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Quantum catalysis? A comment on tunnelling 
contributions for catalyzed and uncatalyzed 
reactions 
 

Ian H. Williams* 
 

Appreciation for the contribution of nuclear quantum effects to chemical 
reactivity predates transition-state theory. Quantum corrections to rate 
constants for the reactions catalyzed by lactate dehydrogenase and formate 
dehydrogenase and the same reactions in water are estimated by Bell’s one-
dimensional approximate method and give tunnelling contributions to catalysis 
of 1.6 and 0.95, respectively. Published results for nuclear quantum effects, 
including both tunnelling and zero-point energies, estimated by the quantum 
classical path method for lactate dehydrogenase, carbonic anhydrase, 
glyoxylase I and lipoxygenase, together with the corresponding reactions in 
water, are reviewed: the respective contributions to catalysis are 0.66, 5, 1 and 
1. In the absence of better evidence that an enzymic rate enhancement is due 
to a significantly larger quantum correction for the enzyme-catalyzed reaction 
than for an appropriate uncatalyzed reference reaction, it is suggested that the 
term “quantum catalysis” should be used with caution and restraint. 
 
Keywords: tunnelling, nuclear quantum effects, catalysis, computational 
simulation 

 
QUANTUM CATALYSIS 

“Quantum catalysis” was the title given to a summary[1] of a symposium on Transition 
State Modelling in Catalysis held in 1998, and the term was employed in the sense of 
the application of quantum mechanics to understanding complex catalytic reactions, 
just as others had previously coined similar phrases, for example, “quantum 
biochemistry” [2] or “quantum pharmacology”;[3] the final sentence read, ‘The age of 
quantum catalysis has begun, and it is entering a period where we can expect 
exponential growth for years to come.’ In the sense intended, this prescient 
statement is indeed being fulfilled: a recent review of hybrid quantum/classical 
methods for biomolecular systems cited almost 200 applications published in this 
area in 2006-2007 alone,[4] and a recent issue of Theochem was devoted entirely to 
papers on theoretical modelling of heterogeneous catalysis.[5] Inasmuch as the term 
“quantum catalysis” simply telescopes the sense of “catalysis studied by means of 
quantum-mechanical methods”, its usage is not being questioned here.   

The term “quantum catalysis” has also recently been adopted by some in the field 
of quantum information theory to describe the triggering of a transformation by 
quantum entanglement.[6] I will not discuss this usage further.  

The concern of this paper is to query another recent usage of the term “quantum 
catalysis”, by some chemists and biochemists, to mean a rate enhancement due to 
the quantum character of nuclear motion in enzymic reactions.[7] In what sense may 
an experimentally observable rate acceleration be attributed to the particular choice 
of theoretical model used to describe the mechanism? To what extent does the 
evidence from computational simulation support the assertion that nuclear quantum 
effects (NQEs) contribute significantly to enhance the rates of enzyme-catalyzed 



reactions as compared with the same reactions in solution? In order to develop the 
discussion, it is necessary first to consider the relationship between quantum theory 
and the transition-state theory (TST) of chemical reaction rates, and then to consider 
some implications of attempts to quantify contributions to catalysis. Next, 

 
SIMPLE CONSIDERATIONS 

The implications of quantum theory for chemical reaction rates were recognised[8-12] 
before the formulation of TST[13-16] which, as pointed out clearly by Wigner,[17] was 
based strictly on classical mechanics.[18] In 1933, Bell discussed[19] the penetration by 
quantum-mechanical (QM) particles of a one-dimensional symmetrical Eckart 
potential energy barrier. He showed not only that there was a significant probability 
that light particles (e.g. protons) with energies lower than the height of the classical 
barrier would penetrate through from the reactant to the product side (tunnelling), but 
also that this probability was less than unity even for particles with energies above 
the barrier (non-classical reflection). This was in stark contrast with the classical-
mechanical result that particles with energies above the barrier would always pass 
but those below would always fail to do so. By combining his expression for the 
barrier permeability with a Boltzmann distribution of energies, he considered the 
temperature dependence of his calculated rate coefficient and pointed out that the 
QM activation energy (from a plot of log k against 1/T) was smaller than the actual 
barrier height, and that it was not constant (i.e. the Arrhenius plot of calculated rate 
coefficients deviated significantly from linearity at low temperatures).[19] Bell’s work 
was soon extended by Bawn and Ogden[20] to include the effects of zero-point energy 
and tunnelling upon reactions involving isotopes of hydrogen. 

