Ripple-Free High-Power Super-Luminescent Diode Arrays

F. Causa, Member, IEEE, and L. Burrow

Abstract—This paper presents the experimental and theoretical characterisation of arrays of tapered super-luminescent diodes to achieve very high, broad-band, ripple-free optical output. These arrays were fabricated from 980-nm high-power triple-quantum-well InGaAs–AlGaAs double heterostructures. Output powers of 2.7 W pulsed and of 280-mW quasi-CW were obtained from antireflection-coated arrays, with 10% maximum wall-plug efficiency per pulse at 0.75-W pulsed output power. Experimental and theoretical results for the optical-electrical characteristics and the near- and far-field radiation characteristics of the arrays are discussed and compared with those of corresponding individual super-luminescent diodes.

Index Terms—Arrays, high-power, near and far fields, ripple-free spectrum, super-luminescent diodes.

I. INTRODUCTION

SUPER-LUMINESCENT diodes (SLDs) are broadband, typically high-power, semiconductor optical sources used for applications including optical coherence tomography [1], wavelength division multiplexing [2], fiber-optic gyroscopes [3], short-haul communications, military applications, and illumination [4]. The key device feature necessary to achieve super-luminescent operation with low spectral modulation is low effective facet reflectivity to eliminate optical feedback (Fabry–Pérot resonances) and, therefore, avoid lasing. Several techniques have been proposed in the literature to achieve low effective reflectivity, including antireflection (AR) coating of the device facets (obtaining essentially a laser operated below threshold), unpumped absorption region at the rear of the device [5], bent [6] or angled [7] current injection contact, and etched deflector to deflect the unwanted reverse-traveling optical signal into the substrate [8]. By using the latter technique, output powers in excess of 1.3 W (at 3 kA ⋅ cm−2 pulsed injection current density) were obtained from in-house designed and fabricated AR-coated SLDs with tapered-geometry injection contact to reduce optical gain saturation [9]. To further increase the output power while maintaining the desired spectral and radiation properties and without compromising on the wall-plug efficiency achieved with conventional SLDs, a novel array of tapered SLDs (TSLDs) was designed and fabricated in-house. This paper presents the design and characterization of such TSLD arrays (TSLDAs) with which output optical powers in excess of 2.7 W were achieved at 3 kA ⋅ cm−2 pulsed, with ripple-free output spectrum. To provide useful comparisons, several TSLDAs were fabricated and characterized in house with different numbers of elements, referred to as N-TSLDAs, with N = 3, 4, 5. This paper is organized as follows. The device structure and characteristics are described in Section II, and the experimental and corresponding results obtained from in-house developed models are presented and discussed in Section III, with the most relevant conclusions summarized in Section IV.

II. DEVICE STRUCTURE

The TSLDAs were fabricated from a MOVPE-grown, high-power, large-optical-cavity, strained InGaAs–AlGaAs double-heterostructure material. The active layer is composed of three 7-nm InGaAs quantum wells (QWs) separated by 10-nm GaAs barriers (see Table I) for emission at 980 nm. The schematic of the TSLDA is presented in Fig. 1. To suppress lasing from each individual element in the array, a V-groove deflector was ion-beam etched at 45° with respect to the output facet. The distance of the deflector from the taper edge is D = 200 μm. To prevent optical propagation across devices and reduce optical gain saturation, additional V-groove deflectors were etched longitudinally to optically separate the elements in the array. Other relevant device dimensions are presented in Table II.

In correspondence to the tapered injection contacts delineating the elements in the array, shallow ridges (etch depth...
were mounted n-side down onto a copper heat sink using a conductive silver-loaded epoxy resin. The p-side was contacted with gold wire using a thermo-compression ultrasonic bonder. The device output facet was AR-coated with a single layer of ZrO$_2$–TiO$_2$ reducing the reflectivity to approximately 1%.

Several N-TSLDAs were fabricated in house with...
TSLDs. These curves present the typical characteristics of super-luminescent operation, namely the three regions of linear regime when the optical gain is nonpositive (spontaneous emission), the super-linear regime at the onset of superluminescence when the optical gain is positive (amplified spontaneous emission), and the sublinear regime when optical gain saturation occurs. The maximum output power measured from uncoated 5-TSLDAs is 500 mW at \(I = 7 \) A (corresponding to \(J = 2.8 \) kA/cm\(^2\) current density). Although the output power scales almost exactly with the number \(N \) of elements, the W-P efficiency of the arrays is significantly reduced with respect to that of an individual device \((N = 1)\) because the arrays require a larger operating voltage. The same data is presented in Fig. 3(b) in terms of injection current density to highlight the scaling of the output power as a function of the number of elements in the array. In the same plot of Fig. 3(b), corresponding theoretical curves are included for comparison.

