Copper Exchanged Zeolites for Ammonia Reduction of NO\textsubscript{x} from Biogas Gas Engines

David W. J. McClymont,a Stan T. Kolaczkowski,b Joanna Łojewska,d Kieran C. Molloy,c Serpil Awdryb

aDoctoral Training Centre, Centre for Sustainable Chemical Technologies, bDepartment of Chemical Engineering, cDepartment of Chemistry, University of Bath, BA2 7AY, UK.
dJagiellonian University, Faculty of Chemistry, Ingardena 3, 30-069 Kraków, Poland.

E-mail: D.W.J.McClymont@bath.ac.uk URL: http://www.bath.ac.uk/csct

1. What is NO\textsubscript{x}?

- Nitric oxides are highly reactive gases; primarily NO (>90%) and NO\textsubscript{2}.
- Pollutants, they are involved in many atmospheric processes e.g. formation of photochemical smog and acid rain.
- They are produced as a result of high temperatures during the combustion of fuels.
- Legislation is in place to reduce NO\textsubscript{x} emissions i.e. the European Waste Incineration Directive (WID) regulates activities that involve burning or gasification of waste (Figure 1).

2. DeNO\textsubscript{x} Process

- NH\textsubscript{2}-Selective Catalytic Reduction (SCR) is an efficient, established method for NO\textsubscript{x} removal. The desired reactions are:

 \[4\text{NH}_3 + 4\text{NO} + \text{O}_2 \rightarrow 6\text{H}_2\text{O} + 4\text{N}_2\]
 \[8\text{NH}_3 + 6\text{NO}_2 \rightarrow 12\text{H}_2\text{O} + 7\text{N}_2\]
- BUT there are some disadvantages including:
 - Ammonia slip
 - Size of the installation
 - Thermal deactivation
- Structured reactors based on metallic short channel structures (Figure 2) demonstrate improved mass and heat transfer properties [1] and can remedy these issues.

3. Catalyst

- Copper-exchanged zeolites are well known for their NO\textsubscript{x} reduction [2] and direct NO decomposition activity [3].
- Cu-Y and Cu-LZY 82 zeolites were prepared through three-fold ion exchange of the steamed form of LZY-82.

4. Experimental

- Gas composition supplied to catalysts:
 - 2000 ppm NO
 - 2000 ppm NH\textsubscript{3}
 - 3% O\textsubscript{2}
- Temperature varied from 50-500 °C.
- Prepared zeolites compared to Cu-ZSM 5 standard.

5. Conclusions

- The copper exchanged zeolites retain the structure of the initial LZY-82 zeolite.
- Both prepared zeolite-Y catalysts demonstrate comparable DeNO\textsubscript{x} activity to the Cu-ZSM 5 standard.
- The production of unwanted side-products is negligible over the measured temperature range.

6. Future Work

- Prepare zeolite coated metallic sheets.
- Fully characterise both zeolite powders and the supported catalysts through techniques including SEM, Atomic Force Microscopy (AFM) and Raman spectroscopy.
- Repeat catalytic testing to obtain quantitative data for kinetic modelling.

REFERENCES

1Kolodziej, A. & Łojewska, J. 2009. Catalysis Today, 147, S120-S124