the formation of complex 1 as a microcrystalline yellow solid. Upon recrystallization from THF at -20 °C, transparent yellow, blocklike crystals suitable for X-ray crystallographic analysis were isolated. Complex 1 crystallizes in the monoclinic space group P21/n; the crystal structure is shown in Figures 1 and S1.

Figure 1. Molecular structure of 1. Labels are given only to crystallographically unique atoms. Hydrogen atoms bonded to carbon have been omitted for clarity. A thermal ellipsoid diagram is shown in Figure S1. Selected bond lengths and angles are provided in Table S1.

The solid-state structure of 1 consists of a dimer where the EuII centers are bridged by two (μ-H)-BH (μ-H)2 units, with a monoanionic Cp* ligand and two molecules of THF completing the coordination environment of each EuII ion. It is noteworthy that 1 is the only example of a bis(tetrahydroborate)-bridged homobimetallic EuII hemimetallocene, the first being the isostructural SmIII complex [Cp*Sm(μ-BH4)(THF)]2, reported by Jaroschik et al., obtained via a similar synthetic route. In the IR spectrum of 1 (Figure S2), a group of absorption peaks centered around 2260 cm⁻¹ is observed. This spectral feature is reminiscent of that which was previously observed for [(COT)NdIII(BH4)(THF)]2, which exhibits the same tetrahydroborate coordination mode as 1. Additionally, a pair of absorption peaks at 2243 and 2191 cm⁻¹ are present, which comprise a doublet (splitting of 52 cm⁻¹) that is highly diagnostic of the B-H bridging stretch of a κ²-tetrahydroborate. Coordinated THF is also evidenced by the very strong absorption peaks at 881 and 1034 cm⁻¹. Attempts to observe 1 by 1H NMR spectroscopy (Figure S3) revealed a resonance at +235 ppm attributable to the Cp* methyl substituents. The tetrahydroborate ligands could not be observed by 1H or 11B NMR spectroscopy, even when decoupled. This is unsurprising given the significant paramagnetic broadening from the two EuII centers, in conjunction with the quadrupolar broadening intrinsic to boron. The magnetic properties of 1 were measured (See Supporting Information), which confirmed the electronic structure of the complex as two isolated, isotropic 8S7/2 ions, with weak ferromagnetic coupling appearing at very low temperatures. No decomposition was observed when crystalline 1 was stored for several months at -20 °C under inert atmosphere.

Photoluminescence. With the goal of understanding the spectroscopic features of 1 and rationalizing the potential of molecular organometallic EuII compounds as luminescence thermometers, the solid-state luminescence properties of single crystals of 1 were studied at varying temperatures. Excitation and emission spectra obtained at 10 K are shown in Figure 2.

Figure 2. Excitation (gray) and emission (violet) spectra for 1 obtained at 10 K.

The excitation spectrum reveals bands from the EuII 5d ground state as well as ligand-based states over the UV and blue spectral region. Excitation at 330 nm results in a strong and broad d→f transition, as expected for divalent europium, centered at 669 nm (≈14959 cm⁻¹). Increasing the temperature does not
result in any spectral change until 60 K (Figure S9). However, above 60 K, a blue-shift of the band is observed, i.e., the band peak shifts to higher energies (Figures 3a and c). From 60 to 320 K, the emission maximum is shifted from 14959 to 16858 cm\(^{-1}\) (\(\Delta E = 1899 \text{ cm}^{-1}\)). Correspondingly, the output color of the emission is shifted from deep red to orange, as demonstrated on the Commission Internationale de l'éclairage (CIE) chromaticity diagram (Figure 3b). The observed shift of the band peak can be explored for band-shift based luminescence thermometry, as previously demonstrated for Sm\(^{II}\), Eu\(^{III}\), and Dy\(^{III}\) inorganic solids.\(^{49}\) The energy shift can be fitted by a Boltzmann function (eq. 1) as implemented in OriginPro 2018 (see Figure 3c):

\[
y = A_2 + \frac{(A_1-A_2)}{1+e^{[x-x_0]/\Delta x}}
\]

