The evolution of sex roles in birds is related to adult sex ratio

András Liker1,2*, Robert P. Freckleton1 and Tamás Székely3,4,5

1 Department of Animal and Plant Sciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
2 Department of Limnology, University of Pannonia, PO Box 158, 8201 Veszprém, Hungary
3 Biodiversity Laboratory, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
4 Department of Animal Behaviour, University of Bielefeld, PO Box 10 01 31 33501 Bielefeld, Germany
5 Department for Sociobiology/Anthropology, Johann-Friedrich-Blumenbach Institute for Zoology & Anthropology, University of Göttingen, Kellnerweg 6, D - 37077 Göttingen, Germany

* Correspondence should be addressed to A.L. (a.liker@sheffield.ac.uk)
Sex-role reversal represents a formidable challenge for evolutionary biologists, since it is not clear which ecological, life-history or social factors facilitated conventional sex roles (female care and male-male competition for mates) to be reversed (male care and female-female competition). Classic theories suggested ecological or life-history predictors of role reversal, but most studies failed to support these hypotheses. Recent theory however predicts that sex-role reversal should be driven by male-biased adult sex ratio (ASR). Using phylogenetic comparative analyses, we test this prediction for the first time. Consistent with theory, both mating system and parental care are strongly related to ASR in shorebirds: conventional sex roles are exhibited by species with female-biased ASR, whereas sex-role reversal is associated with male-biased ASR. These results suggest that social environment has a strong influence on breeding systems and therefore revealing the causes of ASR variation in wild populations is essential for understanding sex role evolution.

One of the fundamental patterns in animal social behaviour is that females tend to be the caring sex, whereas males compete for access to females. Our understanding of what determines these conventional sex roles is challenged by the reversal of sex roles in a number of organisms: the males contribute more to care than females, whereas the females compete for males. In sex-role reversed species the females are often larger and more ornamented than males, whereas the males may have specific adaptations for caring for eggs and young. Sex-role reversal is taxonomically widespread occurring in insects, fishes, amphibia and birds.

Sex-role reversal has been a formidable puzzle for evolutionary biologists ever since Darwin, because it is not clear why males under some circumstances provide most (or all) parental care, and why competition for mates should be stronger among females than among males. Previous hypotheses of sex-role reversal focused on specific ecological and life-history characteristics, such as temporal and spatial variation in food resources, offspring predation and breeding dispersal. Empirical evaluations, however, almost uniformly rejected these hypotheses. Indeed, the life histories and ecology of sex-role reversed species are so diverse that it is hard to imagine common environmental circumstances that have led to the evolution and
maintenance of sex-role reversal. Species with reversed and conventional sex roles may breed side-by-side sharing much of the environment. Examples include habitats as diverse as the Arctic tundra (phalaropes Phalaropus spp. versus calidrine sandpipers Calidris spp.) and tropical swamps (African jacana Actophilornis africanus versus lesser jacana Microparra capensis). Higher potential reproductive rates of females have been shown to correlate with more intense mating competition among females in species where only males care for the offspring, although this relationship does not reveal the ecological, life-history or social predictors that have facilitated the evolution of male care in the first place.

Recent theoretical models put breeding system evolution in a different perspective by showing that adult sex ratio (expressed here as the proportion of adult males in the adult population, ASR) has a major influence on mating competition, mating systems and parental behaviour. These models predict that the rarer sex is under selection to provide less care; for instance, male-biased ASR should facilitate male-biased parental care (henceforth, male care) and thus reversal of conventional parental roles, whereas female-biased ASR is predicted to favour female-biased care (henceforth, female care). Evolutionary changes in mating and parental behaviour are predicted to respond to ASR because if there are substantially more males in the population than females, males have low chances of finding a new mate. Under such circumstances the best strategy for a male may be to provide care for the offspring, rather than desert the female after copulation and face stiff competition in acquiring a new mate. Given that the male cares and the ASR is male-biased, the females can desert the brood and acquire new mates.

Testing these predictions in wild populations, however, has been challenging. The predictions are difficult to test in a single species, because most species do not exhibit sufficient variation in sex roles and ASR, although one component of sex roles, female social mating system, has been shown to correlate with ASR in dunnock Prunella modularis. A multi-species comparative approach is needed, in which the variation in sex roles is compared across a set of species that differs in ASRs. However, such tests have to date been limited by the lack of data on ASR, mating...
system and parental care from a group of organisms that exhibit both reversed and conventional sex roles.

