I. INTRODUCTION

Transparent conducting oxides (TCOs) combine the properties of optical transparency in the visible region with a high electrical conductivity.1-3 They already find widespread application as a transparent electrode in display devices of various sorts and in many designs of solar cell. However, there is a growing interest in development of transparent electronic devices such as p-n junctions, transistors, and heterojunction lasers. These applications demand the availability of p-type TCOs to complement existing well established n-type materials, typified by ZnO, In$_2$O$_3$, and SnO$_2$. Despite ongoing reports of p-type doping in ZnO4,5 and In$_2$O$_3$6,7, the realisation of p-type material is at best controversial and theoretical considerations suggest that reproducible p-type bulk doping is probably impossible.8,9 These limitations have led to interest in p-type TCOs based on 3d10 Cu(I). The parent oxide Cu$_2$O is well known as a p-type material but the intrinsic band gap of 2.17 eV (Refs. 12 and 13) is too small for application as a TCO. Hosono and co-workers devised a general principal for design of Cu(I) TCOs based on reduced dimensionality in the interaction between adjacent Cu(I) sites as compared to Cu$_2$O. The first compound to be developed in this way was the delafossite oxide CuAlO$_2$,14 followed later by CuGaO$_2$,15 and Sr$_2$Cu$_2$O$_2$.16

Cu$_2$CrO$_4$ has been the object of recent interest as a further p-type TCO. It remains tolerably transparent in the visible region despite the fact that there must be dipole forbidden 3d→3d excitations centered on Cr in the visible region. Hole mobilities of 11 cm2 V$^{-1}$ s$^{-1}$ have been measured with carrier concentrations around 4.75 x 1017 cm$^{-3}$ in thin-film material doped by native defects.17 Higher levels of p-type doping can be achieved by substitution of Cr$^{3+}$ with divalent cations. Mg-doped CuCrO$_2$ has the highest reported p-type conduction of any TCO.18 Other divalent dopants such as Ca,19 Ni,20 and Cd21 have also been studied.

The focus on CuCrO$_2$ as an optimal p-type transparent conducting oxide has led to an upsurge of interest in growing thin films of the material. Pulsed laser deposition has been the most popular growth technique,15,22-25 but thin films have also been prepared by chemical vapour deposition17 and sol gel techniques.26,27 Basal plane alumina, i.e., Al$_2$O$_3$(001) has proved to be the most popular single crystal substrate for attempted epitaxial growth and has been shown to promote growth of (001) oriented Al$_2$O$_3$. In the present contribution, thin films of CuCrO$_2$ are grown by molecular beam epitaxy (MBE). The focus of the paper is on the growth process and the electronic structure of the films. Optimisation of transport properties of MBE-grown material will be the subject of subsequent publications.

The rhombohedral (space group R$3\overline{m}$) delafossite structure of 3R-CuCrO$_2$ is based on trilayer sheets comprised of Cr ions occupying the octahedral holes between two close packed layers of O ions (Fig. 1). The O ions in the sheets are linked via linear O-Cu-O dumbbells. The Cr ions are arranged in an ABCABC stacking sequence: an alternative hexagonal polymorph (space group P6$_3$/mmc) based on ABAB stacking is also known giving 2H-CuCrO$_2$. Both polymorphs28 can be described in terms of hexagonal cells, with $a = b = 2.970$ Å and $c = 11.400$ Å for the 2H-polymorph29 and $a = b = 2.973$ Å and $c = 17.100$ Å for the 3R-polymorph.30 The structure of z-alumina (corundum) is based on a hexagonally close packed array of oxygen ions with occupation of 2/3 of the octahedral holes between successive layers by aluminum ions. The structure belongs to the rhombohedral space group $R\overline{3}$ but again the structure can be defined in terms of a hexagonal cell with $a_s = b_s = 4.759$ Å and $c_s = 12.991$ Å (here the subscript s designates substrate). The average O-O separation in the close packed layers is $a_s/\sqrt{3} = 2.748$ Å. There is thus a large mismatch of 8.2%
between the O-O separations in CuCrO₂ and Al₂O₃, with the CuCrO₂ under compressive stress.