Absolute sensitivity \(S_a\) (Figure 3d) was calculated by taking the first derivative of the fitted function, and the maximum absolute sensitivity obtained was 8.2 cm\(^{-1}\) K\(^{-1}\) at 320 K. This is the highest absolute sensitivity thus far observed for a lanthanide-based band-shift thermometer. For intensity-based luminescence thermometry methods, the intensity of a given luminescent probe varies with different equipment and experimental conditions. Contrarily, the position of the emission peak is an intrinsic property of a compound at a given temperature, independent of other factors. Therefore, absolute sensitivity is a reliable metric for comparing the performance of different band-shift thermometers. For completeness, we also report the relative sensitivity \(S_r\), (Figure S10) that shows lower relative performance. To further understand the thermometric performance of 1, we evaluated the temperature resolution (\(\Delta T\)). Values as low as 0.09 K are obtained (Figure S11), further confirming 1 as a highly competent band-shift luminescence thermometer.

The precursor compound [Eu\(^{II}\)(BH\(_4\))\(_2\)(THF)\(_2\)] itself demonstrates thermochromic luminescence (Figure S12), displaying a shift in the \(d\rightarrow f\) emission band over the range 30 to 320 K from 19501 to 20679 cm\(^{-1}\) (\(\Delta E = 1178 \text{ cm}^{-1}\)); this represents a change in output colour from cyan to green. The maximum absolute sensitivity calculated for [Eu\(^{II}\)(BH\(_4\))\(_2\)(THF)\(_2\)] is 5.37 cm\(^{-1}\) K\(^{-1}\) at 220 K. Table 1 compares the thermometric performance of our complex to other high-performing band-shift thermometers in the literature.

<table>
<thead>
<tr>
<th>Thermometer</th>
<th>(S_a) (cm(^{-1}) K(^{-1}))</th>
<th>Sensing Range (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag(_2)S quantum dots (^{54})</td>
<td>11</td>
<td>295-317</td>
</tr>
<tr>
<td>(\text{Cp}^\ast\mu\text{BH}_4\text{O}_2] (^{2[a]})</td>
<td>8.2 @ 320 K</td>
<td>60-320</td>
</tr>
<tr>
<td>(\gamma\text{-Al}_2\text{O}3\text{Sm}{49})</td>
<td>8.0 @ 298 K (^{b})</td>
<td>298-648</td>
</tr>
<tr>
<td>(\text{Cp}^\ast\mu\text{BD}_3\text{O}_2] (^{2[a]})</td>
<td>7.07 @ 260 K</td>
<td>30-320</td>
</tr>
<tr>
<td>([\text{Eu}(\text{BH}_4)_2(\text{THF})_2]] (^{7[a]})</td>
<td>5.37 @ 220 K</td>
<td>30-320</td>
</tr>
<tr>
<td>CdTe quantum dots (^{55})</td>
<td>5</td>
<td>300-353</td>
</tr>
</tbody>
</table>

\([a]\) This work. \([b]\) using the barycentre of the entire Sm\(^{II}\) emission band as the sensor.

While the thermometric performance of the precursor already matches that of some high-performing quantum-dot based sensors, complex 1 undergoes a 67% larger energy shift over its sensing range and exhibits a 53% improvement in sensitivity in comparison. Crucially, 1 emits in the red spectral range, thus has inherently higher temperature resolution than a blue-green emitter such as [Eu\(^{II}\)(BH\(_4\))\(_2\)(THF)\(_2\)]. This is because the wavelength resolution of optical detectors is higher at longer wavelengths (see Supporting Information, Figure S11). As anticipated, 1 represents a unique example of an organometallic, discrete molecular Eu\(^{II}\).
luminescence thermometer. The present result showcases the value of carbon-donor ligands in promoting high thermometric performance and suggests that molecular organometallic Eu\(^{II}\) compounds have tremendous potential as luminescence thermometers.