Besides the Born-Oppenheimer separation of nuclear and electronic motions and 
the Boltzmann distribution of energies for reactant molecules, the key assumptions of 
TST are (a) that molecules pass through the transition state only once on their way to 
becoming products and (b) that motion along the reaction coordinate in the transition 
state (the saddle point on the potential energy surface, TS, in conventional TST) is 
separable from other motions.  

At the TS, each normal mode with positive curvature in the potential energy 

surface has a real vibrational frequency  and a classical partition function Qcl. 

Following Wigner,[12] the quantum correction factor  is the quantum partition function 
Qqu divided by Qcl, given by eq. (1); in this expression the origin of the quantized 
energy levels is the potential energy of the saddle point, where kB is Boltzmann’s 

constant and h is Planck’s constant, T is the absolute temperature and u = h/kBT. 

 = Qqu / Qcl   =   (eu/2/1 – eu) / u1   =   (u/2)/sinh(u/2) (1) 

The factor eu/2 appearing in the numerator is due to the zero-point energy of the 
vibrational mode that arises in consequence of the Heisenberg Uncertainty Principle: 
even in the lowest quantum state of a vibrational mode the momentum and the 
position of a molecule cannot both be known precisely. The molecular structure is 
delocalized in a manner described by the wavefunction for the vibrational mode.  

The single normal mode with negative curvature in the potential energy surface at 

the TS has an imaginary vibrational frequency ‡, and the Uncertainty Principle 
implies delocalization of the structure along this mode: there is a finite probability that 
the molecule tunnels through the barrier with energy less than that of the saddle 
point. Bell pointed out that it is “illogical to consider the tunnel effect as some special 
or additional quantum effect, or to ignore it, if we accept the existence of zero-point 
energy.”[21,22] Within the assumption of separability, the quantum correction for the 



reaction-coordinate mode is a factor ‡ which, for an inverted parabolic barrier, is 
given by eq. 2.[23] 

‡=  (|u‡|/2)/sin(|u‡|/2) (2) 

 

CATALYSIS 

To say that an enzyme catalyzes a chemical reaction is to imply that the rate is 
enhanced in the presence of the enzyme as compared to what it is in its absence; it 
does not mean simply that the enzyme is involved in the reaction mechanism. 
Quantifying the extent of catalysis requires that an appropriate uncatalyzed reaction 
is available for comparison. In Schowen’s words, ‘A catalyst must have a reaction to 
catalyze; catalysis implies an “uncatalyzed” or standard reaction.’[24] The choice of 
the standard (or reference) reaction is arbitrary, provided that it has the same 
stoichiometry as the enzyme-catalyzed reaction. It has been pointed out that 
understanding enzyme catalytic power is a process of successive redefinition of the 
reference reaction: ‘many discussions of the catalytic factors which contribute to 
enzymic activity constitute…simply a step-by-step redefinition of the standard 
reaction until the binding energy of the standard transition state becomes zero’.[24] 
When the reference reaction contains within it all the same features as the enzymic 
reaction, the catalysis is accounted for by those features, whatever they may be. 

From a theoretical point of view, a logical and meaningful choice is the reaction in 
water of the same reacting moieties with the same spatial disposition as occur in the 
enzymic mechanism. This excludes factors associated with bringing these moieties 
together, but allows a clear focus upon the important issue of how the protein 
environment affects the reactivity differently from the aqueous environment. A simple 
justification for comparing the rate of an enzyme-catalyzed reaction with the rate of a 
corresponding uncatalyzed reaction in water is that the natural environment of the 
enzyme is also aqueous: most biology occurs in water. 

