Financial Crises and Monetary Policy: Evidence from the UK

Christopher Martin
c.i.martin@bath.ac.uk
Department of Economics,
University of Bath, UK

and

Costas Milas
costas.milas@liverpool.ac.uk
Management School,
University of Liverpool, UK

and

Rimini Centre for Economic Analysis, Rimini, Italy

June 2012

Abstract
We analyse UK monetary policy using monthly data for 1992-2010. We have two main findings. First, the Taylor rule breaks down after 2007 as the estimated response to inflation falls markedly and becomes insignificant. Second, policy is best described as a weighted average of a “financial crisis” regime in which policy rates respond strongly to financial stress and a “no-crisis” Taylor rule regime. Our analysis provides a clear explanation for the deep cuts in policy rates beginning in late 2008 and highlights the dilemma faced by policymakers in 2010-11.

Keywords: monetary policy, financial crisis

JEL Classification: C51, C52, E52, E58

* We have benefitted from the comments of three anonymous referees and the Editor of this Journal
1. Introduction

The global economic crisis that began in 2007 has presented a series of severe challenges to monetary policy. Deep and rapid reductions in output opened up an output gap of over 5% in many countries. Profound shocks to the financial system disrupted the transmission mechanism linking monetary policy to the real economy and created fears for the stability of the system. Objections have been raised to low and stable inflation being the main aim of monetary policy and dissatisfaction has been expressed with the New Keynesian and DSGE models that provided the theoretical underpinning for that aim. In this context, it would not be surprising if the behaviour of policymakers had changed during the crisis.

This paper explores the interest rate setting behaviour of monetary policymakers in the UK using monthly data for the period 1992-2010. We have two main findings. First, although policymaking can be described using a simple Taylor rule in the period before the 2007 financial crisis, the Taylor rule then breaks down. The estimated response of the policy rate to inflation falls markedly and becomes insignificant, while the estimated response to the output gap is sharply reduced. Second, policy rates over the period from 1992 can best be described as a weighted average of two regimes, a “financial crisis” regime and a “no-crisis” regime, where the weights on these regimes reflect the probability of a financial crisis. The no-crisis regime is a conventional Taylor rule, whereas the financial crisis regime has a reduced response to the output gap, a strong response to measures of financial stress but no response to inflation.

This model gives a plausible account of UK monetary policy. The no-crisis regime is dominant in 1992-2007, explaining the success of the Taylor rule over that period. But the onset of the major financial crisis in 2007 led to a marked change:
the policy rate ceased to respond to inflation and the weight on the output gap fell as financial stress became the dominant influence on UK monetary policy. On this account, the sharp fall in interest rates beginning in late 2008 reflected difficulties in financial markets and the urgent need for policy measures to respond to the crisis. The rapid fall in the policy rate occurred despite inflation being above target and exceeding 3% for much of the crisis period; in our view, this explains the failure of the Taylor rule after 2007. This account also highlights the dilemma facing policymakers in early 2010. The no-crisis regime increasingly pointed to higher policy rates through early 2010 to the end of our sample in July, driven by persistently high rates of inflation. By contrast, our measure of financial stress pointed to a continuation of the financial crisis and so argued for a continuation of the policy of exceptionally low interest rates.

The paper is structured as follows. In section 2, we estimate a simple Taylor rule representation of monetary policy. We show that estimates of this model using a sample that ends in 2007 conform to expectations with a response to inflation in excess of unity and a strong response to the output gap. Estimates that use the full sample that ends in 2010 are very different. Although the crisis period represents less than 20% of the sample, the estimate on inflation becomes insignificant and the point estimate is negative. The response to output remains significant but is more than halved. We detect a structural break around the time the crisis began.

In section 3, we investigate whether the addition of measures of financial stress to a Taylor rule gives more satisfactory estimates. Some writers, most prominently Curdia and Woodford (2009), have suggested that including the determinants of credit spreads in a policy rule may be optimal in the presence of financial frictions. We use two measures of financial stress as determinants of credit
spreads. Our first measure is a composite index of financial stress compiled by the IMF, providing a broad spectrum measure of stress across money, foreign exchange and equity markets in the UK. Given that the recent crisis originated in the US, our second measure is the US Financial Stress Index provided by the Federal Reserve Bank of Kansas City. \(^1\) We find that inclusion of these measures in a Taylor rule does not give satisfactory estimates. We continue to detect a structural break and still observe a marked reduction in the estimated response to inflation after 2007. From this we conclude that no model with a constant response of interest rates to inflation, the output gap and financial stress can explain UK monetary policy over 1992-2010.