Variable-temperature structural analysis. To understand such luminescence thermometric behaviour and performance, it is critical to closely examine the molecular level. Especially, contrary to trivalent lanthanides, the 5d orbitals involved in the \(^{4f}\!5d^1\) excited-state configuration of Eu\(^{II}\) interact strongly with ligands, and thus the energy of the excited state and properties of the metal-centered luminescence are highly sensitive to ligand and field effects.\(^9\) Therefore, to elucidate the remarkable temperature-dependent emission of \(\mathbf{1}\), we carried out luminescence-structural correlation studies through variable-temperature single crystal X-ray crystallography within the range where thermometric behaviour was observed. The metrical parameters obtained from several crystal structures of \(\mathbf{1}\) measured at 90, 175, 200, 203 and 270 K were carefully compared (Figure 4, Table S2 and Figure S14). We expected that variations in the Eu-ligand distances with temperature would be major contributors to the observed changes in luminescence with temperature, as is frequently the case for Ln\(^{II}\)-doped inorganic solids.\(^9,37,49,56\) Surprisingly, however, the Eu-Cp*(cent) and Eu-O(THF) distances remain almost constant across the measured temperature range (within 0.004 and 0.006 Å, respectively). Meanwhile, the Eu-B distances increase by 0.03 Å with increasing temperature, concurrent with an equal increase in the B-B′ distances and an increase in the intramolecular Eu-Eu′ distance of 0.06 Å. The coordination geometry of a mononuclear fragment of \(\mathbf{1}\) was analyzed using SHAPE 2.1 (Table S3 and Figure S15) and is best described as a distorted square pyramid around each Eu\(^{II}\) ion, with the ion above the basal plane of the pyramid. Notably, the complex increasingly distorts from the idealized square pyramidal geometry with increasing temperature, and furthermore, the Eu\(^{II}\) ions(s) migrate further from the basal plane (by 0.025 Å) with increasing temperature. As might be expected, the unit cell volume increases by 93.1 Å\(^3\) (with a concomitant decrease in the crystal density of -0.06 g/cm\(^3\), as does the closest intermolecular Eu-Eu distance (by 0.21 Å) with increasing temperature. From these data, a thermal expansion coefficient \(\alpha = 2.54 \times 10^{-4} \text{ K}^{-1}\) can be calculated for crystals of \(\mathbf{1}\),\(^37\) consistent with the expectation for organic crystals.\(^57\)

![Figure 4](image.png)

Figure 4. Variable-temperature structural analysis. (a) Temperature dependence of selected bond lengths from the crystal structure of \(\mathbf{1}\). The structure is truncated for clarity. Green = Eu, red = O, black = C, pink = B. Plots of emission peak energy as a function of the average Eu-B distance (b) and the relative compression of the lattice (c). (d) Plot of emission peak energy as a function of the distortion of the coordination geometry around Eu. The distortion is represented by the continuous shape measure (CShM), which quantifies the deviation of the real coordination polyhedron from an idealized square pyramid. A value of zero represents exact agreement with the idealized geometry. (e) Plot of emission peak energy as a function of the distance between the Eu ion and the basal plane of the coordination pyramid, defined by the atoms B1, B1′, O1 and O2 (see Figure 1). The solid black points represent data collected from the same crystal at varying temperatures. The open green points represent data collected for a different crystal using the same diffractometer. The open orange points represent data collected on a different crystal using a different diffractometer. This demonstrates the consistency of the change in metrical parameters across the entire sample. Error bars are shown but overlap the points in some cases. The dashed blue lines are linear fits of the data to the equation \(y = mx + b\). Best fitting parameters are as follows: (b) \(m = 35.7, b = -87.8, R^2 = 0.9108\); (c) \(m = 29.3, b = -12.9, R^2 = 0.9975\); (d) \(m = 7.6, b = 6.6, R^2 = 0.9875\); (e) \(m = 45.4, b = -33.4, R^2 = 0.8810\).
Over the selected temperature range (90-270 K), the emission peak energy increases by 1280 cm⁻¹ (i.e., the emission peak is blue-shifted by 52 nm).