It has been suggested recently that enzymes have evolved to catalyze hydrogen-
transfer reactions by means of quantum tunnelling; in other words, tunnelling is 
primarily responsible for the catalytic power.[25-28] If true, this implies that the quantum 

correction ‡ is much larger for the enzyme-catalyzed reaction than for an (arbitrarily 
chosen) uncatalyzed standard reaction. If the standard reaction is chosen to be that 
in water (as suggested above), this hypothesis can be tested very simply, within the 

assumption of separability of motion, by evaluating the one-dimensional factor ‡ for 
the reaction in each medium according to eq. 2, in which for a given temperature the 

only variable is the magnitude of the imaginary reaction-coordinate frequency, |‡|. 

The contribution of QM tunnelling to catalysis is the quotient (‡)enz / (‡)aq. 

Alternatively, more reliable estimations of the values of ‡ for catalyzed and 
uncatalyzed reactions may be made using more sophisticated theoretical methods. 

The published transactions of a recent Discussion Meeting[7] on the subject of 
“Quantum Catalysis in Enzymes” contain many interesting papers discussing 
evidence (e.g. kinetic isotope effects and deviations in Arrhenius plots) for significant 
contributions from tunnelling to rate constants in many enzyme-catalyzed reactions. It 
is noteworthy, however, that only one of these papers provides a comparison of 
(computer simulated) catalyzed and uncatalyzed reactions; it concludes that QM 
contributions are similar for reactions in enzymes and in solution and thus do not 
contribute to catalysis.[29] None of the other papers provides any positive evidence for 
tunnelling being primarily responsible for enzyme catalytic power, in the sense 



defined here, by demonstrating a greater value for ‡ in an enzyme-catalyzed 
reaction as compared with any standard reaction. Undeniably there are significant 
contributions from tunnelling to rate constants and kinetic isotope effects in many 

enzyme-catalyzed reactions, with substantial values for (‡)enz, but currently there 
does seem to be a paucity of evidence that NQEs contribute significantly to rate 
enhancements for these reactions as compared with any uncatalyzed reaction. 

It has been acknowledged that it is extremely difficult experimentally to study both 
catalyzed and uncatalyzed reactions with the same mechanism.[25,30] Notably, Finke 
and co-workers designed experimental systems specifically to test the hypothesis 
presented above; for a reaction with and without enzyme, they reported similar 
results for each of three criteria for tunnelling (magnitudes of a kinetic isotope effect, 
difference in activation energies and ratio of Arrhenius pre-exponential factors for 
isotopologous reactions) and concluded that QM tunnelling was not enhanced by the 
enzyme.[31,32] However, in the context of a critique of reference reactions for the 
assessment of tunneling in enzymic reactions, Schowen has pointed out that it is not 
logically necessary that enzymic enhancement of tunneling is always accompanied 
by observable changes in these three values, thereby maintaining an open verdict on 
the matter.[33] 

It is perfectly feasible to study both catalyzed and uncatalyzed reactions with the 
same mechanism by means of computational simulation.[34] It has been argued that a 
distinct merit of this approach is that it allows for a clear distinction between those 
contributions to catalysis that arise from differences in chemical mechanism between 
the enzymic reaction and its reference reaction in solution and those that arise 
specifically from differences in the protein and solvent environments.[35] We will now 
briefly review the results of comparisons of tunnelling contributions for catalyzed and 
uncatalyzed reactions by means of computational simulation. The first two examples 
below apply the simple treatment of eq. 2 to reactions for which the imaginary 
(transition) frequency of the TS has been computed both in an enzyme active site 
and in water by this author and his collaborators. The remaining examples are taken 
from the published work of other authors. 