In the present paper, thin films of CuCrO₂ are grown on c-plane (i.e., 001) Al₂O₃. At a substrate temperature of 800°C (001) oriented films are obtained as expected. However, at a lower substrate temperature of 700°C, an unanticipated (015) orientation was found. This can, however, be rationalized by consideration of the interfacial structure and simple estimates of surface energies based on densities of dangling bonds. Photoemission spectra were measured for both terminations and the valence band spectra were shown to exhibit significant differences.

II. EXPERIMENTAL PROCEDURE

CuCrO₂ films were grown on 1 cm × 1 cm Al₂O₃(001) substrates (PIKem, UK) in an ultrahigh vacuum oxide MBE system (SVT, USA) with a base pressure of 5 × 10⁻¹⁰ mbar. This incorporated high temperature Cr and Cu effusion cells and a radio frequency (RF) plasma oxygen atom source operated at 200 W RF power with an oxygen background pressure of 2 × 10⁻⁵ mbar. Substrates were heated radiatively using a graphite filament. The Al₂O₃ substrates were cleaned by exposure to the oxygen atom beam at a substrate temperature of 850°C. Growth runs were carried out with substrate temperatures between 700°C and 800°C as measured by a thermometer located close behind the substrate. It was established empirically that single phase (as gauged by x-ray diffraction) 3R-CuCrO₂ could be grown at a rate of around 0.2 nm/s with cell temperatures of 1100°C for Cu and 1500°C for Cr, provided that growth was seeded by deposition of a layer of Cu (again with 1100°C cell temperature but in the absence of the O plasma) during a 270 s deposition. Following growth of the CuCrO₂ layer for a further 1800 s, films were post-annealed at the growth temperature for 10 min to allow for interdiffusion of the layers. As well as ensuring the correct stoichiometry, this two step growth process also minimized the inclusion of oxidized Cu(II) in the films.

Films were characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), and optical absorption spectroscopy. High resolution XRD θ–2θ measurements were performed on a Philips Xpert diffractometer using monochromatic CuKα radiation (λ = 1.5406 Å). High-resolution x-ray photoemission spectra were measured in a Scienta ESCA 300 spectrometer. This incorporates a rotating anode Al Kα (hν = 1486.6 eV x-ray source), a seven-crystal x-ray monochromator, and a 300 mm mean radius spherical sector electron energy analyzer with parallel electron detection system. The x-ray source was run with 200 mA emission current and 14 kV anode bias, while the analyzer operated at 150 eV pass energy. Gaussian convolution of the analyzer resolution with a linewidth of 260 meV for the x-ray source gives an effective instrument resolution of 400 meV. Samples were cleaned in situ by annealing at 400°C. The C 1s to O 1s intensity ratio was reduced to below 1/100. Binding energies are referenced to the Fermi energy of a silver sample regularly used to calibrate the spectrometer.