Structural effects on the optical properties. The thermochromism of 1 can be considered as a dynamic extension of the well-documented principles governing the emission peak energy in Eu⁻⁶-containing inorganic compounds, namely the geometry, ligand field splitting, metal-ligand covalency, and ligand polarizability of the coordination environment.³⁻⁴,⁶⁻¹²,⁶² all of which are interrelated. The excited state configuration is strongly affected by the ligand field, as the overlap of the 5d orbitals and the ligand orbitals is considerable.⁹,⁶²,⁶³ These relatively strong interactions lead to significant variability of the 5d manifold energy with the ligand field.³³,⁶¹ Metal-ligand covalency also increases as the polarizability of the ligand increases, leading to increasing red-shifts of the emitting state energy.³⁴,⁶² The deep red (i.e., low energy) emission of 1 at low temperatures is thus a result of the large ligand-field splitting imparted by the strongly donating Cp⁺ ligand, in concert with the high polarizability of the tetrahydroborate ligands,⁶⁴ which favour lower-energy emitting states.³³ The pliability of borohydride lattices has been demonstrated to yield materials that are highly sensitive to pressure⁶⁰ and temperature,³⁷ consistent with the properties of our complex 1. The structural changes observed in 1 point to an overall distancing of the ligands from the Eu⁰ ion with increasing temperature, e.g., the increasing volume of the crystalline lattice and lengthening of Eu-[BH₄] distances. It is well known that the lengthening of metal-ligand bonds decreases the strength of the ligand field exerted by the ligand(s), thereby decreasing the magnitude of the ligand field splitting (in this case, of the Eu⁰ 4f⁻¹5d⁰ state).³⁰ This then drives the emitting level (lowest 5d→4f) to higher energies and thus shorter emission wavelengths, as observed for 1 with increasing temperature (Figures 4b and 5, also see Figure S14e).

To further investigate ligand effects on the thermochromic luminescence of 1, an analogue bearing bridging tetradeuteroborate moieties (1-BD₄) was prepared, and its solid-state luminescence properties analyzed. 1-BD₄ exhibits slightly red-shifted luminescence at 10 K (674 nm ≃ 14839 cm⁻¹) cf. 1, and a very similar blue-shift of the emission band peak with increasing temperature (Figure S17a, ΔE = 1585 cm⁻¹). However, the band shift of 1-BD₄ begins at 30 K, rather than 60 K as observed for 1. While the emission peak energies of 1 and 1-BD₄ follow virtually the same trend with increasing temperature (Figure S17b), the peak energies of 1-BD₄ become increasingly lower than 1 at 150 K and above, though the largest difference in energy is only 158 cm⁻¹ at 320 K. These slight differences cause the maximum absolute sensitivity of 1-BD₄ to be somewhat lower (7.07 cm⁻¹ K⁻¹) than that of 1 and reach this maximum at a lower temperature (260 K) (Figure S17c). Due to the significantly higher mass of deuterium relative to protium, the vibrational energies of a B-D bond will be lower than an otherwise identical B-H bond. Indeed, these differences can be readily observed when comparing the IR spectra of 1 and 1-BD₄ (Figure S18), wherein the BX₄ vibrational band is shifted to lower energy by 630 cm⁻¹. The differences in emission peak energy between these complexes can thus be attributed primarily to the significantly different vibrational energies of the bridging BX₄ ligands, which manifests most obviously at higher temperatures. Table S4 compares the metrical parameters of 1 and 1-BD₄ from crystal structures of each obtained at the same temperature (203 K). The average Eu-O(THF) distance and average of all Eu-ligand distances are longer in 1-BD₄ than 1, but the average Eu-B distance is identical, and the intramolecular Eu-Eu distance is distinctly shorter. Most notably, 1-BD₄ has a larger unit cell volume (by 15 Å³) than 1, suggesting that the compressibility of crystals of 1-BD₄ may be higher than those of 1. This, combined with the observation that the emission peak of 1-BD₄ begins shifting at lower temperature cf. 1, supports the premise that the lower limit of the temperature sensing range is correlated with the compressibility of the lattice. This comparison further demonstrates the importance of the tetra(hydro/deutero)borate ligand(s) toward the thermochromic luminescence properties of these complexes. A comparison of the emission peak energies and sensitivities for each of (Eu[THF]₄)·(THF)₂ 1 and 1-BD₄ are presented in Figure 6.