This evidence suggests that models of monetary policy must allow for changes in the behaviour of policymakers. Accordingly in section 4, we develop a model in which the policy rate is a weighted average of two alternative policy regimes and where the weight of these regimes reflects the probability of a financial crisis. We find that this model provides a satisfactory explanation of UK monetary policy and that the estimates are econometrically superior to those of the constant parameter policy rules considered above. We find a strong response to inflation in the no-crisis regime but no response in the financial crisis regime. Our estimates suggest a strong response to the output gap in the no-crisis regime and a much weaker response in a crisis. We find a strong response to measures of financial stress in the crisis regime but none in the no-crisis regime. Section 5 concludes the paper.

2. Taylor Rules and the Financial Crisis

\(^1\) Other measures of financial stress include a composite world FSI, as well as an alternative UK FSI (Slingenberg and de Haan, 2011).
In this section we present evidence on a Taylor (1993)-type rule model of monetary policy using monthly data for the period 1992M10-2010M7. Following the literature on empirical policy rules we use a simple partial adjustment process to capture interest rate dynamics:

\[i_t = \rho i_{t-1} + (1 - \rho) \hat{i} \]

Where \(i \) is the nominal policy rate and \(\hat{i} \) is the desired steady-state nominal policy rate. We assume the steady-state policy rate is set with reference to expected inflation and output gaps one period ahead\(^2\). The appropriate mapping from a time period in a theoretical model to a real-world time interval is unclear, but we follow convention in interpreting a time period in the underlying theoretical model as representing three calendar months. We therefore assume that policymakers respond to forecasts of inflation and the output gap over the coming quarter, giving

\[\hat{i}_t = \bar{\pi} + \rho_{\pi} \sum_{k=1}^{3} (E_{i-1} \pi_{t+k} - \pi^T) + \rho_y \sum_{k=1}^{3} (E_{i-1} y_{t+k}) \]

where \(\bar{\pi} \) is the equilibrium nominal policy rate, assumed constant, \((\pi - \pi^T) \) is the inflation gap, the difference between the targeted rate of inflation and the inflation

\(^2\) This policy rule can be shown to be optimal in a structural model where the real interest rate affects aggregate demand with a one-period lag and where aggregate demand affects inflation with a similar lag (eg Svensson, 1997).
target and y is the output gap. The assumption of a 3-month horizon makes our specification similar to models estimated on quarterly data in which policymakers react to expected inflation and output in the next period. Combining (1)-(2), our empirical model is

$$i_t = \rho_i i_{t-1} + (1 - \rho_i) \{ \bar{E} + \rho \sum_{k=1}^{3} (E_{t-1} \pi_{t+k} - \pi_T) + \rho_y \sum_{k=1}^{3} (E_{t-1} y_{t+k}) \} + \xi_t$$

where ξ is an error term.

We measure i using the policy rate set by the Bank of England. For π, we use the RPIX measure of the inflation rate from 1992-2003 and the CPI inflation rate for 2004-2010; this matches the inflation rate targeted by monetary policy at different dates. Correspondingly, the inflation target is 2.5% for the 1992-2003 period and 2% for 2004-2010. The output gap, y, is constructed as the proportional difference between an ex-post measure of monthly GDP (available from the National Institute of Economic and Social Research) and its Hodrick and Prescott (1997) trend. Figure 1 plots these data.

Column (i) presents Generalised Method of Moments (GMM, see Hansen, 1982) estimates of (3) using monthly data for 1992M10 to 2010M7. We treat all variables as endogenous and use the first four lags of each as instruments.

3 We experimented with other values of k as policy-makers may adjust their policy horizon in periods of financial stress; we obtained similar results to those reported below.

4 To tackle the end-point problem in calculating the Hodrick-Prescott trend (see Mise et al, 2005a,b), we applied an autoregressive AR(n) model (with n set at 4 to eliminate serial correlation) to the output measure. The AR model was used to forecast twenty-four additional months that were then added to the output series before applying the Hodrick-Prescott filter. In calculating the filter, we use the Ravn and Uhlig (2002) adjustment.
exploiting the moment restrictions implied by (3). We find no evidence of a monetary policy response to inflation. The estimate of ρ_π is insignificant and the point estimate is negative: $\rho_\pi = -0.76$. We find a significant response to the output gap, $\rho_y = 1.12$, estimate the equilibrium nominal interest rate to be 4.8% and find the usual high degree of interest rate smoothing, $\rho_i = 0.93$. The estimates fail a test of parameter stability as the Quandt-Andrews breakpoint test detects a single structural break, dated at 2007M4.