 
EXAMPLE 1: LACTATE DEHYDROGENASE (LDH) 

Some years ago we performed hybrid QM/classical calculations to locate and 
characterise a family of six TSs for the reduction of pyruvate to lactate within the 

active site of LDH.[36] The mean value and standard deviation of |‡|enz for these first-

order saddle points was 834 ± 37 cm1 at the AM1/CHARMM22 level. We also 
characterized a single TS for reduction of pyruvate to lactate in water within an 
encounter complex of the substrate with a nicotinamide hydride donor and an 
imidazolium proton donor; the extent of the QM region was the same as in the 

enzymic reaction. The (previously unpublished) value of |‡|aq for the TS in aqueous 

solution was 573 cm1 at the AM1/TIP3P level. Inserting these frequencies into eq. 2 

yields (‡)enz = 2.25 and (‡)aq = 1.40 at 300 K. The contribution of QM tunnelling to 

catalysis is (‡)enz / (‡)aq = 1.6. 
 

EXAMPLE 2: FORMATE DEHYDROGENASE (FDH) 

Recently hybrid QM/classical calculations were performed to locate and characterise 
a family of ten TSs for the reduction of carbon dioxide to formate within the active site 

of FDH.[37] The mean value and standard deviation of |‡|enz for these first-order 

saddle points was 783 ± 12 cm1 at the AM1/OPLS-AA level.[38] A single TS for 



reduction of carbon dioxide to formate in water within an encounter complex of the 
substrate with a nicotinamide hydride donor and an imidazolium proton donor was 
also characterized; the extent of the QM region was the same as in the enzymic 

reaction. The value of |‡|aq for the TS in aqueous solution was 808 cm1 at the 

AM1/TIP3P level.[38] Inserting these frequencies into eq. 2 yields (‡)enz = 1.97 and 

(‡)aq = 2.08 at 300 K. The contribution of QM tunnelling to catalysis is (‡)enz / (‡)aq 
= 0.95. 
 
MULTI-DIMENSIONAL TUNNELLING 

The simple expression given in eq. 2 for the quantum correction in the reaction-
coordinate assumes that this mode is separable from the other (real) vibrations, 
which is valid only in the immediate vicinity of the saddle point where the potential 
energy is approximately quadratic. It has long been recognised that a simple one-
dimensional treatment is invalid whenever the de Broglie wavelength is large 
compared to the quadratic region.[39] The quantity u in eqs. 1 and 2 is equivalent to 
the ratio of the de Broglie wavelength to the Boltzmann-average vibrational amplitude 
at a given temperature:[40] in the two examples given above, values of |u‡| between 
2.7 and 4.1 were found at 300 K, corresponding to “small to moderate tunnelling” for 

which eq. 2 should estimate ‡ with “fair accuracy”.[21] Nonetheless, a multi-
dimensional treatment of NQEs would be preferable. 

Truhlar and co-workers have developed a plethora of approximate methods for 
multidimensional tunnelling[41] based upon a classical reaction coordinate, separate 
from all the other (quantal) degrees of freedom, with quantum and nonseparability 
effects included in a transmission coefficient. Ensemble-averaged variational 
transition-state theory with multidimensional tunnelling (EA-VTST/MT) has been 
applied with success to a number of enzymic reactions:[42-46] this method considers a 
range of different possible tunnelling paths, some close to the one-dimensional 
classical reaction path and others distant from it, at a range of different energies, to 
find the best compromise between path length and effective potential along the path 
in order to maximise the tunnelling. A recent book chapter reviewing the application 
of this method is entitled “Quantum Catalysis in Enzymes”,[46] but it does not discuss 
catalysis in the sense defined above. At the time of writing, no example has yet been 
published in which this method has been applied to an enzyme-catalyzed reaction 
and to the same reaction in water; the first publication of this nature is awaited with 
much interest. 