Here we provide the first evidence that ASR correlates with parental care and social mating system consistently with the theoretical predictions using shorebirds (Scolopaci and Charadrii, sandpipers, plovers and allies). Shorebirds are eminently suitable for testing theoretical predictions of breeding system evolution, since they exhibit unusual diversity in mating system and parental care, including some of the textbook examples of sex-role reversal1,2,11. We carried out a comprehensive search in primary publications, reference books and online resources for data on ASR, social mating system and parental care, with special attention to species that have been reported to exhibit sex-role reversal. We tested whether ASR predicts mating systems and parental care using Phylogenetic Generalised Least Squares17,18. Although data on ASR from wild populations are difficult to obtain19, the information now available for shorebirds permits tests of the theoretical predictions using statistically robust sample sizes.

Results

Relationships between adult sex ratio and components of sex roles. ASR is significantly associated with social mating system: sex-role reversed species like most jacanas (Jacanidae) and phalaropes that exhibit female polygamy and female-female competition for mates typically have strongly male-biased ASR, whereas species with male polygamy such as Northern lapwing \textit{Vanellus vanellus} and ruff \textit{Philomachus pugnax} have female-biased ASR. The relationships between social mating system and ASR are significant when we use polygamy frequencies (Fig. 1a), and a robust proxy variable for mating system, polygamy scores (Fig. 1b).

Consistent with theoretical expectations, ASR also correlates with the relative contribution of sexes to parental care, since male care is associated with male-biased ASR (Fig. 1c). In addition, differences in the duration of care provided by males and females, another proxy for parental roles, are also significantly related to ASR (Fig. 1d).
Sensitivity analyses. These results are not sensitive to a specific phylogenetic hypothesis, or potentially confounding variables. The aforementioned results are highly consistent between alternative phylogenetic hypotheses and different branch length assumptions: the four key tests remain highly significant by using 100 randomly selected trees from the most recent avian phylogeny20 (Supplementary Fig. S1 online), or using alternative phylogenies of shorebirds (Supplementary Table S1 online).

We ascertained whether the genetic mating system of shorebirds may confound the relationships between ASR, social mating system and care. However, by adding extra-pair paternity (EPP) to the predictive models, the direction of relationship with ASR remains consistent in all four cases, remaining statistically significant (or marginally significant) in three out of four phylogenetically corrected correlations (mating system bias: \(r = -0.60, P = 0.06\); mating score bias: \(r = -0.71, P = 0.02\); parental care bias: \(r = 0.66, P = 0.03\); care duration bias: \(r = 0.43, P = 0.11, n = 10\) species in all analyses).

Collectively, the latter results strongly support the predicted relationships between ASR, mating system and parental care (Fisher's combined probability test, \(\chi^2 = 24.8,\) d.f. = 8, \(P = 0.002\)).

We also tested whether breeding density, the only ecological correlate of male care demonstrated previously21, could influence the mating system, parental care and ASR relationships. However, ASR remains strongly associated with both mating system and parental care when breeding density is added to the models (Supplementary Table S2 online).

ASR has been estimated using different methods in the field (see Methods), and we tested whether different estimation methodology may have biased the results. Nevertheless, by splitting the analyses into two subsamples (either using direct counts of breeding birds, or using ASRs estimated by all other methods, see Methods) both effect sizes and the direction of relationships remain consistent with those for the whole species set. The relationships remain statistically significant (or marginally significant) in most cases (Supplementary Table S3 online), and collectively provide a
strong support for the predictions (Fisher's combined probability test, \(\chi^2 = 46.6, \) d.f. = 16, \(P < 0.001 \)).

Furthermore, different detectability of the sexes, a potential confound of field estimates of ASR\(^{19} \), is not likely to bias our results: the more polygamous sex is expected to be more conspicuous due to elaborate plumage, displays and general activity\(^2 \), that would potentially bias ASR estimates towards the direction opposite to our findings (i.e. biasing ASR estimates toward the polygamous sex).

Sex-specific results. The relationships between mating system, parental care and ASR may be due to changes in behaviour of males, females or both sexes. We investigated these propositions by focusing on the behaviour of males and females in separate analyses. Intriguingly, the behaviour of both sexes responds to variation in ASR, since male-biased ASRs are associated with female polygamy and male care, whereas female-biased ASRs are associated with male polygamy and female care (Fig. 2).

Discussion

Taken together, here we show for the first time that ASR is strongly associated with both social mating system and parental care across bird species, and the explanatory power of the phylogenetically corrected models is relatively high (\(R^2 = 0.48 – 0.62 \)). Our results also reveal that both male and female behaviour show evolutionary responses to ASR, suggesting evolutionary flexibility in both mating and parental behaviour in both sexes. This is also reflected by the fact that flexible sex roles may exist even within a single species (e.g. Kentish plover *Charadrius alexandrinus*\(^{22} \), Temminck's stint *Calidris temminckii*\(^{23} \)). We propose that the evolutionary flexibility of both sexes to provide full care on their own, and variation in ASR among species are among the key factors that facilitate the evolution of diverse sex roles\(^{11,24} \).