These estimates are in marked contrast to estimates of Taylor rules using data from before 2007, which generally find a response to inflation in excess of unity. One prominent explanation of this change is a shift in UK monetary policy to reflect a lesser emphasis on inflation. This is consistent with the most dramatic movements in interest rates in more than a generation, the rapid and deep cuts in late 2008, occurring when inflation was above target. The remainder of Table 1 explores this possible explanation in more detail. Column (ii) presents GMM estimates of (3) using monthly data for 1992M10 to 2007M4, terminating our sample at the break point detected in column (i). Comparing columns (i) and (ii), the estimated response to inflation in the pre-2007 period is much higher and satisfies the Taylor principle. The response to output is also stronger in the pre-2007 period, but there is no significant change in the equilibrium nominal interest rate or the degree of interest rate smoothing. There is no evidence of a structural break in this sample. These

5 Alternative lag lengths were considered; 4 lags gave the lowest value of the J-test

6 The finding of a single structural break may be questionable. Since the Quandt-Andrews test has been found to be unreliable at the extremes of the sample, it is usual to trim 15% of observations from the start and end of the sample. This trimming excludes the period from September 2008 when the financial crisis entered its most intense phase. We also ran the Quandt-Andrews test with trimming rate of 5%; in this case two structural breaks were detected, in October 2008, and again in April 2007. There are too few observations on the post-Lehmann period in our sample to permit estimation of a separate policy rule for this period.
estimates are consistent with other policy rule estimated for the pre-2007 period (e.g. Martin and Milas, 2004, Mihailov, 2005).

Column (iii) of Table 1 presents GMM estimates of (3) using monthly data for 2007M5-2010M7. The estimates in columns (i) and (iii) are similar and in sharp contrast to those in column (ii). This is striking since column (i) is estimated using a sample largely drawn from the pre-2007 period used in column (ii). There is a marked change in the estimates for the 2007-2010 sample; the response to inflation is insignificant with a negative point estimate, the response to output is sharply lower as is the equilibrium nominal interest rate. Columns (iv) and (v) repeat columns (ii) and (iii) but with an alternative break point in August 2007, the consensus date for the onset of the financial crisis. The estimates are similar, showing that the conclusions from Table 1 are robust to alternative dates for the change in monetary policy.

3. Augmented Taylor Rules

Table 1 reveals a shift in UK monetary policy dating from the onset of the financial crisis, after which time the Taylor Rule no longer provides a plausible account of UK monetary policy. This section considers whether adding variables that reflect the financial crisis to the Taylor Rule can deliver a more satisfactory account of monetary policy.

Some analyses of optimal monetary policy in New Keynesian models with financial frictions (e.g. Curdia and Woodford, 2009, Teranishi, 2009) suggest the Taylor Rule should be augmented by the determinants of credit spreads between
policy rates and the interest rates that affect the behaviour of the private sector7. Intuitively, since aggregate demand depends on private sector borrowing rates, a widening of spreads between these and policy rates implies a lower policy rate is required to deliver desired output and inflation rates. Since the financial crisis saw a dramatic widening in credit spreads, exclusion of the determinants of these credit spreads from (3) may explain the poor performance of the estimated Taylor rules in Table 1.

Incorporation of credit spreads implies an augmented policy rule of the form

$$i_t = \rho_0 i_{t-1} + (1 - \rho_1)(\tilde{i} + \rho_2 \sum_{k=1}^{3} (E_{t-1} \pi_{t+k} - \pi^T) + \rho_3 \sum_{k=1}^{3} (E_{t-1} y_{t+k}) + \rho_4 \mu) + \varepsilon_t$$

where μ are factors that reflect credit spreads. We use two alternative measures for this. Our first measure is the IMF index of financial stress in the UK (Balakrishnan et al, 2009). This index is a composite of the TED, term and corporate debt spreads, returns and volatility in equity markets and exchange rate volatility, providing a broader measure of stress in the financial sector than the other two measures. Our second measure is the Federal Reserve Bank of Kansas City Financial Stress Index (see Hakkio and Keeton, 2009)8. These measures are shown in Figure 2. These alternative measures of financial stress follow a similar pattern.

7 In other models, optimal policy rates also reflect factors relevant to the external finance premium (such as the cost of monitoring loans).

8 This is a composite index of the 3-month LIBOR/T-Bill spread, the 2-year swap spread, the Aaa/10-year Treasury spread, the Baa/Aaa spread, the off-the-run/on-the-run 10-year Treasury spread, the high-yield bond/Baa spread, the consumer Asset-Backed Securities/5-year Treasury spread, the correlation between returns on stocks and Treasury bonds, the implied volatility of overall stock prices (VIX), the idiosyncratic volatility of bank stock prices and the cross-section dispersion of bank stock returns.
Both indices rise sharply in July 2007 and late 2008\(^9\). They rise during the Russian debt default of 1998 and the dot-com crash of 2000. However only the IMF index increases in late 1992 following the exit from the ERM; this is not surprising since the Kansas City index is US-specific and, unlike the IMF index, does not include exchange rate volatility.

