Citation for published version:

Publication date:
2012

Document Version
Early version, also known as pre-print

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Introduction to biodiesel

Biodiesel is a potentially renewable fuel made by the transesterification of vegetable oils or animal fats with a primary alcohol; in this case methanol is used to make fatty acid methyl esters, or FAME. This can be performed with an acid or base catalyst. As a fuel, biodiesel can be interchanged directly with conventional diesel, and so can be used with the existing infrastructure. Environmental advantages include biodegradability and reduced emissions of volatile organics, carbon monoxide, and particulates. This project aims to develop a continuous reactor with a catalyst supported on a monolith structure.

Monoliths

Monoliths are catalyst support structures forming a continuous series of regular channels. These may be coated with additional support material, such as alumina, along with a catalyst. The monoliths used in this project are thin walled cordierite with parallel channels.

Coating method

The main catalyst of interest is strontium oxide. This has been shown to be a very effective heterogeneous catalyst for transesterification. The monoliths are cut to size and before being coated. Currently, the most successful method is coating with strontium nitrate, reacting this with potassium hydroxide to get strontium hydroxide, then calcining at 720°C under nitrogen.

Why heterogeneous catalysis?

Ideally, a robust and impurity tolerant heterogeneous catalyst can be found, this will reduce:
- Plant equipment and footprint
- Feedstocks (catalysts, neutralising agents)
- Waste water and salts

Testing the catalysts

Monolithic catalysts are tested at 120°C in a stainless steel autoclave, with a 6:1 molar ratio of methanol:oil. Samples are taken regularly and analysed by gas chromatography. The results from the most promising candidate are shown in the chart to the left.

Conclusions and future work

- Strontium oxide is a promising heterogeneous catalyst
- A coating method has been developed to deposit SrO on a monolithic support
- Catalyst candidates have been tested in a batch reactor
- The methanol-oil mixture is single phase at reaction conditions

Future work:
- Catalysts will be tested in a continuous reactor
- Continuous reaction data will be used to test a set of reaction modelling equations that have been developed