Manjula Patel
Scaling-up to Integrated Research Data Management Workshop
6th International Digital Curation Conference
Holiday Inn, Mart Plaza
Chicago, Illinois
6-8th December, 2010
Outline

- I2S2 Project overview and objectives
- Research Data & Infrastructure
- Requirements analysis
- A Scientific Research Activity Lifecycle Model
- An integrated information model
- Use cases
- Cost-Benefits Analysis

Diamond Light Source (DLS),
Science & Technology Facilities Council, UK
I2S2 Project Overview

• Understand and identify requirements for a data-driven research infrastructure in the Structural Sciences
 – Examine localised data management practices
 – Investigate data management infrastructure in large centralised facilities

• Show how effective cross-institutional research data management can increase efficiency and improve the quality of research
Objectives

Scale and complexity: small laboratory to institutional installation to large scale facilities e.g. DLS & ISIS, STFC

Interdisciplinary issues: research across domain boundaries

Data lifecycle: data flows and data transformations over time

- DLS & ISIS, STFC
- EPSRC National Crystallography Service
- University of Cambridge (Chemistry)
- University of Cambridge (Earth Sciences)
• Research Data includes (all information relating to an experiment):
 – raw, reduced, derived and results data
 – research and experiment proposals
 – results of the peer-review process
 – laboratory notebooks
 – equipment configuration and calibration data
 – wikis and blogs
 – metadata (context, provenance etc.)
 – documentation for interpretation and understanding (semantics)
 – administrative and safety data
 – processing software and control parameters

• Infrastructure includes physical, technical, informational and human resources essential for researchers to undertake high-quality research:
 – Tools, Instrumentation, Computer systems and platforms, Software, Communication networks
 – Documentation and metadata
 – Technical support (both human and automated)

• Effective validation, reuse and repurposing of data requires
 – Trust and a thorough understanding of the data
 – Transparent contextual and provenance information detailing how the data were generated, processed, analysed and managed
• Construct large scale atomic models of matter that best match experimental data; using Reverse Monte-Carlo Simulation techniques
• Experiment and data collection conducted at ISIS Neutron Source (GEM)
• Little or no shared infrastructure
 – Data sharing with colleagues via email, ftp, memory stick etc.
 – Data received from ISIS is currently stored on laptops or WebDAV server
• Management of intermediate, derived and results data a major issue
 – Data managed by individual researcher on own laptop
 – No departmental or central institutional facility
• Data management needs largely so that
 – Data can be shared internally
 – A researcher (or another team member) can return to and validate results in the future
 – External collaborators can access and use the data
• Any changes should be embedded into scientist’s workflow and be non-intrusive
Earth Sciences, Cambridge: Typical workflow

Typical workflow for data analysis in Earth Sciences, Cambridge.
• Implementation and enhancement of a pilot repository for crystallography data underway (CLARION Project)
• Need for IPR, embargo and access control to facilitate the controlled release of scientific research data
• Information in laboratory notebooks need to be shared (ELN)
• Importance of data formats and encodings (RDF, CML) to maximise potential for data reuse and repurposing
• **Service provision function** (operates nationally across institutions)
 – Local x-ray diffraction instruments + use of DLS (beamline I19)
 – Retain experiment data
 – Maintain administrative data
• **Raw data generated in-house is stored at ATLAS Data Store (STFC)**
• **Local institutional repository (eCrystals) for intermediate, derived and results data**
 – Metadata application profile
 – Public and private parts (embargo system)
 – Digital Object Identifier, InChi
• **Experiments conducted and data collected by NCS scientists either in-house or at DLS**
• **Labour-intensive paper-based administration and records-keeping**
 – Paper-based system for scheduling experiments
 – Paper copies of Experiment Risk Assessment (ERA) get annotated by scientist and photocopied several times
 – Several identifiers per sample
• **Administrative functions require streamlining between NCS and DLS**
 – e.g. standardisation of ERA forms, identifiers
EPSRC NCS: typical workflow

- **Initialisation**: mount new sample
- **Collection**: collect data
- **Processing**: process and correct images
- **Solution**: solve structures
- **Refinement**: refine structure

- **CIF**: produce Crystallographic Information File
- **Validation**: chemical & crystallographic checks
- **CML, INChI**

DLS & ISIS, STFC

- Operate on behalf of multiple institutions and communities
- Scientific (peer) and technical review of proposals for beam time allocation
- User offices manage administrative and safety information
- Service function implies an obligation to retain raw data
- Large infrastructure, engineered to manage raw data
 - Designed to describe facilities based experiments in Structural Science e.g. ISIS Neutron Source, Diamond Light Source.
 - ICAT implementation of Core Scientific Metadata Model (CSMD)
- No storage or management of derived and results data
 - Derived data taken off site on laptops, removable drives etc.
 - Results data independently worked up by individual researchers
- Experiment/Sample identifiers based on beam line number
Generalised Requirements