III. RESULTS AND DISCUSSION

θ–2θ x-ray diffraction profiles of CuCrO₂ grown at different temperatures are shown in Fig. 2. With a substrate temperature of 800°C, the dominant reflections from the epilayer are associated with the (003) Bragg peaks (n = 1,2,3,4), with the (006) reflection strongest. Thus the expected growth mode with the c-axis of the epilayer normal to the surface is realized. However, a very weak (015) reflection close to the substrate (006) reflection is just discernible with an intensity a factor of 50 lower than the epilayer (006) peak. This peak becomes stronger at lower growth temperatures and for a sample grown at 700°C there is almost perfect (015) texture in the epilayer, with the (006) reflection a factor of ~500 weaker than the (015) reflection. No other orientations are present for films grown at both low and high temperatures. Interestingly, the full width at half maximum height for the strongest epilayer peak is lower for the (015) sample grown at 700°C than for the (001) sample grown at 800°C (Fig. 2 right hand panels). Samples grown at both temperatures showed a rough surface morphology, as gauged by AFM (Fig. 3). The (001) sample exhibited surface blocks with a reasonably uniform size distribution, characterized by lateral dimensions just below 200 nm. Grain growth was more pronounced on the (015) surface with surface domains up to about 500 nm in size, although much smaller grains were found between the largest ones. Despite the narrower diffraction peaks, the (015) surface was much rougher (Fig. 3). The overwhelming predominance of the (00 n) reflections in samples grown at 800°C and the near perfect (015) texture for samples grown at 700°C is somewhat surprising given the granular appearance of the films and suggests that a columnar growth mode must pertain.
The stability of the (015) surface can be rationalized by very simple structural and energetic considerations. A side view of the (015) oriented delafossite structure is shown in Fig. 4 along with a similar view of the (001) O-terminated surface of Al₂O₃. Top views are also shown. The (001) termination shown in Fig. 1 involves cutting one Cu-O bond per rhombic surface unit cell (a = b = 2.973 Å, γ = 60°, area 7.656 Å²) to give either a Cu or O terminated polar surface. As will emerge below, alternative terminations that involve cutting 3 Cr-O bonds per cell are unlikely on the basis of simple energetic considerations. The (015) surface involves cutting two Cr-O bonds and one Cu-O bond in a larger rhomboïdal surface unit cell whose sides are defined by edges of length a and e (a = 2.973 Å, e = 7.431 Å, γ = 78.46°, area 21.65 Å²). Two complementary polar terminations are then possible. The first has stoichiometry CrO₂ and involves stripes of edge sharing CrO₄ plaquettes running along a [100] direction with single dangling bonds on one Cr and one O per cell pointing roughly normal to the surface, together with a single dangling bond on O pointing obliquely to the surface. The complementary termination involves an outer layer of Cu atoms each with a single dangling bond oblique to the surface normal, together with normally oriented dangling bonds on one Cr and one O per cell. Using bulk thermochemical data for Cu₂O and Cr₂O₃, we can estimate that the energy associated with cutting a single Cu-O bond for two coordinate Cu(I) is 274 kJ/mole, as compared to 223 kJ/mole for a single Cr-O bond for 6-coordinate Cr(III). In this way, we can make rough estimates of the unrelaxed surface energies for the (001) and (015) terminations. These turn out to be, respectively, 2.97 J m⁻² for the (001) surface and 2.76 J m⁻² for the (015) surface. Bearing in mind that there must be very pronounced surface relaxation, it can be seen that the surface energies are finely balanced. Moreover, the separation d between rows of Cu or Cr ions on the (015) surfaces is equal to b × sin(78.46°) which is 7.280 Å. It emerges that d is roughly equal to 3 × a/2 = 7.138 Å, i.e., three times the distance between adjacent rows of O ions on the O-terminated (001) surface of Al₂O₃. As mentioned previously the cation periodicity along (100) directions in the epilayer have a mismatch of 8.2% with the periodicity in oxygen positions on the Al₂O₃(001) surface, but in the orthogonal direction the mismatch in inter-row separations is only 1.99%. This allows construction of schematic interface structures with reasonable matching of atomic positions at the interface, as shown schematically in Fig. 5. For the (001) termination of CuCrO₂, the 11.2% mismatch pertains in two high symmetry in-plane directions. These considerations help to explain the unanticipated appearance of an (015) oriented epilayer during growth at 700 °C. Clearly, it would be desirable to perform more rigorous calculations of surface energies; however, this is complicated by the inherently polar nature of any stoichiometric termination.

The optical absorption spectrum of CuCrO₂ is shown in Fig. 6 as a plot of absorption coefficient α against photon
energy $h\nu$. In agreement with Hiraga et al.,32 we find a well-defined absorption maximum at about 3.6 eV. This is attributed to transitions from the peak in the occupied Cu 3d partial density of states into hybridized Cu 3dz2 + 4s states—Van Hove singularities are found in both the occupied and empty density of states due to the effective low dimensionality of the delafossite structure, giving rise to a relatively well-defined absorption peak. From a plot of the $(dh\nu)^2$ against photon energy for the leading edge of this peak, we find a value for the direct allowed bandgap of just under 3.2 eV, in agreement with values found elsewhere. However, it is clear that a tail of weak absorption extends to lower energy and, in addition, a weak but well defined peak is found at around 2.02 eV. Recent theoretical work suggests that as with the other delafossites, the lowest energy band gap in $2H$-CuCrO$_2$ is indirect with a separation between the lowest energy direct and indirect gaps of about 0.5 eV at the GGA + U level of theory33 but only 0.2 eV using a screened exchange approach.34 Taking these numbers in conjunction with the experimental direct gap of 3.18 eV gives alternative estimates of 2.68 eV or 2.98 eV for the lowest energy indirect gap. Thus forbidden or indirect interband transitions may account for the weak absorption tail just below 3 eV if we take the GGA + U estimate, but do not account for the peak at 2.02 eV. We note in passing that indirect gaps, as low as 1.28 eV (Ref. 35) or 1.45 eV, have been suggested on the basis of earlier17 experimental work but such low energies are inconsistent with calculations.