Estimates of (4) for the whole period are reported in panel A) of Table 2\(^10\). Although estimates of \(\rho_\mu\) are all significant and correctly-signed, the model is not successful. Estimates of \(\rho_\pi\) are broadly similar to those in Table 1, with only one significant response to inflation and none exceeding unity and a structural break is detected in both specifications\(^11\). Panels B) and C) present estimates of (4) on separate pre- and post-2007 samples where the sample split is dated at May 2007, the break point estimated in Table 1. There are sharp differences in estimated parameters between these sub-samples. In the pre-2007 sample, estimates of \(\rho_\mu\) are insignificant, while the other estimates are broadly similar to those in column (ii) of Table 1. This confirms that the simple Taylor rule in (3) provides a good explanation of UK monetary policy prior to 2007, in line with previous evidence. In the post-2007 sample, by contrast, estimates of \(\rho_\mu\) are all significant and the

\(^9\) The correlation between the IMF measure of financial stress and the US Financial Stress Index (from the Federal Reserve Bank of Kansas City) is 0.84.

\(^{10}\) The sample size in Table 2(i) is smaller than in Table 1 as the IMF stress index is available until October 2009.

\(^{11}\) The estimated break points differ, varying between November 2006 and November 2008, possibly reflecting the limited number of observations available since the onset of the financial crisis.
estimated responses to inflation are all insignificant. Panel D) of Table 2 emphasises this point by presenting estimates of (4) that exclude the inflation term12.

4. A Switching Monetary Policy Rule

From Tables 1 and 2, it is clear that any plausible account of UK monetary policy since 1992 must allow for structural breaks and parameter change. Based on the estimates in Tables 1 and 2, one might assume that policymakers followed a conventional Taylor rule from 1992-2007 but then switched to an alternative linear policy rule that includes financial stress but not inflation. This implies the model

\begin{align}
(5a) \quad i_t &= \rho_1 i_{t-1} + (1 - \rho_1) [\bar{I} + \rho_\pi \sum_{k=1}^{3} (E_{t-1} \pi_{t+k}) - \pi^T] + \rho_\gamma \sum_{k=1}^{3} (E_{t-1} \gamma_{t+k})] + \epsilon_i \\
(5b) \quad i_t &= \rho_1 i_{t-1} + (1 - \rho_1) [\bar{I} + \rho_\beta \sum_{k=1}^{3} (E_{t-1} \beta_{t+k}) + \rho_\mu \mu_t] + \epsilon_i
\end{align}

12 Similar results are obtained using a breakpoint in November 2006; the other breakpoint (in November 2008) detected in Panel A) implies a post-crisis sample too small to allow sensible estimates for this regime.
However the estimates might also be consistent with a more flexible model of monetary policy given by

\[(6) \quad i_t = \phi_t R_t + (1 - \phi_t) R_{nc}\t\]

where \(\phi_t\) is the probability of there being a financial crisis at time \(t\) and

\[R_{\theta_t} = \rho_{\theta_t}i_{t-1} + (1 - \rho_{\theta_t})\left[\bar{r}_\theta + \rho_{\theta}\sum_{k=1}^{3}(E_{t-\theta \pi_{t+k}} - \pi^T) + \rho_{\theta}\sum_{k=1}^{3}(E_{t-1}\gamma_{t+k}) + \rho_{\theta}\mu_t\right]\]

where \(\theta \in \{c, nc\}\) and \(c\) and \(nc\) denote the crisis and no-crisis policy regimes respectively. We model the probability of a crisis as

\[(7) \quad \phi_t = Pr\{\mu_t > \mu^0\} = \frac{1}{1 + e^{-\gamma(\mu_t - \mu^0)\sigma_\mu}}\]

In (6), the policy rule is a weighted average of crisis and no-crisis policy regimes, each similar to (4) above, where the weight on these alternative policy rules is the probability of there being a financial crisis. This probability is modelled as a logistic function in (7), where \(\mu^0\) is the threshold value of \(\mu\) above which a crisis is triggered.

The model in (6)-(7) has a number of advantages when compared to the model in (5). First, it is a more general model; (6) simplifies to (5) if \(\phi_t = 0\) before the financial crisis began and \(\phi_t = 1\) thereafter. Second, equation (6) endogenises switches between policy regimes in response to financial crises, in contrast to the
exogenous switch between regimes in (5). Third, the model in (6) allows for multiple switches, thus allowing for crisis periods before the onset of the 2007 financial crisis (for example in the late 1990s or following the exit from the ERM in 1992). Fourth, we can date the beginning and end of crisis periods by examining when μ rises above and then falls below the threshold value μ^0. And fifth, (7) allows us to estimate these threshold values.

