A study on the chiral inversion of mandelic acid in humans

Maksims Yevglevskis, Catherine R. Bowskill, Chloe C. Y. Chan, Justin H.-J. Heng, Michael D. Threadgill, Timothy J. Woodman, and Matthew D. Lloyd*

Received (in XXX, XXX) Xth XXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX
DOI: 10.1039/b000000x

Mandelic acid (2-hydroxy-2-phenylacetic acid) is a common chiral α-hydroxyacid produced from styrene, a hazardous monomer used in the plastics industry. During its metabolism, styrene is converted to phenoxirane (styrene epoxide) by CYP2E1, the majority of which is ring opened to 1-phenylethene-1,2-diol (styrene glycol) by epoxide hydrolase. The latter is oxidised to mandelic acid and 2-oxo-2-phenylacetic acid (phenylglyoxylic acid). Both 1-phenylethene-1,2-diol and mandelic acid are excreted in the urine and monitoring of their levels is used to assess environmental exposure to styrene, whilst 2-oxo-2-phenylacetic acid has been shown to induce striatal-motor toxicity in rats. Mandelic acid is also used pharmaceutically in α-hydroxyacid chemical skin peels for the treatment of acne, scarring and hyperpigmentation and in urinary antiseptics and bladder irrigants. It is also a component of or used in the manufacture of anti-viral agents, contraceptive and cyclic peptides. Thioesters of mandelic acid have been investigated as inhibitors of glyoxylase I for the treatment of cancer and glycosides containing mandelic acid have also been shown to possess anti-tumour activity.

Mandelic acid has long been known to undergo chiral inversion during its metabolism. In bacteria, bi-directional chiral inversion is catalysed by the Mg²⁺-dependent mandelate racemase to produce a racemic mixture from either enantiomer. In mammals, mandelic acid undergoes uni-directional chiral inversion of the S-enantiomer to form the R-enantiomer. Gao et al. proposed that chiral inversion of S-mandelic acid occurred by a three step pathway (Scheme 1), analogous to that for ibuprofen and other 2-arylpropanoic acid (2-APA) drugs, consisting of: formation of S-2-hydroxy-2-phenylacetyl-CoA by an acyl-CoA synthetase (Step 1); epimerisation to R-2-hydroxy-2-phenylacetyl-CoA by α-methylacyl-CoA racemase (AMACR) via a deprotonated (enolate) intermediate (Step 2); and hydrolysis of R-2-hydroxy-2-phenylacetyl-CoA to R-mandelic acid by an acyl-CoA thioesterase (ACOT) (Step 3). This pathway was proposed based on the structural similarities between mandelic acid and ibuprofen, in that both compounds possess an aromatic side-chain and a chiral centre adjacent to the carboxylic acid. S-2-Hydroxy-2-phenylacetyl-CoA was rapidly hydrolysed and R-mandelic acid formed in rat liver cell extracts, but conversion of 2S to 2R was not proven.

Scheme 1 The proposed chiral inversion pathway for mandelic acid. ACOT, acyl-CoA thioesterase; AMACR, α-methylacyl-CoA racemase.
The chiral inversion pathway of Ibuprofen 3R and other 2-APA drugs (Scheme 2) is well-established. Only R-Ibuprofen 3R is converted into R-Ibuprofenoyl-CoA 4R, by long-chain fatty acyl-CoA synthetase (Step 1), which undergoes R- to S- chiral inversion. Chiral inversion of R-Ibuprofenoyl-CoA 4R is catalysed by α-methylacyl-CoA racemase (AMACR) (Step 2), whilst hydrolysis of the S-Ibuprofenoyl-CoA product 4S is probably catalysed by acyl-CoA thioesterase-1 (ACOT1) (Step 3). The pathway necessitates transport of 4R from the cytosol into mitochondria or peroxisomes where AMACR is localised, followed by export of 4S to the cytosol for hydrolysis.

