Citation for published version:
Preatoni, E, Cazzola, D, Pavei, G & Minetti, AE 2014, Technical skills and movement coordination in elite, national and regional level race walkers. in Abstract Book of the 7th World Congress of Biomechanics, 2014. Boston, U. S. A.

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication

Publisher Rights
CC BY-NC-SA

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Introduction
Race walking (RW) requires athletes to walk as fast as possible following two main rules:
- keep the knee of the supporting leg locked “from the moment of first contact with the ground until the vertical upright position”;
- generate a progression of steps with no visible flight phase.

The use of conventional analytical tools (kinematic, kinetic and physiological measures) has not been very successful in:
- discriminating between different skill levels;
- identifying the factors for excellent performance.\(^{(1)}\)

Improved experimental protocols and finer analytical tools are needed to unveil the subtle differences existing between athletes of different competitive standard.\(^{(1)}\)

Aim
To compare coordination and coordination variability in RW, and highlight differences between elite-, national- and regional-standard athletes.

Methods
- 15 competitive male race walkers.
- Cross-sectional design: changes in coordination variability as a factor of skill level (Elite, National or Regional).
- Race-walk on treadmill at 15 km/h, 40 gait cycles/participant.
- 3D pelvis and lower limb kinematics to study coordination variability through a dynamical system approach\(^{(2)}\) (Figure 1).
- Multiple joint couplings (e.g. hip-knee, knee-ankle) and movement phases (early/late stance and swing) considered.

Results & Discussion
- Coordination variability appeared to increase during transition phases (e.g. heel-strike and toe-off) (Figure 2).
- Less skilled athletes tended to produce larger coordination variability: higher deviation phase during early-stance phase of hip-knee (P=0.20), and pelvis-hip (P=0.09) couplings.
- Coordinative patterns showed potential for characterizing individual peculiarities and to improve the understanding of technical skills, although more work is needed to relate coordinative measures with features of the neuro-muscular-skeletal system organization.

References