Time-dependent DFT calculations (Figure S19 and Tables S5 and S6) predict intense 4f→5d absorption in the range 24-29000 cm⁻¹, consistent with the experimentally determined excitation profile (vide supra). However, these calculations also show a lower-energy charge transfer band involving the THF...
ligands, which is not visible in the excitation profile. The energy of this predicted absorption band also changes substantially with increasing temperature (by ~1500 cm⁻¹). The 4f→5d absorption bands calculated for the 90 and 270 K crystal structures of 1 have only a small energy shift, suggesting that the origin of the thermochromic luminescence might be more complex than a simple change in vertical transition energy; charge-transfer states intermediate to the 4f→5d transition may play a role in the observed photoluminescence of complex 1. The Hirshfeld surfaces of 1 at each temperature were analyzed, and only weak H–H and H–C intermolecular crystal packing interactions were observed (Figure S20), the strength and nature of which did not appear to correlate meaningfully with temperature. No intermolecular interactions whatsoever involving Eu, O or B were observed. It is thus unlikely that the thermochromic luminescence of 1 is due to intermolecular interactions. This opto-structural analysis suggests the thermochromism of 1 is dictated by the overall distortion of the Eu⁶ coordination environment with temperature, i.e., a simultaneous combination of all effects described above.

![Figure 6. Comparison of the emission peak energy (top) and absolute sensitivity (bottom) of [Eu(BH₄)₂(THF)₂], 1, and 1-BD₄ as a function of temperature.](image)

Conclusion

In summary, we report a notable example of an organometallic Eu⁶ molecular complex that acts as an efficient luminescence thermometer over a broad temperature range (60-320 K). The opto-structural correlation presented here represents a starting point for understanding how to modulate the thermometric performance of molecular Eu⁶ compounds. The high absolute sensitivity of 8.2 cm⁻¹ K⁻¹ obtained for complex 1, the highest reported to date, reveals the potential of Eu⁶ compounds as viable molecular thermometers. The emission occurring in the red spectral region guarantees high temperature resolution. The emission peak energy of 1 is correlated with a change in Eu-ligand bond lengths, particularly of Eu-[BH₄] bonds, and other geometric distortions of the Eu⁶ coordination environment as a function of temperature, though charge-transfer interactions may also play a role in the observed emission. Further studies with different Eu⁶ complexes are anticipated to elucidate the exact origin of the temperature-sensitive luminescence and unlock the applicability of these compounds as luminescence thermometers through a deep and systematic study of how the structural features affect the band-shift behaviour.

Experimental

General. All manipulations were conducted under stringently oxygen- and moisture-free conditions under argon or nitrogen atmospheres using Schlenk line and glovebox techniques. All solvents were dried on columns of activated alumina using a J.C. Meyer Phoenix solvent system and degassed via repeated freeze-pump-thaw cycles, then stored over activated 4 Å molecular sieves. All reagents were purchased from STREM Chemicals, Sigma-Aldrich, or Fisher Scientific and used as received. Potassium pentamethylyclopentadienide (KCP⁺)⁷⁰ and [Eu(BH₄)₂(THF)₂]⁷ were prepared by reported procedures. [Eu(BD₄)₂(THF)₂] was prepared according to the literature, using protiated tetrahydrofuran rather than deuterated tetrahydrofuran. The NaBD₄ used was 98 atom % deuterium (Sigma).

Elemental analysis. Elemental analysis was performed by Midwest Microlab (Indianapolis, USA). Organolanthane complexes, especially those of divalent ions, are well-known to suffer incomplete combustion and formation of carbides during microanalysis, yielding consistently and artificially low values.²⁹ Complexes bearing solvent ligands are further plagued by artificially low values due to loss of coordinated solvent during sample loading and/or combustion, thus microanalysis values should be considered within a wider tolerance than usually expected. Here, elemental analysis has been treated in a manner consistent with the literature regarding divalent organolanthane compounds.