This paper reports an in vitro study on the chiral inversion of mandelic acid 1 using recombinant human AMACR and ACOT enzymes to determine if chiral inversion can occur by the same pathway as for Ibuprofen 3. The results show that 2-hydroxy-2-phenylacetyl-CoA 2 is not a substrate for AMACR, and hence chiral inversion of mandelic acid 1 occurs by a different pathway to Ibuprofen 3.

Results and Discussion

Chiral inversion of mandelic acid 1 is from the S-enantiomer to the R-enantiomer (Scheme 1). This uni-directional chiral inversion of mandelic acid 1S to 1R in mammalian cells implies a multi-step chiral inversion pathway in which either activation of S-mandelic acid 1S or production of R-mandelic acid 1R is stereospecific. That of Ibuprofen 3 and related drugs is from the R-enantiomer to the S-enantiomer (Scheme 2), i.e. the stereochemical direction of chiral inversion is opposite for the two pathways. The direction of chiral inversion for Ibuprofen 3 is known to be determined by the requirement of long-chain fatty acyl-CoA synthetase for substrates with R- configuration.

A number of potential acyl-CoA substrates were required in order to test whether mandelic acid 1 chiral inversion was mediated by the Ibuprofen 3 pathway. Gao et al. synthesised racemic 2-hydroxy-2-phenylacetyl-CoA esters 2 by reaction of phenylglyoxal with CoA-SH followed by treatment with 2,6-dimethylpyridine. In this study a stereoselective synthesis of 2 was developed (Scheme 3A) as the efficiency of conversion of ACOT substrates is known to be influenced by the epimeric configuration at the 2-position. Direct reaction of mandelic acid 1R or 1S with carbonyldiimidazole did not yield the expected product, and therefore a direct synthesis of 2R and 2S was not possible. The hydroxy groups of mandelic acid 1R or 1S were therefore protected using TBDMS-CI in a known procedure to give the chiral TBDMS ethers 5R and 5S. These were treated with carbonyldiimidazole to give the activated acids 6R and 6S. Treatment of 6R and 6S with CoA-SH followed by deprotection with KF gave the desired epimeric acyl-CoA esters 2R and 2S. Acidification of the TBDMS-protected acyl-CoA esters 7R and 7S was necessary to prevent base-catalysed hydrolysis of the acyl-CoA ester upon treatment with KF. R- and S-2-phenylpropanoyl-CoAs 8R and 8S were also synthesised (Scheme 3B) in order to compare the influence of 2-hydroxy vs. 2-methyl groups. Direct reaction of 2-phenylpropanoic acid 9R and 9S with carbonyldiimidazole gave the activated acids 10R and 10S, which were treated with CoA-SH to give 8R and 8S. Myristoyl-CoA 11 was synthesised as a known substrate of ACOT1 and ACOT2, and ±-Fenoprofenoyl-CoA as a known substrate of AMACR.

Conversion of these acyl-CoA substrates by selected enzymes involved in the Ibuprofen chiral inversion pathway was then investigated. AMACR is known to catalyse epimerisation of 2-APA-CoA substrates, and is localised in mitochondria and peroxisomes and was selected for study. ACOT1 is localised in the cytosol and is thought to be the primary enzyme responsible for hydrolysis of 2-APA-CoA esters to their corresponding acids. ACOT2 is located in mitochondria and has been implicated in toxicities of 2-APA drugs, so was also selected for study. Long-chain fatty acyl-CoA synthetase (Ibuprofenoyl-CoA synthetase) was not selected for study as its stereochemical requirements are inconsistent with the direction of mandelic acid 1 chiral inversion.