A different approach to NQEs on chemical reaction rates employs the centroid 
path integral method, in which a small number of atoms (often a transferring 
hydrogen together with the donor and acceptor) are quantised and treated as a 
closed ring of quasiparticles each experiencing a fraction of the external potential 
acting on the real particle. A practical approximation is Warshel’s Quantised Classical 
Path (QCP) method the QM partition function for the TS is obtained by running 
classical trajectories for the quasiparticles to find the probability distribution for their 
centre of mass.[47] The difference in activation free energies computed classically and 

by the QCP method provides an estimate for ‡ that includes both zero-point energy 
and tunnelling contributions inseparably. In view of Bell’s remark, quoted above, it is 
perfectly logical to consider both effects together. Similar methods have been 
recently reviewed by Gao and co-workers.[48] 
 
 



EXAMPLE 3: LDH AGAIN 

The reaction catalyzed by LDH was simulated by Hwang et al.[49] using a combination 

of the QCP and Empirical Valence Bond (EVB) methods. Quantum corrections (‡)enz 

= 82 and (‡)aq = 124 at 300 K were obtained. These values are substantially larger 
than those estimated above by means of the simple eq. 2, but the contribution of 

nuclear QM effects to catalysis is (‡)enz / (‡)aq = 0.66. Note that (a) this ratio 
includes both tunnelling and zero-point energy, (b) the QCP method would be 
expected to be more reliable for estimation of tunnelling at energies significantly 
lower than the effective barrier height, (c) the TS studied by these workers was 
dominated by hydride transfer whereas that studied by Williams and co-workers was 
for an alternative LDH mechanism with dominant proton transfer.[36,50,51] Note also 
that it is quite feasible for quantum corrections to make either positive, insignificant or 
negative contributions to catalysis.[52] 
 
EXAMPLE 4: CARBONIC ANHYDRASE 

Hwang and Warshel[53] applied the same EVB/QCP methodology to the proton-
transfer reaction catalyzed by carbonic anhydrase and estimated that NQEs 
contributed to lower the activation free energy for the enzymic reaction by about 1 

kcal mol1 more than for the same reaction in water at 300 K. This corresponds to 

(‡)enz / (‡)aq  5. Note that there was about an order of magnitude error in the 
computed value of kcat for the enzyme-catalyzed reaction. 
 
EXAMPLE 5: GLYOXYLASE I 

A similar approach was adopted by Åqvist and co-workers[54] in their study of the 
hydride-transfer reaction catalyzed by glyoxylase I: they found that the reduction in 

the activation free energy due to nuclear quantum effects was “almost identical” at  

2.5  0.2 kcal mol1 in both the enzyme and aqueous solution at 300 K. Thus 
quantum corrections enhance the rate by a factor of about 66 but do not contribute to 
catalysis. 
 
EXAMPLE 6: LIPOXYGENASE 

The EVB/QCP approach was used by Olsson et al.[55] in their study of hydrogen-atom 
transfer catalyzed by lipoxygenase. Once again, the contribution of NQEs to kcat was 
found to be “very similar” for the enzymic reaction and its counterpart in water, 

reducing the free energy of activation at 300 K by about 6 kcal mol1 in each case 

(corresponding to a factor of about 2  104) but with no additional rate enhancement 
caused by the enzyme over that found in aqueous solution. 
 
OVER THE BARRIER OR THROUGH THE BARRIER? 

Several discussions of the role of in QM tunnelling in enzymic reactions have been 
couched in terms of a dichotomy between mechanisms that take the transferring 
hydrogen either over the top of the classical potential energy barrier or else through it 
(for example, refs. 27,56-58). This language seems to imply that an enzyme has the 
capability to “choose” between a classical mechanism and a quantum mechanism, as 
if it could switch the quantum nature of any atom “on” or “off”. Tunnelling is not an 
alternative pathway that may be followed, as an option along with (say) a one-step or 
a two-step mechanism. For a reaction involving rate-determining hydrogen transfer, it 



may be that a much greater proportion of the reactive flux occurs at energies below 
the classical barrier for one mechanism as opposed to another, but one cannot say 
for either mechanism that a particular percentage of the reaction proceeds by 
tunnelling while the remainder proceeds over the barrier, as if some reactive events 
were quantum and others classical. In computational simulations, of course, one may 
choose to use a theoretical model that either does or does not include NQEs. Within 
a treatment that does include them, all mechanisms are QM and, for a given 
mechanism, all individual reactive events are QM, even those involving energies 
above the classical barrier height (in consequence of non-classical reflection).  