Although in this paper we focused on sex role reversal, our results also show that ASR is related to sex roles in general: it is associated with mating and parental behaviour through the whole range of avian sex roles, from conventional to role-
reversed. We conjecture that ASR may influence other aspects of social behaviour. For example, in populations with biased sex ratios homosexual pairings may be more common, and biased sex ratios may also lead to cooperative breeding where the more common sex in the population postpones dispersal, stay in the family and provide help.

Further studies are needed to identify why ASR is variable across species. Biased ASRs may arise in several ways: there may be a bias in the primary sex ratio (i.e. sex ratio at conception), or males and females may have differential survival during development and maturation, or as adults. Recent studies suggest that offspring sex ratio at hatching is approximately 1:1 in many birds25, therefore sex biases are likely to emerge after birth.

It is important to emphasise that mating behaviour, parenting and sex ratios may have more dynamic relationships than currently acknowledged15,26,27. First, ASR can affect sex roles (see above), and conversely, reproductive behaviours can also influence mortalities and thus ASR. Following R. A. Fisher's arguments28 we note that mortalities emerging from sexual competition and parental care may influence the form and intensity of these feedbacks. On the one hand, if mortality from care provisioning is high in a population with male-biased or female-biased care, this would reduce the extent of ASR bias in the population. On the other hand, if sexual selection is costly, then this may generate a positive feedback between ASR and sex roles, so that ASR may shift toward more extreme bias15. It is conceivable, that populations can be locked in an unusual breeding system, because it is the best response to a biased ASR as generated by the breeding system itself.

Intense sexual competition and care provisioning have substantial energetic and mortality costs29,30, and thus likely that ASR and sex roles can evolve quickly and concurrently in ecological time scales, rather than in a sequential manner over evolutionary time scales (e.g. changes in ASR precedes changes in sex roles, or vice versa). We propose that these relationships have a complex dynamics and the dynamics itself may contribute to the immense diversity of sex roles and breeding systems in nature.
Operational sex ratio (the ratio of sexually active males to receptive females, OSR) is often used in the same context as ASR, although it has been suggested that this is mistaken15. OSR is only equal to ASR if the sexually active periods of adult males are identical with those of adult females. A population with male-biased ASR can exhibit female-biased OSR, and \textit{vice versa}. Whilst ASR is a demographic property of a population, OSR is also influenced by the mating and parental decisions of animals reflecting their “time in” the breeding pool and “time out”8,15. A significance of our present analyses is therefore to point out that a demographic property, the ratio of adult males and females, is closely correlated with mating and parenting behaviour in wild populations. ASR on its own, however, is unlikely to explain all subtle variation in mating system and parenting of animals, since these may also depend on a suite of other factors.

We propose two further lines of studies to investigate the influence of ASR on sex roles. First, taxa with variable sex roles (e.g. pipefish \textit{Syngnathidae}, poison dart frogs \textit{Dendrobatidae}, tinamous \textit{Tinamidae}4,5,8) are ideal groups to separate the effects of phylogenetic history, ASR, life-history and ecological traits on sex-role reversal: ASR may predict sex roles in these organisms once ecology and life history differences have been controlled for. Second, experiments are needed to manipulate ASR and investigate the corresponding changes in sex roles. Although ASR has been manipulated in the lab, experiments in natural populations, preferably in species with flexible sex roles, are required.

\textbf{Methods}

\textbf{Adult sex ratio} We systematically searched for shorebirds' adult sex ratio (ASR) data in reference works (e.g. Birds of Western Palearctic, Birds of North America), and by extensively searching the primary literature through the Web of Knowledge (using keywords 'shorebird*', 'wader*', and English and scientific names of specific taxa such as 'sandpiper*', '\textit{Calidris}', in combination with 'sex ratio*' and 'ASR'). We calculated ASR as the ratio of adult males to all adults (males plus females) in the populations. When several estimates were available for a species, we used their mean value. In intensively studied breeding populations ASR was often based on censuses of individually marked breeding adults. From the non-breeding period we only
included data if the ASR estimates were consistent among studies31-33. For 14 species
ASR data were taken from the original source whereas for an additional four species
ASR was calculated using the data from the original sources. By restricting the
analyses to the former 14 species, our results do not change qualitatively
(Supplementary Table S4 online). In two species (\textit{Jacana spinosa}, \textit{Metopidius
indicus}), separate estimates were available for (i) breeding birds, and (ii) breeders plus
non-breeders; we repeated the analyses using both sets of data and the results
remained highly consistent (Supplementary Table S4 online).