Selected acyl-CoA esters were tested as substrates with ACOT1 and ACOT2. Both enzymes were active with their known substrate, myristoyl-CoA. The 2-hydroxy-2-phenylacetyl-CoA (2S and 2R) and 2-phenylpropanoyl-CoA (8S and 8R) were substrates for ACOT2, whereas myristoyl-CoA was a substrate for ACOT1. CoA esters of the maleic acid enantiomers 5R and 5S were also substrates for ACOT1 and ACOT2. Myristoyl-CoA was only active with ACOT2. Conversion of these CoA esters by selected enzymes involved in the Ibuprofen chiral inversion pathway was then investigated. ACOT1 and ACOT2 are known to catalyse epimerisation of 2-APA-CoA substrates, and are localised in mitochondria and peroxisomes.
and \(8R\) esters were then tested as substrates. All of these acyl-CoA esters were hydrolysed to their corresponding acids and CoA-SH, as judged by the increasing absorbance at 412 nm due to reaction of Coa-SH with DTNB. No hydrolysis above background was observed in negative controls containing heat-inactivated enzyme, thus showing that the reaction was enzyme-catalysed. These results are consistent with the observation that both \(2S\) and \(2R\) were hydrolysed in rat liver cell extracts.\(^6\)

Kinetic parameters for each of the substrates were then determined (Table 1 and 2). Substrates \(11, 2S\) and \(8S\) showed substrate inhibition, whilst \(2R\) and \(8R\) showed standard Michaelis-Menten behaviour. The \(2\)-hydroxy-\(2\)-phenylacetyl-CoA (\(2S\) and \(2R\)) and \(R\)-\(2\)-phenylpropanoyl-CoA (\(8R\)) esters were modest substrates for ACOT1 and ACOT2 compared to myristoyl-CoA 11, as judged by \(k_{\text{cat}}/K_m\) values. 2-Hydroxy-\(2\)-phenylacetyl-CoA \(2S\) was converted somewhat more efficiently than \(2R\) by both ACOT1 and ACOT2, as judged by \(k_{\text{cat}}/K_m\) values. Kinetic plots show that data for \(8S\) fitted the substrate inhibition model (Supplementary Information) for both enzymes, but yielded unreasonable kinetic parameters.

2-Hydroxy-\(2\)-phenylacetyl-CoA (\(2S\) and \(2R\)) and \(2\)-phenylpropanoyl-CoA (\(8S\) and \(8R\)) esters were then tested as substrates for purified human recombiant AMACR by assaying for exchange of the \(\alpha\)-proton with deuterium.\(^{21, 26}\) Under the reaction conditions the best known AMACR substrate, \(\pm\)-Fenoprofenoyl-CoA,\(^{21}\) showed >95% conversion (as measured by conversion of the \(2\)-methyl group signal from a doublet into a single peak, a \(1:1\) triplet \(J = ~1\) Hz, by \(^1H\) NMR spectroscopy).

Assays for \(8S\) and \(8R\), conducted in parallel under identical conditions, resulted in ~60% conversion of \(S\)-\(2\)-phenylpropanoyl-CoA \(8S\), and ~40% conversion of \(R\)-\(2\)-phenylpropanoyl-CoA \(8R\). Exchange was not observed in negative controls containing heat-inactivated enzyme. Exchange of the \(\alpha\)-proton is an obligatory step in the epimerisation reaction catalysed by AMACR,\(^{20, 21, 26}\) and hence it is highly likely that chiral inversion of \(8S\) and \(8R\) also occurred.

Assays of \(2S\) and \(2R\) were also carried out with AMACR under identical conditions. As expected, control experiments showed that exchange of the \(\alpha\)-proton of \(\pm\)-Fenoprofenoyl-CoA occurred with live enzyme but not heat-inactivated enzyme. The \(\alpha\)-proton singlets of \(2S\) and \(2R\) at \(ca.\) 5.3 p.p.m. in the \(^1H\) NMR spectra were unchanged when assays containing active enzyme and heat-inactivated controls were compared (Figure 1).

