Citation for published version:

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
1. Introduction to hydrogen in aerospace applications

Timeline of hydrogen (H₂) within aerospace:

1783 – First hydrogen balloon flight
1954 – Hydrogen peroxide
1966 – Hydrogen batteries in satellite (NTS-2)
1966 – Hydrogen used as a rocket fuel (Atlas-Centaur launch vehicles)
1969 – Hydrogen cryocooler on Mariner 6
2011 – Lange Aviation/DLR Antares H3 – hydrogen fuel cells (piloted and unmanned), 6000 km, >50 hrs

Why we need H₂ in aerospace:
- Climate change
- Depletion of fossil fuels
- Lots of emissions in upper atmosphere

Therefore

Solution:
- Storage of H₂
- Very low energy per unit volume => density must be increased.

Desired properties of materials:
- Light
- High surface area
- Robust
- Large pore volume
- Good cycle life

E.g.
- Metal-organic frameworks (MOFs)
- Activated carbons
- Polymers of intrinsic microporosity (PIMs)
- Polymeric microporous materials

2. Research focus 1: Flexible MOFs

All conventional models assume a fixed pore volume, but:

We have created a mathematical model for this to fit to experimental isotherms:

\[n_a = V_a (\rho_a^{\text{max}} (\text{isotherm equation}) - \frac{P}{ZRT}) \]

Initial assumption:
\[V_a = V_a^0 (1 + aP + bP^2 + ...) \]

Clear positive trend observed

3. Research focus 2: Design curves

Direct comparison of adsorption vs. compression.

\[m_k = \frac{m_k}{V_c} = \left(1 - f\right)\rho_a f_{\alpha 0} + f_{\alpha 0} \frac{\theta_a \rho_a}{\theta_0 (\rho_0 V_a + 1)} \]

- Can get out a critical pressure, under which adsorption stores more hydrogen than compression in the same volume.
- Need to do mass of hydrogen over mass of the system to account for additional weight of adsorbent.

4. Research focus 3: Neutron scattering

Using inelastic neutron scattering to characterise H₂ adsorption in a novel way, and verify our experimental data.

- As seen, there is a very good match between the two sets of data.
- We are now going to try with different materials and at higher pressures.

5. Future work

- Continuation of stated work.
- Multipurpose Simulation Code (MUSIC) – to model H₂ uptake at conditions inaccessible in the lab.
- Looking at whole containment systems for H₂ adsorption

6. Outcomes for EADS

- To bring key data on potential materials for H₂ adsorption.
- Growing importance for Astrium, Cassidian and Airbus.

References:

77 K Carbon bead data from the HTP

Temperature / K

40 30 20 10 0

0.00 0.02 0.04 0.06 0.08

Pressure / MPa

0.00 0.02 0.04 0.06 0.08

Mass of hydrogen adsorbed per volume of container / g cm⁻³

Pressure / MPa

f=0
f=0.25
f=0.5
f=0.75
f=1

Adsorption favoured
Compresssion favoured

H₂ pressure / MPa

50 55 60 65 70 75 80

-0.15
-0.10
-0.05
0.00
0.05
0.10

α / MPa

3.45 3.60 3.75 3.90 4.05

7.5 8.0

H₂ Uptake (μ mol)

60 40 20 0

20 40 60 80

Log pressure