Biodiesel Production in Fixed-Bed Catalytic Reactors

Benjamin P. Firth, Stan T. Kolaczkowski, Matthew G. Davidson, Serpil Awdry
Centre for Sustainable Chemical Technologies, University of Bath, BA2 7AY, UK.
e-mail: B.P.Firth@bath.ac.uk; URL: http://www.bath.ac.uk/csct

Introduction to biodiesel

Biodiesel is a potentially renewable fuel made by the transesterification of vegetable oils or animal fats with a primary alcohol; in this case methanol is used to make fatty acid methyl esters, or FAME. This can be performed with an acid or base catalyst. As a fuel, biodiesel can be interchanged directly with conventional diesel, and so can be used with the existing infrastructure. Environmental advantages include biodegradability and reduced emissions of volatile organics, carbon monoxide, and particulates. This project aims to develop a continuous reactor with a catalyst supported on a monolith structure.

Monoliths

Monoliths are catalyst support structures forming a continuous series of regular channels. These may be coated with additional support material, such as alumina, along with a catalyst. The monoliths used in this project are thin walled cordierite with parallel channels.

Why heterogeneous catalysis?

Ideally, a robust and impurity tolerant heterogeneous catalyst can be found, this will reduce:
- Plant equipment and footprint
- Feedstocks (catalysts, neutralising agents)
- Waste water and salts

Strontium oxide as a catalyst

Strontium oxide is an effective solid catalyst for transesterification. SrO powder was used to transesterify rapeseed oil, and the data was compared with literature data for potassium hydroxide, a typical catalyst for homogeneous biodiesel production. After an initial delay, SrO powder shows a similar rate to KOH.

Conclusions and future work

- Strontium oxide is a promising heterogeneous catalyst
- A coating method has been developed to deposit SrO on a monolithic support
- Catalyst candidates have been tested in a batch reactor
- The methanol-oil mixture is single phase at reaction conditions

Future work:
- Catalysts will be tested in a continuous reactor
- Continuous reaction data will be used to test a set of reaction modelling equations that have been developed