Integration of the adenosine CH proton at 6.0 p.p.m. and the mandelic acid \(\alpha\)-proton at \(ca.\) 5.3 p.p.m. showed they had a constant near \(1:1\) ratio, with no reduction of signal upon incubation with active AMACR. A reduction in the intensity of the \(\alpha\)-proton signal of \(2R\) and \(2S\) would be expected if significant exchange for deuterium had occurred. This result demonstrates that \(R\)- and \(S\)- 2-hydroxy-\(2\)-phenylacetyl-CoA \(2R\) and \(2S\) do not undergo significant \(\alpha\)-proton exchange. Since removal of the \(\alpha\)-proton is an obligatory first step in the AMACR epimerisation reaction,\(^{20, 21, 26}\) it can be concluded that \(2R\) and \(2S\) are not epimerised.

The failure of \(2R\) and \(2S\) to be epimerised by AMACR is not due to them having insufficiently hydrophobic phenyl side-chains, as evidenced by the significant levels of \(\alpha\)-proton exchange with the 2-phenylpropanoyl-CoA substrates, \(8S\) and \(8R\). The substrates \(2R\) and \(2S\) differ from \(8R\) and \(8S\) only in having 2-hydroxy or 2-methyl substituents, respectively.
hydroxyl and methyl substituents are of similar size but are hydrophilic (hydroxyl group) and hydrophobic (methyl group), respectively. No X-ray crystal structure for human AMACR has been reported, but structures for the highly similar M. tuberculosis homologue have been reported. In this enzyme the substrate methyl side-chain is accommodated in a hydrophobic pocket, comprising of methylene groups from the side-chains of His-126, Asp-127, Asn-152, Asp-156, and Leu-217, Tyr-224 and Ile-240 of the second subunit (residue numbers refer to MCR). These residues are identical in human AMACR 1A, corresponding to His-122, Asp-123, Asn-148, Asp-152, Leu-213, Tyr-220, Ile-236 (Supplementary Figure S1). Thus, it appears that 2R and 2S will be substantially excluded from the enzyme as a result of the hydrophobic 2-hydroxy group been unable to occupy the hydrophobic methyl group binding pocket. An alternative possibility is that the presence of the 2-hydroxy group inhibits formation of the enolate intermediate. In the reaction catalysed by AMACR. The pKa of mandelic acid 1 has been measured as 22 (for formation of the enol), compared to a pKa value of ~21 for the α-proton of acyl-CoA esters. The α-proton of 2-hydroxy-2-phenylacetyl-CoA as 2R and 2S are likely to be more acidic than in mandelic acid 1, suggesting that an enolate could be formed upon binding. This again supports the idea that lack of metabolism of 2R and 2S is due to lack of binding within the AMACR active site.

There are a number of alternative metabolic pathways where 2S and 2R could undergo chiral inversion. One possibility is that chiral inversion of 2-hydroxy-2-phenylacetyl-CoA substrates 2R and 2S is mediated by an alternative 2-methylacyl-CoA racemase/epimerase. The only other enzyme of this type in humans is 2-methylmalonyl-CoA epimerase, which catalyses a chiral inversion step during the metabolism of propionyl-CoA to succinyl-CoA. 2-Methylmalonyl-CoA epimerase utilises a catalytic metal ion in a similar fashion to bacterial mandelate racemase. However, the relative positions of the carboxylate ligand in methylmalonyl-CoA and the hydroxyl group in 2-hydroxy-2-phenylacetyl-CoA 2 are different. Citrate, an analogue of the 2-methylmalonyl-CoA substrate, ligates to the active site metal ion of methylmalonyl-CoA epimerase using two carboxylate ligands and not its carboxylate and hydroxyl ligands, showing the importance of the relative positions of these ligating groups. Thus, it is unlikely that 2-hydroxy-2-phenylacetyl-CoA 2 will be able to bind to 2-methylmalonyl-CoA epimerase in a manner which is competent for catalysis.