We aimed at obtaining ASR for as many shorebird species as possible including both
sex-role reversed and non-reversed species. In the main analyses (Fig. 1a-d), we used
all ASR data (i.e. mean values of all estimates regardless of the methods), whereas in
the method-specific analyses (Supplementary Table S3 online) we separated estimates
into two groups (breeding censuses \textit{versus} others) to maximise the number of species
in the latter analysis. All data and references are provided in Supplementary Tables S5
and S6 online.

\textbf{Social and genetic mating system} We used two variables to describe social mating
systems. First, we recorded the percentages of socially polygamous individuals
separately for males and females30, using reference works and primarily literature
(Supplementary Tables S5 and S6 online). Both simultaneous and sequential
polygamy were included for both sexes, and if both types of social polygamy occurred
within a sex, we used their sum. If several estimates of polygamy were reported for a
species, we used their mean. We considered males (or females) monogamous if social
polygamy was not reported for the given sex. Lekking birds (two species,
\textit{Philomachus pugnax} and \textit{Scolopax minor}) do not exhibit social pair-bonds, thus to
express the common assumption that male-male competition is intense in lekking
species34, we allocated 100\% male polygamy for these species. We calculated mating
system bias to represent the species' social mating systems as \% male polygamy – \%
female polygamy. We did not find data on polygamy frequency for two species
\textit{(Charadrius nivosus} and \textit{Rostratula benghalensis}), so the maximal sample size for
mating system bias tests is 16 species.
Second, we also used mating system scores as a proxy variable of social mating systems for two reasons: (i) these scores are robust to observer errors in frequency estimates, and (ii) to include the two species in the analyses (see above) which did not have frequency data available. We scored the overall incidence of polygamy for each sex on a 0 to 4 point scale, with '0' corresponding to no (or very rare) polygamy (< 0.1% of individuals), '1' to rare polygamy (0.1–1%), '2' to uncommon polygamy (1–5%), '3' to moderate polygamy (5–20%) and '4' to common polygamy (> 20%). For *Ch. nivosus* and *R. benghalensis* we estimated mating system scores using verbal description of their mating behavior and pair-bonds. Mating score bias was then calculated as the difference between the male and female scores.

Extra-pair paternity (EPP) data were collected from published sources (see Supplementary Tables S5 and S6 online) and presented as % of broods that include extra-pair offspring.

Parental care We used two variables to estimate the role of the sexes in care provisioning. First, we scored the participation of males on a five point scale (0-4) for five types of parental behavior: nest building, incubation, nest guarding (guarding and defending the nest during incubation), chick brooding, and chick guarding (guarding and defending of the brood after hatching). We did not include chick feeding since most shorebirds are precocial so that the parents do not feed their young. We also did not include post-fledging care because many shorebirds do not care for the fledged offspring, and also because data are limited on post-fledging care. For all types of care, score '0' indicated no male participation (i.e. all care carried out by females), score '1': 1-33% male care, score '2': 34-66% male care, score '3': 67-99% male care, and score '4': 100% male care (i.e. no female care). These scores were based on quantitative data if such data were available (e.g. % incubation provided by males), or on qualitative descriptions of care in the data source. For example, when a source stated that “most brooding is provided by females”, then brooding was scored as 1 to express the small involvement of male. We calculated parental care bias as the mean score of the five parental activities. For three species (*Actitis macularius*, *Coenocorypha aucklandica*, *Jacana jacana*) and an additional one (*R. benghalensis*), we did not find reliable data on some aspect of care, so for these species the mean score was calculated using 4 (or 2) types of care, respectively. Our scoring expresses
male care relative to female care, which is directly relevant for quantifying parental
sex roles. For example, a score of 4 refers to complete parental sex-role reversal.

Second, we estimated the duration of parental care for each sex according to how long
the adult cared for the offspring. Following a previous comparative study\(^{24}\), the length
of incubation and brood care were divided into three periods (scores 1-3 and 4-6). If a
parent did not incubate, it was given a score of 0, and if it stayed until the chicks
fledged it scored 7. Sex bias in care duration was calculated as male score minus
female score.

In New Zealand snipe \textit{C. aucklandica} both parents care, although after the hatching of
the eggs the males and the females divide the brood and care for half of the brood
alone. Since this is not entirely the same as biparental care of the brood exhibited by
other shorebirds, we investigated the sensitivity of the results to this data point.
Nevertheless, the results qualitatively remain highly consistent when this species is
excluded from the analyses (Supplementary Table S4 online).