The notion of “over the barrier or through the barrier” may arise from thinking 
about the contribution of NQEs as a source of rate enhancement, in which the QM 
description of events corresponds to a faster catalyzed reaction and the classical 
description corresponds to a slower uncatalyzed reaction. This is not a fruitful way to 
consider the origins of enzyme catalytic power. Instead an enzyme-catalyzed 
reaction should be compared with a standard uncatalyzed reaction; the selection of 
the latter is arbitrary, although it may be argued that the same reaction in aqueous 
solution is an appropriate choice where possible. If computational simulations 
performed with and without inclusion of QM effects on the motions of the reacting 
nuclei indicate a larger role for quantum corrections in the enzyme than in water, then 
one may talk meaningfully about the contribution of tunnelling to catalysis. 
 
 
CONCLUSIONS 

Table 1 summarises the examples considered here of computational simulations for 
enzyme-catalyzed reactions and the same uncatalyzed reactions in water. These 
computational methods use microscopic theories based upon atomistic descriptions 
in which the comparison between the catalyzed and uncatalyzed reactions does not 
involve any adjustable parameters; they are not phenomenological models that 

merely provide a satisfactory fit to observed data. The ratios (‡)enz / (‡)aq are all 
very small values, regardless of whether they are obtained by means of the simple 
one-dimensional correction given by eq. 2 or by the sophisticated QCP method. For 
some reactions NQEs are slightly more significant in the enzymic environment and 
for some they are slightly more significant in the aqueous environment, but clearly 
their contribution to enzyme catalysis is not the dominant factor for any of these 
reactions. 

It is not in dispute that NQEs – primarily tunnelling – may contribute significantly to 
reducing the effective free energy of activation for a hydrogen-transfer reaction 
catalyzed by an enzyme. The question at issue is whether these effects contribute 
significantly more for an enzyme-catalyzed reaction than for the same uncatalyzed 
reaction in water. The results collected in Table 1 do not constitute compelling 
evidence in support of a significantly greater extent of tunnelling in the enzyme-
catalyzed reactions. It is entirely possible that a particular enzyme may indeed 
contain structural features that serve to enhance tunnelling relative to a reaction in 
the absence of the enzyme, but the (admittedly small) range of reactions considered 
here does not provide evidence for this happening. 

It is not universally accepted that the extent of enzyme catalysis should be 
determined by comparison with the same reaction in water. The key point of the 
present paper does not depend upon the particular choice of this as the standard 
uncatalyzed reaction, even though the examples considered here do so. It would be 



sufficient to demonstrate that an enzymic rate enhancement was due to (‡)enz / 

(‡)standard for any appropriate choice of standard reaction. 
Until suitable experiments can be performed, accompanied by computational 

simulations with reliable treatments of NQEs, for a wider selection of reactions 
catalyzed by enzymes and appropriate uncatalyzed reactions, it would perhaps be 
advisable to exercise great caution in the use of the term “quantum catalysis”. By all 
means let us employ QM methods to study catalysts, catalytic behaviour and enzyme 
mechanisms in computational simulations, and let us employ appropriate 
experimental methods as diagnostics for tunnelling. But in discussions of the origins 
of enzyme catalytic power, let us refrain from adopting any concept as a contributing 
factor unless it can be quantified; this voluntary restraint should include the possible 
contribution to catalysis that arises in computational simulations due to the quantum 
description of nuclear motions. 
 
 
Table 1. Quantum corrections and contributions to catalysis for catalyzed and 
uncatalyzed reactions at 300 K. 
 

reaction method (‡)enz (‡)aq (‡)enz / (‡)aq 
 
LDH eq. 2 2.25 1.40 1.6 
FDH eq. 2 1.97 2.08 0.95 
LDH QCP 82 124 0.66 
carbonic anhydrase QCP - - ~ 5 
glyoxylase I QCP 66 66 ~ 1 

lipoxygenase QCP 2  104 2  104 ~ 1 
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