The model in (6)-(7) is prompted by the econometric estimates above. However there are several theoretical arguments that suggest that switches in policymaking in response to a financial crisis might be optimal13. Cecchetti and Li (2008) analyse a model with capital adequacy requirements in the financial sector. They show that the optimal policy rule switches between alternative Taylor rules depending on whether this constraint binds. Cohen-Cole and Marinez-Garcia (2008) embed this analysis within a DSGE framework and confirm the state-dependent nature of the monetary policy rule. Interestingly, they find that the optimal Taylor-Rule weight on inflation is negative in a financial crisis and that the optimal response to output is lower in this regime; both these features are apparent in our estimates.

Bauducco et al (2008) propose a switching policy rule in response to a financial crisis in which policymakers follow a Taylor rule similar to (1) above unless the rate at which firms become bankrupt exceeds a threshold value, in which case policymakers switch to an augmented Taylor rule in which the unexpected increase in the rate of bankruptcy is added to the policy rule. In the context of an articulated DSGE model, they argue that this switching rule returns the economy to equilibrium.

13 Evidence from Threshold VAR models (eg Li and St-Amant, 2010) finds a differing response of output and inflation gaps to shocks when there is a financial crisis. Since nonlinearities in macroeconomic relationships imply a nonlinear optimal monetary policy rule, this also suggests that a policy rule such as (6) may be optimal.
faster than if the simple Taylor rule is always used. The switching rule allows policymakers to stabilise the volatility of future inflation and output, trading this off against increased volatility in the short-term. This analysis is similar in spirit to Bean (2004), who develops a DSGE-based model in which financial crises act as a negative shock to total factor productivity and where the size of the shock is greater if the level of outstanding debt is higher.\(^{14}\)

Freixas et al (2010) argue that policymakers should reduce interest rates following an adverse shock to liquidity in the inter-bank market and that “a failure to cut interest rates during a crisis erodes financial stability by increasing the risk of banks runs”. This argument for a switch in policy in response to a crisis in the interbank market is clearly relevant to the UK, where these markets were severely disrupted from mid-2007 to mid-2009, with a particularly intense phase in the 3 months after the events of October 2008.\(^{15}\)

Milas and Naraidoo (2012) develop a financial conditions index and test its significance in a Taylor Rule for the European Central Bank (ECB). The financial conditions index, which pools information from the stock, bond and exchange rate markets, improves the fit of the ECB policy rule both in-sample and out-of-sample. Castro (2011) finds ECB policy behaviour is affected by a financial stress index but that the interest rate decisions of the Fed or the Bank of England are not.

After initial experimentation with a full specification, we were able to impose a series of restrictions that increased the precision of our estimates. We imposed: (a)

\(^{14}\) It is also consistent with the observation that “an aggressive easing of policy is optimal in response to adverse financial market shocks” in these models (de Fiore and Tristani, 2008).

\(^{15}\) Schmitt-Grohe and Uribe (2010) propose a switching monetary policy rule in response to a possible liquidity trap. Policymakers follow a Taylor-like rule unless inflation falls below a threshold value; if this happens, they switch to a rule that keeps interest rates low for a specified period before gradually increasing. This is perhaps less relevant to the UK case.
\[\rho_{nc\mu} = 0 \] (implying no policy response to financial stress in the no-crisis regime); (b) \[\rho_{c\pi} = 0 \] (implying no policy response to inflation in the crisis regime); and (c) \[\rho_{ci} = \rho_{nci} \] (implying the same rate of interest rate smoothing in both regimes);

These restrictions are broadly consistent with the estimates in Tables 1 and 2. \(^{16}\)

Then simplifies to

\[i_t = \rho_{i} i_{t-1} + (1 - \rho_{i}) \{ \phi R_{ct} + (1 - \phi_{n})R_{nc}\} \]

where

\[R_{ct} = \bar{c}_{t} + \rho_{cy} \sum_{k=1}^{3} (E_{t-1}y_{t+k}) + \rho_{c\mu} \mu_{t} \] and

\[R_{nc} = \bar{nc}_{t} + \rho_{nc\pi} \sum_{k=1}^{3} (E_{t-1}\pi_{i+t+k} - \pi^{T}) + \rho_{nc\gamma} \sum_{k=1}^{3} (E_{t-1}y_{i+t+k}) \].