Infrared spectroscopy. Fourier transform infrared (FTIR) spectra were recorded in the ʋ = 4000-525 cm⁻¹ range on a Nicolet Nexus 550 FTIR spectrometer equipped with an attenuated total reflectance (ATR) attachment. Samples comprised suspensions of crushed polycrystalline solid in a thin layer of Parabar 10312 oil; background spectra were corrected for the presence of the oil.

NMR spectroscopy. All NMR spectra were recorded using a Bruker AVANCE II 300 MHz spectrometer. Samples were prepared inside the glove box and sealed with a septum, Teflon tape and a layer of Parafilm to minimize incursion of air and moisture.¹¹ Chemical shifts are reported in ppm relative to tetramethylsilane using the THF-d₆ residual solvent signal at δ = 1.72 as an internal standard.

X-ray crystallography. X-ray crystallography of 1 and 1-BD₄ were performed using a Bruker AXS KAPPA single-crystal diffractometer equipped with an APEX II CCD detector, using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) from a sealed tube source. The crystals chosen were mounted on the tip of a 200 μm MicroLoop using Parabar 1032 oil and cooled to 203.15 K. Raw data collection and processing were performed with the Bruker APEX II software package.⁷¹,⁷² A multi-scan absorption correction was applied (SADABS).⁷³ The crystal structures were solved via direct methods and refined using a full-matrix least-squares method on F² using the SHELXTL program suite⁷⁴–⁷⁶ and the Olex2 user interface.⁷⁷ Non-hydrogen atoms were refined anisotropically. The
positions of all hydrogen atoms except for those bonded to boron were calculated based on the geometry of their respective atoms and are included at geometrically idealized positions (riding model). Hydrogen atoms bonded to boron were located in the Fourier difference map and allowed to refine freely.

Variable-temperature X-ray structural analysis. Additional crystallographic analysis of 1 at varying temperatures (90, 175, 200, and 270 K) was performed using a Bruker D8 VENTURE METALJET single-crystal diffractometer equipped with a Photon III CMOS detector, using Ga Kα radiation (λ = 1.34139 Å) from a liquid Ga source (Bruker METALJET D2 PLUS with HELIOS MX optics). The crystals chosen were mounted on a loop fiber using Parabar 10312 oil and cooled to the indicated temperatures. Raw data collection and processing were performed as above, using the Bruker APEX 3 software package.78–80 The H atoms of the BH4 moieties were refined with an isotropic displacement parameter with a SADI restraint applied on all B-H distances. All other H atoms were generated geometrically and were included in the refinement in the riding model approximation; their temperature factors were set to a multiple of the equivalent isotropic temperature factors of the parent site (aromatic 1.2 times; methyl 1.5 times the factor). There was positional disorder of the Cp* moiety; the occupancy ratio was left to refine freely.

All diagrams were prepared using Diamond 4.1.81 or Mercury 2020.1.83 and POV-Ray.84 The data has been deposited with the Cambridge Crystallographic Data Centre under deposition numbers 2107457-61 and 2126609. Analysis of the coordination geometry was performed using SHAPE 2.1.85,86 using the THF oxygen atoms, centroid of the Cp* ligand, and the central boron atoms of the tetrahydroborate ligands as vertices. Hirshfield surface analysis was performed using CrystalExplorer21.87

Photoluminescence spectroscopy. Photoluminescence data was obtained using a Horiba QuantaMaster 8075-21 spectrofluorometer. An ozone-free Power Arc 75 W xenon lamp was used as the radiation source. The excitation spectra were corrected in real time according to the lamp intensity and the optical system of the excitation monochromator using a silicon diode as a reference. The emission spectra were corrected according to the optical system of the emission monochromator and the photomultiplier response (Hamamatsu R13456 red-extended PMT). Samples were prepared inside the glove box and comprised a small amount of crystalline solid placed inside a screw-top quartz cuvette, which was then sealed with an additional layer of Teflon tape. Low-temperature measurements were performed with the samples mounted inside a CS202*E-DMX-1AL closed-cycle helium cryostat system (Advanced Research Systems), controlled via a LakeShore 335 temperature controller.