• Basic requirement for data storage and backup facilities to sophisticated needs such as structuring and linking together of data
• Contextual information is not routinely captured
• The actual workflow or processing pipeline is not recorded
• Processing pipeline is dependent on a suite of software
• Adequate metadata and contextual information to support:
 – Maintenance and management
 – Linking together of all data associated with an experiment
 – Referencing and citation
 – Authenticity
 – Integrity
 – Provenance
 – Discovery, search and retrieval
 – Curation and preservation
 – IPR, embargo and access management
 – Interoperability and data exchange
• Simplification of inter-organisational communications and tracking, referencing and citation of datasets
 – Standardised ERA forms
 – Unique persistent identifiers
• Solutions should be as non-intrusive as possible
An Idealised Scientific Research Activity Lifecycle Model

- **Research Management (CERIF)**: Write Proposal (include DMP), comments, annotations, ratings etc.
- **Acquire Sample**: User registration data; instrument allocation data etc.
- **Data Management and Provenance (CSMD, OPM)**: Collect raw data, risk assessment data; other sample data
- **Curation (OAIS, PREMIS)**: Archive, Preservation & Curation (OAIS conformant; Representation Information etc.), documentation, metadata & storage (reference, provenance, context, calibration etc.)
- **Dublin Core, Ontologies**: DRM, Creative Commons
- **Software descriptions**: Programs (generate customised software)
- **Appraisal & Quality Control**: Interpret & Analyse Results Data, process & Analyse Derived Data, check & validate Raw Data, conduct experiment
- **Research Outputs**: Validate, Report & Repurpose Data
- **Bibliographic records (FRBR, SWAP)**: Write Usage Report, prepare supplementary data, peer review, transcript
- **Peer Review**: Papers, articles, presentations, reports
- **Publications Database**: Publications, articles, presentations, reports
- **Research Concept and/or Experiment Design**: Scholarly Knowledge, citations, references
- **Software descriptions**

KEY:
- Research Activity
- Administrative Activity
- Curation Activity
- Publication Activity
- Information Flow
• Designed to describe facilities based experiments in Structural Science
• CSMD is the basis of I2S2 integrated information model
• Forms a basis for extension to:
 – Laboratory based science
 – Derived data
 – Secondary analysis data
 – Preservation information
 – Publication data
• Aim to cover the scientist’s research lifecycle as well as facilities data

http://code.google.com/p/icatproject/
CSMD-Core

- Removal of facility specific information
- A simple model to describe datasets

Erica Yang, STFC, 2010
oreChem Model

• An abstract model for planning and enacting chemistry experiments
• Enables exact replication of methodology in a machine-readable form
• Allows rigorous verification of reported results
I2S2 Integrated Information Model

- I2S2-IM = CSMD-Core + oreChem Model
- Use oreChem to describe **planning and enactment** of scientific process
- Use CSMD to **describe the data-sets** from the experiment
- I2S2-IM being implemented at STFC in the form of **ICAT-Lite**
 - A personal workbench for managing data flows
 - Allows the user to commit data
 - Enables capture of provenance information
Case study 1: Scale and Complexity

- Data management issues spanning organisational boundaries in Chemistry
- Interactions between a lone worker or research group, the EPSRC NCS and DLS
- Traversing administrative boundaries between institutions and experiment service facilities
- Aim to probe both cross-institutional and scale issues

Case Study 2: Inter-disciplinary issues

- Collaborative group of inter-disciplinary scientists (university and central facility researchers) from both Chemistry and Earth Sciences
- Use of ISIS neutron facility and subsequent modelling of structures based on raw data
- Identification of infrastructural components and workflow modelling
- Aim to explore the role of XML for data representation to support easier sharing of information content of derived data
Cost-Benefits Analysis

• A before and after cost-benefit analysis using the Keeping Research Data Safe model
• Extending the KRDS Model
 – Focus has been on extensions and elaboration of activities in the research (KRDS “pre-Archive”) phase
• Metrics and assigning costs
 – Identification of activities in research activity lifecycle model that will represent significant cost savings or benefits
 – Work to identify non-cost benefits and possible metrics
• 2 use case studies
 – Quantitative -cost-benefits in terms of service efficiencies (NCS)
 – Qualitative -researcher benefits (improvement in tools; ease of making data accessible)
Conclusions

- Considerable variation in requirements between differing scales of science
- At present individual researcher, group, department, institution, facilities all working within their own frameworks
- Merit in adopting an integrated approach which caters for all scales of science:
 - Aggregation and/or cross-searching of related datasets
 - Efficient exchange, reuse and repurposing of data across disciplinary boundaries
 - Data mining to identify patterns or trends
- **I2S2 Integrated information model aims to:**
 - Support the scientific research activity lifecycle model
 - Capture processes and provenance information
 - Interoperate with and complement existing models and frameworks
- Before and after cost-benefits analysis to assess impact
Project Team

- Liz Lyon (UKOLN, University of Bath & Digital Curation Centre)
- Manjula Patel (UKOLN, University of Bath & Digital Curation Centre)
- Simon Coles (EPSRC National Crystallography Centre, University of Southampton)
- Brian Matthews (Science & Technology Facilities Council)
- Erica Yang (Science & Technology Facilities Council)
- Martin Dove (Earth Sciences, University of Cambridge)
- Peter Murray-Rust (Chemistry, University of Cambridge)
- Neil Beagrie (Charles Beagrie Ltd.)

m.patel@ukoln.ac.uk
http://www.ukoln.ac.uk/projects/I2S2/