Estimates of (7)-(8) are presented in Table 3. Column (i) presents estimates of (7) and (8) using the composite IMF index of financial stress, while column (ii) has estimates using the Kansas City index. The flexibility offered by this model is reflected in a superior econometric performance. Each of the specifications in Table 3) outperform their counterparts in Panel A) of Table 2 in that they have a closer fit to the data and do not fail the test for parameter stability. The parameter estimates of the no-crisis regime are sensible. The estimated response to inflation satisfies the Taylor principle. The estimated responses to output are both significant and exceed

\(^{16}\) We also follow Granger and Teräsvirta (1993) and Teräsvirta (1994) in making \(\gamma^{\mu} \) dimension-free by dividing it by the standard deviation of the indicator of credit spreads \(\mu_{t} \). van Dijk et al. (2002) argue that the likelihood function is very insensitive to \(\gamma^{\mu} \), suggesting that precise estimation of this parameter is unlikely. For this reason, we run a grid search in the range [0.1, 250] and fix the \(\gamma^{\mu} \) parameter to the one that delivers the best fit of the estimated models.
unity. For the crisis regime, the estimated responses to output are all significant but smaller than in the no-crisis regime. The estimated responses to financial stress are all significant and correctly signed. In each case, the implied impact of financial stress on interest rates is substantial, implying a sharp reduction in the policy rate after August 2007, especially at the height of the crisis in late 2008. The estimated natural rate of interest is somewhat lower in the crisis period, but the difference is not statistically significant.

The estimated regime boundaries are shown superimposed on the financial stress indices in Figure 2. The UK-specific IMF measure reveals financial crises in the latter part of the 1990s, from June 1998 to February 1999 (following the Russian default) and then from April to September 2000 (the bursting of the dot-com bubble). There is also an earlier crisis from November 1992 to March 1993. These are then dwarfed by the financial crisis that begins in mid-2007. The US-based Kansas City index also detects the events of 1998-2002 but suggests these constitute a single period of crisis rather than a series of shorter crises. Again, these earlier crises are dwarfed by the recent financial crisis.

The implications of our estimates are shown in Figure 3 which compares the actual policy rate with the counterfactual policy rates implied by the crisis and no-crisis regimes, using the estimates from column (ii) of Table 3. Our estimates

17 Baxa et al (2011) find that a number of Central Banks (including the Bank of England) respond to the IMF Financial Stress Index in a policy rule model where the response coefficients to inflation, output, and the financial index follow a random walk process.

18 Given by $\hat{i}^c_t = \hat{\rho}_1 i_{t-1} + (1 - \hat{\rho}_1) \{ \hat{i}_t + \hat{\rho}_{cy} \sum_{k=1}^{3} (E_{t-1} y_{t+k}) + \hat{\rho}_{cy} \mu_t \}$ and $\hat{i}^{nc}_t = \hat{\rho}_{nc} i_{t-1} + (1 - \hat{\rho}_{nc}) \{ \hat{i}_t + \hat{\rho}_{ncy} \sum_{k=1}^{3} (E_{t-1} (\pi_{t+k} - \pi^T)) + \hat{\rho}_{ncy} \sum_{k=1}^{3} E_{t-1} y_{t+k} \}$, respectively.
imply that monetary policy was largely determined by the crisis regime after August 2007. Reflecting this, it is apparent that the policy rate implied by the estimated crisis regime rate is much closer to the actual rate than the implied policy rate from the no-crisis regime in this period. The policy rate from the crisis regime falls sharply in November 2008, closely matching movements in the actual rate. By contrast, the implied no-crisis policy rate only begins to fall several months later. This inability to match the most dramatic movement in interest rates in over 30 years may well explain the poor performance of the Taylor rule since 2007, documented in Tables 1 and 2. The moments of the implied policy rates from the crisis regime are a better match to the moments of the actual policy rate than those of the no-crisis regime: the actual policy rate has a mean of 2.93% and standard deviation of 2.36, compared to 2.98% and 2.32% for the crisis regime and 3.26% and 2.41% for the no-crisis regime. However these differences in moments between regimes are not statistically significant.

Our estimates highlight the policy dilemma facing UK policymakers in early 2010, when both stress indices fluctuate close to their estimated threshold values, on the cusp between high- and low-stress states. This may help explain apparent disagreements within the MPC at this time with one member advocating a higher policy rates but another arguing for an extension to Quantitative Easing.

5. Conclusions
This paper explores the interest rate setting behaviour of monetary policymakers in the UK over the period 1992-2010. We have two main findings. First, although interest rate setting behaviour can be described by a simple Taylor rule in the period before 2007, the Taylor rule then breaks down. Second, policy rates over the period
from 1992 are best captured using as a nonlinear model in which policy switches between a no-crisis regime that resembles a simple Taylor rule and a crisis-regime in which there is not response to inflation but instead a powerful response to financial stress.

Our estimates raise the question of whether UK policymakers “abandoned” inflation targeting during the financial crisis. Although our estimates are suggestive, our model is not able to address that issue. Changes in the coefficients of a monetary policy rule can be due to a change in policymakers’ preferences or from a change in macroeconomic structure described by captured by aggregate demand and supply relationships. Although our results suggest there was a change in the monetary policy rule during the financial crisis, they tell us nothing about the causes of that change. Assessment of this requires joint estimation and analysis of aggregate demand and supply relationships alongside a monetary policy rule. That is a topic for future research.