\textbf{Breeding density} We followed Owens\(^{21}\) to obtain comparable breeding density data.
We searched for maximum breeding density, and took the number of nests or pairs
per hectare. Then, we followed Owens’ protocol and used a 1-6 points scale\(^{21}\) to
convert breeding density into density scores. We used breeding density in the analyses
in two ways: (i) density scores were included in multivariate models as a predictor in
addition to ASR, (ii) log transformed density was included in multivariate models
together with log transformed female body mass and ASR; body mass was included in
the models because it strongly correlates with density\(^{21}\). We repeated the latter
analysis with male mass and reached qualitatively consistent results with those using
female mass (results not shown).

\textbf{Phylogenetic comparative analyses} We used Phylogenetic Generalized Least
Squares (PGLS) with maxim likelihood to find the best fitting \(\lambda\)\(^{17,18}\). For most
analyses, we used a supertree of shorebirds\(^{36}\), from which we pruned species with
missing data, and following a recent molecular phylogenetic study we separated \textit{Ch.}
\textit{nivosus} from \textit{Ch. alexandrinus}\(^{37}\) (Supplementary Fig. S2 online). This phylogenetic
hypothesis is based on recent advances in molecular phylogenetics and morphology, and has been often used in comparative studies of shorebirds.

We checked the robustness of the results in two ways. First we re-run the key PGLS models using a sample of 100 trees from the most recent comprehensive avian phylogeny20 to which we added \textit{Ch. nivosus} as described above (Supplementary Fig. S1 online). Second, we repeated the analyses using three alternative phylogenetic hypotheses38-40 (Supplementary Table S1 online). Since branch lengths were not available for the latter trees (either because no branch length were provided, or because we added some of the species to the phylogenetic tree and hence were unable to use the original branch lengths), we used branch lengths estimated by Nee’s method as implemented in Mesquite 2.7441,42. To assess the sensitivity of the analyses to the branch length assumption, we repeated the analyses with unit branch length (Supplementary Table S1 online). All analyses were carried out using the ‘caper’ package in R43. Correlation effect sizes were calculated from the output of the PGLS models44. All statistical tests were two-tailed.

References

Acknowledgements We thank all shorebird researchers their immense work that made these analyses feasible. We are grateful to Nick Davies, Ben Hatchwell, Hanna Kokko, and two anonymous referees for their helpful comments on earlier drafts of this manuscript. A.L. is supported by a Marie Curie Intra-European Fellowship. R.P.F. is funded by a Royal Society University Research Fellowship. T.S. is a Mercator Visiting Professor at the University of Bielefeld, and a Humboldt Award holder at the University of Göttingen.

Author Contributions A.L., R.P.F. and T.S. designed the study. A.L. collected the data and conducted the analyses. A.L., R.P.F. and T.S. wrote the paper.

Competing Financial Interests The authors declare no competing financial interests.
Figure legends

Fig. 1. Relationships between adult sex ratio and components of sex roles in shorebirds. Adult sex ratio (number of adult males / (number of adult males plus females)) is associated with (a) mating system bias (% male polygamy − % female polygamy; phylogenetically corrected $r = -0.79$, $P < 0.001$), (b) mating score bias (male polygamy − female polygamy; $r = -0.69$, $P = 0.001$), (c) parental care bias (mean of male participation in five parental behaviour: nest building, incubation, nest guarding, chick brooding, and chick guarding; $r = 0.70$, $P = 0.001$), and (d) care duration bias (male care duration − female care duration; $r = 0.69$, $P = 0.001$). Panels show species values whereas the regression lines are fitted by PGLS models (red and blue dots represent species with reversed and conventional sex roles, respectively; $n = 16, 18, 18$ and 18 species, respectively).

Fig. 2. Sex-specific relationships between adult sex ratio and sex roles. Phylogenetically corrected correlations between adult sex ratio and polygamy frequency in (a) males ($r = -0.62$, $P = 0.008$), and (b) females ($r = 0.63$, $P = 0.01$), and mating score in (c) males ($r = -0.58$, $P = 0.012$), and (d) females ($r = 0.49$, $P = 0.04$), and care duration in (e) males ($r = 0.61$, $P = 0.007$) and (f) females ($r = -0.50$, $P = 0.035$). Panels show species values and regression lines fitted by PGLS models (red and blue dots represent species with reversed and conventional sex roles, respectively; $n = 17, 16, 18, 18$ and 18 species, respectively).