This leads us to consider the role of low energy localized 3d to 3d excitations. Two types of localized transition need to be considered. First, 3d3 Cr$^{3+}$ ions in an O$_6$ environment possesses a $^4A_{2g}$ ground state associated with the t_{2g}^3 configuration with low lying $^4T_{2g}$ and $^4T_{1g}$ exited states derived from the $t_{2g}^2e_g^1$ configuration. Excitations to these two states are found at 2.08 eV and 2.64 eV, respectively,36 in Cr$_2$O$_3$ so that assignment of the absorption at 2.02 eV to $^4A_{2g} \to ^4T_{2g}$ excitation seems plausible, although on the basis of resonant inelastic X-ray scattering it has been suggested that the $^4A_{2g} \to ^4T_{1g}$ excitation occurs at a slightly lower energy of 2.1 eV in CuCrO$_2$ itself (as compared to 2.64 eV in Cr$_2$O$_3$).37 More significantly, the 2 eV peak is also found for films of CuGaO$_2$ and in both systems the peak is absent in samples doped with Sn. This leads us to suggest that

![Figure 3](image1.png)

FIG. 3. 1 μm × 1 μm AFM images of (001) and (015) oriented CuCrO$_2$ thin films. The height range is 200 nm in each case and the root mean square roughnesses are, respectively, 30 nm and 50 nm.

![Figure 4](image2.png)

FIG. 4. Upper panels. Left: side views of the CrO$_2$ and Cu (015) terminations of CuCrO$_2$. Right: top views of the two terminations showing only the ions in the outermost ionic plane. Coding is as in Figure 1. Lower panels. Left: side view of the O-terminated surface of Al$_2$O$_3$(001). Oxygen ions are small spheres (red online), aluminium ions are large spheres (green online). Right: top view of the (001) termination of Al$_2$O$_3$.

![Figure 5](image3.png)

FIG. 5. Two possible interface structures for CuCrO$_2$(015) on Al$_2$O$_3$(001). (a) For Cu terminated CuCrO$_2$(015) surface (b) for CrO$_2$ terminated CuCrO$_2$(015) surface.
that the low energy absorption is associated with Cu$^{2+}$ defect states arising from cation deficiency: recent theoretical work suggests that cation vacancies are likely to be the dominant native defect in copper delafossites.38 Sn$^{4+}$ on Cr$^{3+}$ (or Ga$^{3+}$) sites will act as an n-type donor able to compensate p-type Cu$^{2+}$ acceptor states. This hypothesis requires one to assume both that the two dipole forbidden excitations localised on Cr$^{3+}$ are too weak to be observed in absorption spectra of thin films or are buried under the indirect absorption onset; and that defect related Cu$^{2+}$ excitation are more intense. This latter condition in turn implies that the inversion symmetry found for the bulk Cu$^{+}$ sites is absent for Cu$^{2+}$ defect sites, so that transitions are no longer parity forbidden. Further theoretical work is needed to clarify these ideas.