References

Table 1: Estimates of Taylor Rules

\[i_t = \rho_1 i_{t-1} + (1 - \rho_1)\{\bar{t} + \rho_\pi \sum_{k=1}^{3} (E_{t-1} \pi_{t+k} - \pi^T) + \rho_y \sum_{k=1}^{3} (E_{t-1} y_{t+k})\} + \xi_t \]

<table>
<thead>
<tr>
<th></th>
<th>(i)</th>
<th>(ii)</th>
<th>(iii)</th>
<th>(iv)</th>
<th>(v)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho_i)</td>
<td>0.932 (0.04)</td>
<td>0.922 (0.05)</td>
<td>0.941 (0.04)</td>
<td>0.941 (0.02)</td>
<td>0.935 (0.03)</td>
</tr>
<tr>
<td>(\bar{t})</td>
<td>4.792 (0.27)</td>
<td>5.131 (0.19)</td>
<td>1.624 (1.17)</td>
<td>5.163 (0.18)</td>
<td>0.112 (1.38)</td>
</tr>
<tr>
<td>(\rho_\pi)</td>
<td>-0.760 (0.57)</td>
<td>1.453 (0.48)</td>
<td>-0.438 (1.01)</td>
<td>1.435 (0.48)</td>
<td>0.701 (1.15)</td>
</tr>
<tr>
<td>(\rho_y)</td>
<td>1.122 (0.39)</td>
<td>2.424 (0.41)</td>
<td>1.686 (0.46)</td>
<td>2.410 (0.39)</td>
<td>1.223 (0.50)</td>
</tr>
<tr>
<td>J-test</td>
<td>0.26</td>
<td>0.27</td>
<td>0.28</td>
<td>0.29</td>
<td>0.28</td>
</tr>
<tr>
<td>QA Break</td>
<td>0.00 (2007M4)</td>
<td>0.15</td>
<td>0.18</td>
<td>0.17</td>
<td>0.19</td>
</tr>
<tr>
<td>eqn s.e.</td>
<td>0.23</td>
<td>0.18</td>
<td>0.30</td>
<td>0.18</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Notes: Numbers in parentheses are standard errors. J stat is the p-value from a chi-square test of the model’s overidentifying restrictions. QA Break is the p-value of the Quandt-Andrews breakpoint test. We report the p-value of the maximum LR F-statistic using 15% observation trimming, calculated using Hansen’s (1997) method. The estimated breakpoint is reported where the test statistic is significant at 5%.
Table 2: Estimates of

\[i_t = \rho i_{t-1} + (1 - \rho_i) \{ \bar{I} + \rho_{\pi} \sum_{k=1}^{3} (E_{t-1,\pi_{t+k}} - \pi^T) + \rho_{y} \sum_{k=1}^{3} (E_{t-1,y_{t+k}}) + \rho_{\mu} \mu_t \} + \epsilon_t \]

<table>
<thead>
<tr>
<th></th>
<th>A) Full sample</th>
<th>B) Pre-crisis sample</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(i)</td>
<td>(ii)</td>
</tr>
<tr>
<td>2009M10</td>
<td>2010M7</td>
<td></td>
</tr>
<tr>
<td>(\mu)</td>
<td>IMF Financial Stress Index</td>
<td>US Financial Stress Index (Federal Reserve Bank of Kansas City)</td>
</tr>
<tr>
<td>measured as</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho_i)</td>
<td>0.930 (0.07)</td>
<td>0.920 (0.06)</td>
</tr>
<tr>
<td>(\bar{I})</td>
<td>4.310 (0.25)</td>
<td>4.570 (0.21)</td>
</tr>
<tr>
<td>(\rho_{\pi})</td>
<td>0.788 (0.29)</td>
<td>0.070 (0.21)</td>
</tr>
<tr>
<td>(\rho_{y})</td>
<td>1.061 (0.22)</td>
<td>1.026 (0.25)</td>
</tr>
<tr>
<td>(\rho_{\mu})</td>
<td>-0.527 (0.03)</td>
<td>-1.980 (0.20)</td>
</tr>
<tr>
<td>J-test</td>
<td>0.22</td>
<td>0.25</td>
</tr>
<tr>
<td>QA Break</td>
<td>0.00 (2008M11)</td>
<td>0.00 (2006M11)</td>
</tr>
<tr>
<td>eqn s.e.</td>
<td>0.19</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Notes: See the notes of Table 1.
<table>
<thead>
<tr>
<th></th>
<th>C) Post-crisis sample</th>
<th>D) Post-crisis sample: no Inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
<td>Sample: 2007M5</td>
<td>Sample: 2007M5</td>
</tr>
<tr>
<td>(ii)</td>
<td>Sample: 2007M5</td>
<td>Sample: 2007M5</td>
</tr>
<tr>
<td>(iii)</td>
<td>Sample: 2009M10</td>
<td>Sample: 2009M10</td>
</tr>
<tr>
<td>(iv)</td>
<td>Sample: 2010M7</td>
<td>Sample: 2010M7</td>
</tr>
<tr>
<td>μ</td>
<td>measured as: IMF Financial Stress Index</td>
<td>US Financial Stress Index (Federal Reserve Bank of Kansas City)</td>
</tr>
<tr>
<td>ρ_i</td>
<td>0.943 (0.06)</td>
<td>0.917 (0.06)</td>
</tr>
<tr>
<td>π</td>
<td>5.322 (1.10)</td>
<td>4.018 (0.83)</td>
</tr>
<tr>
<td>ρ_π</td>
<td>0.153 (0.91)</td>
<td>-0.590 (0.70)</td>
</tr>
<tr>
<td>ρ_y</td>
<td>0.830 (0.37)</td>
<td>1.146 (0.41)</td>
</tr>
<tr>
<td>ρ_μ</td>
<td>-0.730 (0.19)</td>
<td>-1.771 (0.40)</td>
</tr>
<tr>
<td>J-test</td>
<td>0.27</td>
<td>0.28</td>
</tr>
<tr>
<td>QA Break</td>
<td>0.37</td>
<td>0.30</td>
</tr>
<tr>
<td>eqn s.e.</td>
<td>0.25</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Notes: See the notes of Table 1.
Table 3) Estimates of

