Citation for published version:
Mcclymont, D, Kolaczkowski, ST & Molloy, KC 2010, 'Catalyst system design for the control of NOx using hydrogen', DTC Summer Showcase 2010, Bath, UK United Kingdom, 8/07/10 - 9/07/10.

Publication date:
2010

Document Version
Peer reviewed version

Link to publication

University of Bath

Alternative formats
If you require this document in an alternative format, please contact: openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Catalyst System Design for the Control of NO\textsubscript{x} Using Hydrogen

David W. J. McClymonta, Stan T. Kolaczkowskib, Kieran C. Molloyc

aDoctoral Training Centre bDepartment of Chemical Engineering cDepartment of Chemistry

Centre for Sustainable Chemical Technologies, University of Bath, BA2 2AY, UK.

E-mail: D.W.J.McClymont@bath.ac.uk; URL: http://www.bath.ac.uk/csct

1. What is NO\textsubscript{x}?
- Nitric Oxides - highly reactive gases; primarily NO (>90%) and NO\textsubscript{2}
- Pollutants, involved in many atmospheric processes e.g. formation of smog
- Produced as a result of the high temperatures during combustion of fossil fuels
- Legislation is in place to reduce NO\textsubscript{x} emissions

2. Current De-NO\textsubscript{x} Processes
- NH\textsubscript{3}/urea-Selective Catalytic Reduction (SCR) is an efficient, established method
 \[4\text{NH}_3 + 4\text{NO} + \text{O}_2 \rightarrow 6\text{H}_2\text{O} + 4\text{N}_2\]
 \[8\text{NH}_3 + 6\text{NO}_2 \rightarrow 12\text{H}_2\text{O} + 7\text{N}_2\]
- BUT it requires additional toxic chemicals:
 - Intrinsic safety issues
 - Extra system costs
 - NH\textsubscript{3}/urea infrastructure necessary

3. H\textsubscript{2}-SCR
- H\textsubscript{2} is already present in many systems e.g. diesel engines, biomass gasification combined heat and power (CHP) plants
- Could replace NH\textsubscript{3}/urea processes:
 - Target Chemistry
 \[2\text{NO} + 2\text{H}_2 \rightarrow 2\text{H}_2\text{O} + \text{N}_2\]
 \[2\text{NO}_2 + 4\text{H}_2 \rightarrow 4\text{H}_2\text{O} + \text{N}_2\]
- Removes the need for additional chemicals and their associated costs

4. Catalyst
- Pd/Al\textsubscript{2}O\textsubscript{3} catalyst prepared using an incipient wetness impregnation technique
- Supported on honeycomb monoliths (Figure 1)
 - Outer diameter = 14 mm
 - Channel size = 1 mm x 1 mm (x 80)
- Compared to commercially available 1 wt% Pd/Al\textsubscript{2}O\textsubscript{3} pellets (Figure 2)
 - Diameter = 3 mm

5. Experimental Conditions
- Gas composition supplied to catalysts:
 - 1000 ppm NO
 - 1000 ppm H\textsubscript{2}
 - Air (12.5 % O\textsubscript{2} or N\textsubscript{2})
- Temperature varied from 50-250 °C (Figure 3)

6. Experimental Results

7. Conclusions
- In the absence of O\textsubscript{2}, Pd/Al\textsubscript{2}O\textsubscript{3} catalysts can effectively reduce NO\textsubscript{x} using H\textsubscript{2}
- However, Pd/Al\textsubscript{2}O\textsubscript{3} strongly promotes the reaction between H\textsubscript{2} and O\textsubscript{2}, even at low temperatures
- Conditioning of the catalyst may be necessary to achieve maximum activity
- Some selectivity of products was seen at varying temperatures