These were obtained by simply multiplying the output power calculated from an individual device by the number \(N \) of devices in the array. The output power measured from N-TSLDAs is the same as that expected from \(N \) separate TSLDs—this result confirms that the elements in the array are independent and that, therefore, the arrays are incoherent sources as desired.

After AR coating of the output facet to achieve a 1% output facet reflectivity, a substantial five-fold increase in output power is observed [9], with a corresponding increase in W-P efficiency (see Fig. 4). The highest output power was measured from AR-4-TSLDA to be 2.7 W at \(I = 7 \) A (equivalent to 3.5 kA/cm\(^2\) current density) without breaking the devices. The maximum conversion (W-P) efficiency observed from such devices was 10% at 0.75 W pulsed output power. The 2.5-W output power measured from the AR-5-TSLDA is lower than expected because of the poor quality of the AR coating on that particular device.

The pulse rate was then reduced to a quasi-CW level of 1:10 (1 \(\mu \)s/10 \(\mu \)s) (see Fig. 4; corresponding open symbols, dashed lines), obtaining 280-mW output at 2.5 A from AR-3-TSLDA and about 140 and 115 mW at 3.5 and 3 A from AR-4-TSLDAs and AR-5-TSLDAs, respectively.

CW measurements were also attempted, but, since devices are mounted p-side up, the thermal management is very poor. The devices could be measured under CW operation up to a current of 450 mA, obtaining 5-mW output power, which is approximately 20% of the power obtained under pulsed operation at correspondingly low injection current levels. To operate such devices under CW operation, it will be necessary to improve the thermal management. This can be achieved by mounting the devices p-side down, improving the metal contact and bonding and package the device on a thermally controlled heat sink.
width at half-maximum (FWHM) is approximately 30° for all devices. The only difference between the far-field profiles is that those measured from the arrays present more prominent shoulders. This appreciable background illumination is attributed to rays traveling at wide angles crossing the active and passive regions between the injection contacts of the elements in the arrays. To verify the above statement and, thus, eliminate such wide-angle radiation, arrays with individual elements with separate output facets were fabricated and characterized. A separation (S = 10 μm) of three to four times the carrier diffusion length (L ~ 3 μm) was considered to be sufficient to completely separate the elements. As demonstrated by the improved far-field profiles presented in Fig. 5(b), the wide-angle rays were efficiently attenuated by the unpumped regions between the elements in the arrays. All of the experimental curves obtained from the devices presented here are validated by theoretical far-field intensity profiles obtained from in-house-developed ray models [11]. As a representative example, the experimental and theoretical lateral far-field pattern obtained from 4-T-SLDAs at different injection currents under pulsed and quasi-CW operation are plotted in Fig. 6, noting that the patterns are similar.

The characterization of the near field provides information on device quality and on the uniformity of the material and the injection profile. The experimental near-field intensity profiles detected from N-TSLDAs with N = 3, 4, and 5 at different current densities are presented in Fig. 7. From the uniformity and absence of interference effects in the measured profiles, it is possible to infer that, as expected, the individual elements in the arrays are operating independently. In addition, the peaks of the intensity profiles are at the same level for all arrays, indicating a uniform distribution of carriers across the array. The theoretical results obtained from the model [11] closely match the experimental profiles, as shown in Fig. 8, for the case N = 4.

Spectral measurements were taken using an optical spectrum analyzer (ANDO AQ6317B). Spectra measured from 4-T-SLDAs and from individual TSLDs at J = 3 kA · cm⁻² are compared in Fig. 9(a) (0.1-nm resolution). These results indicate that the arrays remain broadband, with essentially unmodulated spectrum. Thus, the characteristics of the arrays are similar to those of individual SLDs [9]: the FWHM spectral width is Δλ = 18 nm, corresponding to Lₑ = 0.66(λ₁/Δλ) = 35 μm coherence length, with <0.1-dB modulation. The modal
spacing was estimated to be approximately 0.1 nm from the intensity ripple at the peak of the measured spectrum (0.01-nm resolution) [see Fig. 9(b)], which is in agreement with the theoretical estimate of 0.119 nm [9].

IV. CONCLUSION

The experimental and theoretical characterization of arrays of tapered super-luminescent diodes was presented. Output powers in excess of 2.7 W with 10% W-P efficiency were obtained from AR-coated arrays of tapered super-luminescent diodes. The output power measured from the arrays was found to be scaling almost exactly with the number of elements in the array. This observation confirms that the individual elements are working independently, as demonstrated also by the near and far radiation pattern characteristics of the devices. To achieve robust CW operation, it will be necessary to improve the packaging and thermal management of the devices. The output spectra measured from these high-power arrays are essentially ripple-free, with a negligible modulation of <0.1 dB.

REFERENCES