\[i_t = \rho_i i_{t-1} + (1 - \rho_i) \{ \phi R_{ct} + (1 - \phi) R_{nc} \} \]

where \(R_{ct} = \overline{t_c} + \rho_{cy} \sum_{k=1}^{3} (E_{t-1} y_{t+k}) + \rho_{c\mu} \mu_t \) and

\[R_{nc} = \overline{t_{nc}} + \rho_{nc}\pi \sum_{k=1}^{3} (E_{t-1} \pi_{t+k} - \pi^T) + \rho_{ncy} \sum_{k=1}^{3} (E_{t-1} y_{t+k}) \]

<table>
<thead>
<tr>
<th></th>
<th>(i)</th>
<th>(ii)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample:</td>
<td>1992M10</td>
<td>1992M10</td>
</tr>
<tr>
<td></td>
<td>2009M10</td>
<td>2010M7</td>
</tr>
<tr>
<td>(\mu)</td>
<td>IMF Financial Stress Index</td>
<td>US Financial Stress Index (Federal Reserve Bank of Kansas City)</td>
</tr>
<tr>
<td>measured as</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\rho_i)</td>
<td>0.935 (0.07)</td>
<td>0.925 (0.08)</td>
</tr>
<tr>
<td>(\overline{t_c})</td>
<td>5.010 (0.98)</td>
<td>4.190 (0.40)</td>
</tr>
<tr>
<td>(\rho_{cy})</td>
<td>1.209 (0.34)</td>
<td>1.070 (0.32)</td>
</tr>
<tr>
<td>(\rho_{c\mu})</td>
<td>-0.775 (0.08)</td>
<td>-2.526 (0.28)</td>
</tr>
<tr>
<td>(\overline{t_{nc}})</td>
<td>5.310 (0.26)</td>
<td>4.730 (0.28)</td>
</tr>
<tr>
<td>(\rho_{nc\pi})</td>
<td>1.870 (0.50)</td>
<td>1.300 (0.51)</td>
</tr>
<tr>
<td>(\rho_{ncy})</td>
<td>1.740 (0.59)</td>
<td>2.58 (0.60)</td>
</tr>
<tr>
<td>μ^o</td>
<td>1.270 (0.13)</td>
<td>0.091 (0.13)</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>J-test</td>
<td>0.27</td>
<td>0.29</td>
</tr>
<tr>
<td>QA Break</td>
<td>0.17</td>
<td>0.19</td>
</tr>
<tr>
<td>Eqn s.e.</td>
<td>0.17</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Notes: See the notes of Table 1.
Figure 1: UK policy rate, inflation and output gap

Interest rate

Inflation

Output gap
Figure 2: IMF Financial Stress Index and US Financial Stress Index (Federal Reserve Bank of Kansas City)

- IMF Financial Index
 - Threshold: 1.27

- US Financial Stress Index
 - Threshold: 0.091
Figure 3: Actual and implied regime-specific policy rates

Notes: Figure is based on estimates reported in Table 3(ii) (model with US Financial Stress Index, Federal Reserve Bank of Kansas City).