Citation for published version:

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Metal-organic framework materials for hydrogen storage in aerospace applications

Ibrahim Y. Ahmet, a,b Jessica E. Sharpe, a,b Valeska P. Ting, b Nuno M. Bimbo, b Andrew D. Burrows, c Agata Godula-Jopek, d Timothy J. Mays. b

a Doctoral Training Centre, Centre for Sustainable Chemical Technologies, b Department of Chemical Engineering, c Department of Chemistry, University of Bath, BA2 7AY, UK. d EADS Innovation Works, 81 663 Munich, Germany.
E-mail: I.Y.Ahmet@bath.ac.uk; URL: http://www.bath.ac.uk/csct, http://people.bath.ac.uk/cestjm/

1. Hydrogen in aerospace applications

Timeline of hydrogen (H₂) within aerospace:

- 1783 – First hydrogen balloon flight
- 1900 – First airship flown purely on hydrogen (Zeppelin LZ1)
- 1966 – Hydrogen batteries in satellite (NTS-2)
- 1969 – Hydrogen cryocoolers on Mariner 6
- 1988 – First hydrogen aircraft prototype (Tuopolev Tu-155)
- 2001 – Large Aviation/DLR Antares H-3 – hydrogen fuel cells (piloted and unmanned)
- 2005 – First hydrogen fuelled Tupolev 144 (Atlas Transport Concept Study)

Conventional storage methods: Compression or liquefaction.
Problem: Low H₂ densities and high investment costs.
Possible Solution: Physisorption onto a porous material.

BUT: Each additional kg sent into space costs ~ $ thousands!

2. Materials

Desired properties of solid adsorbent:
- Light
- Robust
- High surface area
- Large pore volume
- Good cycle life

Metal-organic framework (MOF) chosen for study:

- NH₂-MIL-101(Al) [SBU*: 634.04 g mol⁻¹]
- NH₂-MIL-101(Cr) [SBU*: 712.37 g mol⁻¹]

(±Secondary Building Unit)

Synthesis of NH₂-MIL-101(Al) [2]

Dimethylformamide (DMF)
130 °C
3 hours (microwave)

Comparison of powder XRD spectra for NH₂-MIL-101(Al) received in Bath and in literature [3]

4. Ongoing work

As seen in the figure below:
- Lighter analogue shows increased H₂ uptake.
- Removal of amine from NH₂-MIL-101(Cr) increases H₂ uptake.
- Potential for even higher uptake from removal of amine from NH₂-MIL-101(Al)?

Comparison of hydrogen excess isotherms for MIL-101 analogues at 77 K

5. Summary

- NH₂-MIL-101(Al) has greater BET surface area and H₂ uptake than the heavier Cr analogue.
- Removal of the NH₂ group from NH₂-MIL-101(Al) may result in very promising hydrogen uptake.
- Good initial results, but more materials need to be studied for potential commercial use.