Core level XPS confirms the presence of Cu$^{2+}$ defect states, at least in the near-surface region probed by the technique. Fig. 7 shows the spectrum of a CuCrO$_2$ thin film in the region of the Cu 2p$_{3/2}$ core level. The Cu 2p spectra are dominated by a simple spin-orbit split doublet. The 2p$_{3/2}$ component labelled m1 in Fig. 4 is found at 932.7 eV binding energy and has a full width at half maximum of 0.99 eV. This corresponds to a Cu 2p53d10 configuration in the final state arising from the dominant Cu(I) initial state. A series of satellite peaks and shoulders labelled s1, s1’, s2, s2’, and m2 are observed between the main 2p$_{3/2}$ and 2p$_{1/2}$ peaks. Moving left to right in the spectrum, s1 and s1’ correspond to structure arising from 3d9 final states associated with 3d10 Cu(I) in the initial state. The appearance of these peaks requires interband shake-up excitation into the empty conduction band which is of dominant Cu 4s/Cu 4p character.39 Thus the formal configuration is Cu 2p5 3d10 (4s4p)1. The shoulders s2 and s2’ are poorly defined in the current spectrum (but more obvious in previously published spectra of CuAlO$_2$).40 This structure arises from 3d9 Cu(II) in the initial state giving rise to unscreened Cu 2p53d9 final states and appears at lower binding energy than s1 and s1’ because no interband excitation is required to realise a Cu 2p53d9 final state. Finally, the weak but well-defined peak m2 is to be assigned to a Cu 2p53d10 final state associated with Cu(II) 3d10 in the initial state. The core hole potential lowers the energy of the 3d9 level below that of the oxygen valence levels and realisation of a 3d10 final state involves local screening by charge transfer from the O 2p states to give a final state configuration Cu 2p53d10 O 2p2. A non-local screening channel41–43 where the valence band hole delocalises away from the ionized site to give Zhang-Rice singlet states is not possible when the Cu sites have no connectivity with each other, as is the case for a defect Cu(II) ion constrained within the delafossite structure. The local screening channel also dominates in oxides such as Li$_2$CuO$_2$, where square CuO$_4$ plaquettes are connected through Cu-O-Cu linkages with a bond angle of 90°.44,45 The binding energy of 937.2 eV found for CuCrO$_2$ is very similar to that of 937.1 eV for CuAlO$_2$ but is much higher than the value of 934.0 eV for Li$_2$CuO$_2$.44,45 The binding energy is determined by the Coulombic interaction between the Cu 2p core level and the O 2p valence hole. This interaction should be much stronger in CuCrO$_2$ than in Li$_2$CuO$_2$ due to the lower coordination number and shorter Cu-O bond lengths: in CuCrO$_2$, the Cu-O bond length is only 1.86 Å whereas in Li$_2$CuO$_2$ the bond length is 1.96 Å. Thus the unusual screened final structure associated with Cu(II) defect states in Cu(I) delafossites is a consequence of the Cu(II) ions being constrained to an unusual linear coordination site.

Valence region x-ray photoemission spectra of CuCrO$_2$(001) and CuCrO$_2$(015) are shown in Fig. 8, with the spectrum of a polycrystalline sample overlaid. The lower panel shows the cross section weighted partial densities of states adapted from the publication of Arnold et al.37 There is generally good correspondence between the two experimental spectra and the calculations. In each case, it is

![FIG. 6. (a) Absorption spectrum of (001) oriented CuCrO$_2$ thin film presented in a plot of absorption coefficient α against photon energy $h\nu$. The low energy region is expanded to show a peak at 2 eV. The dashed line is the absorption spectrum in the low energy region from a sample incorporating 5% Sn dopant. (b) Expansion of the band edge region in a plot of $(\alpha h\nu)^2$ versus photon energy $h\nu$ used to determine the direct allowed absorption onset.](#)

![FIG. 7. XPS of CuCrO$_2$(001) in Cu 2p core level region.](#)
The proposed model for the (001) surface obviously involves Cr ions immediately below the outer O layer.

Finally, it should be noted that for both film orientations the valence band edge lies very close to the Fermi level, as is expected for p-type materials where the Fermi level is pinned by states toward the bottom of the bulk band gap.

IV. CONCLUSIONS

In summary, highly oriented thin films of CuCrO2 have been grown on Al2O3(001) by oxygen plasma assisted molecular beam epitaxy. With a substrate temperature of 800 °C, the expected (001) orientation was obtained but at lower temperatures an unanticipated (015) orientation predominated. Simple bond energy considerations suggest that the surface energies for these two orientations should be quite close to each other. On the other hand, (015) growth allows better matching of atomic positions at the interface than can be achieved for (001) films. Small but significant differences between valence band photoemission spectra for the two differently oriented surfaces may be rationalized in terms of the positions of Cu ions relative to the outer atomic layer of the surface.

ACKNOWLEDGMENTS

The Oxford MBE programme was supported by EPSRC Grant GR/S94148.