Magnetometry. Magnetic susceptibility measurements were performed using a Quantum Design MPMS-XL7 SQUID magnetometer operating in the temperature range 1.8-300 K. DC measurements were performed on crushed polycrystalline samples of 1 restrained in a matrix of vacuum grease (Corning) and wrapped in a polyethylene membrane. The magnetization data were collected at 100 K to check for ferromagnetic impurities, which were absent. Diamagnetic corrections were applied for the sample holder, and the inherent diamagnetism of the prepared sample was estimated with the use of Pascal’s constants. χvT data was fitted using PHI 3.1.88

Synthesis of [Cp^*Eu(BH4)2(THF)2]2 (1). In a glove box under a positive pressure of nitrogen gas, [Eu(BH4)2(THF)2] (100 mg, 0.31 mmol) and KCP* (54 mg, 0.31 mmol) were dissolved in dry tetrahydrofuran (5 mL) with stirring. The solution immediately attained a yellow-orange colour, and orange luminescence was observed when the solution was excited with a 405 nm laser pointer. The mixture was stirred for 24 hr. at room temperature, during which a substantial quantity of precipitate formed. The mixture was filtered over a pad of Celite, and the pad rinsed with several 0.5 mL portions of tetrahydrofuran until the washings ran colourless. The filtrate was concentrated in vacuo until incipient crystallization, then tetrahydrofuran was added dropwise until all the solid just dissolved. The so-formed saturated solution was stored at -20 °C, resulting in the formation of yellow blocklike crystals. These were isolated by decantation of the supernatant and dried briefy under vacuum. This process was repeated with the supernatant to give 1 (71 mg, 51% yield over three crops). 1H NMR (300 MHz, THF-d8): δ: 235 ppm (s, Cp* methyl); B(H)4 was not observed and coordinated THF could not be distinguished from residual THF. IR: ν̇ = 2976 (w), 2939 (w), 2904 (w), 2883 (w), 2832 (vw), 2800 (w), 2715 (w), 2360 (m), 2318 (m), 2243 (m), 2191 (m), 1435 (br, m), 1340 (w), 1246 (w), 1246 (w), 1136 (m), 1105 (s), 1034 (vs), 881 (br, s), 667 (br, m) cm-1. Elemental analysis was consistent with the fully desolvated complex: Anal. calc’d. (%) for C26H38B2Eu2 (604.07) (1) with loss of 4xcoordinated THF: C, 39.77; H, 6.34. Found: C, 39.74; H, 6.63.

Synthesis of [Cp^*Eu(BD4)(THF)2]2(1-BD4). Prepared following the same procedure as for 1 with [Eu(BD4)2(THF)2] (77 mg, 0.23 mmol) and KCP* (40 mg, 0.23 mmol) to give 1-BD4 (50 mg, 48% yield over two crops). IR: ν̇ = 2980 (s), 2943 (s), 2881 (s), 2839 (w), 2717 (w), 1768 (s), 1740 (s), 1680 (s), 1655 (s), 1576 (s), 1498 (w), 1435 (br, s), 1340 (w), 1294 (w), 1248 (w), 1176 (w), 1036 (vs), 881 (br, vs), 843 (sh), 800 (m, sh), 665 (br, s) cm-1.

These compounds are highly air- and moisture-sensitive. Samples coated in Parabar oil appear to have increased stability and can be stored under ambient conditions for several days with only very slow decomposition. Decomposed samples present as off-white or pinkish powders rather than yellow crystalline solid.

ASSOCIATED CONTENT

Supporting Information. Infrared and 1H NMR spectra, magnetic data, computational details, and additional photoluminescence and crystallographic information and analysis. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

* Prof. Dr. M. Murugesu – Department of Chemistry and Bio-molecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada; Email: m.murugesu@uottawa.ca

Authors
REFERENCES

Authors are required to submit a graphic entry for the Table of Contents (TOC) that, in conjunction with the manuscript title, should give the reader a representative idea of one of the following: A key structure, reaction, equation, concept, or theorem, etc., that is discussed in the manuscript. Consult the journal’s Instructions for Authors for TOC graphic specifications.