A second possibility is that 2S is metabolised by derivatisation of the hydroxy group. These derivatives are unlikely to be accommodated within the active site of AMACR, based on structural models of the related MCR enzyme. The 2-methyl binding pocket in MCR from M. tuberculosis can only accommodate small groups, and it is likely that any modification of 2S (e.g. by acetylation) would exclude substrates by steric hindrance. Similarly, these derivatives of 2S are unlikely to be able to bind to 2-methylmalonyl-CoA epimerase in a way which is competent for catalysis since chelation to the active site metal will be further compromised.

A further aspect to be considered is the requirement for acyl-CoA formation in order for the proposed pathway (Scheme 1) to occur. Long-chain fatty acyl-CoA synthetase is known to be specific for R-APAs, whilst activation of S-mandelic acid is required. Furthermore, there is no evidence that long-chain fatty acyl-CoA synthetase is able to activate 2-hydroxy-fatty acids. Thus, the involvement of this specific enzyme in the mandelic acid 1 chiral inversion pathway can be excluded based on these stereochemical and other considerations. However, at least 26 acyl-CoA synthetase enzymes are present in the human genome, so potentially an alternative enzyme may be able to catalyse the required conversion of S-mandelic acid to S-2-hydroxy-2-phenylacetyl-CoA. Conversion of racemic long-chain 2-hydroxyfatty acids to their corresponding acyl-CoA esters by an undefined acyl-CoA synthetase has been demonstrated in rat liver and mouse brain extracts. Activation of mandelic acid 1 has not been specifically studied, but naturally occurring long-chain 2-hydroxyfatty acids substrates are the D-isomer, possessing R-stereochemistry. Activation of racemic 2-hydroxyfatty acids has also been observed, suggesting that the enzyme may be non-stereoselective. These observations are inconsistent with the known direction of mandelic acid chiral inversion (S to R). Conclusions

Mandelic acid 1 is component of a number of drugs and is a marker of environmental exposure to styrene. Its chiral inversion pathway is of interest in order to understand the metabolism of these xenobiotics. Although mandelic acid 1 and Ibufrofen 3 have superficially similar structures, the results in this paper demonstrate that they are not metabolised by the same pathway. This conclusion is reached based on AMACR being unable to catalyse α-proton exchange of 2S or 2R and therefore it cannot catalyse the required epimerisation reaction. As a consequence, different enzymes must be involved in the chiral inversion step of the two pathways. It is also unlikely that chiral inversion of 2S or 2R can be performed by 2-methylmalonyl-CoA epimerase or that epimerisation of a derivative with a modified 2-hydroxy group could be performed by either enzyme, and this implies that chiral inversion of mandelic acid 1 probably does not proceed via an acyl-CoA intermediate at all (as shown in Scheme 1). Moreover, this study demonstrates that ACOT1 and ACOT2 can hydrolyse both epimers of 2-hydroxy-2-phenylacetyl-CoA 2, and hence cannot determine the direction of chiral inversion for the proposed pathway as a whole. Metabolism via an acyl-CoA intermediate therefore requires stereospecific conjugation of S-mandelic acid with CoA-SH to form S-2-hydroxy-2-phenylacetyl-CoA 2S. The acyl-CoA synthetases which activate 2-hydroxyfatty acids appear to be either specific for substrates with R-configuration or are non-stereoselective. These stereochemical observations are inconsistent with the observed direction of mandelic acid 1 chiral inversion for the pathway as a whole (2S to 2R), and further argue for separate pathways. Chiral inversion of mandelic acid 1 by stereoselective oxidation and reduction is an obvious alternative pathway which does not involve acyl-CoA intermediates. This possibility has been investigated, and stereoselective oxidation of S-mandelic acid 1S by NAD+-dependent dehydrogenases has been observed. 5 S-mandelic acid has also been shown to be stereoselectively oxidised by the kidney isoform, but not the liver.
isofrom, of rat L-2-hydroxyacid oxidase.44 Chiral inversion of mandelic acid 1 has been observed in rat liver homogenates,6 implying that L-2-hydroxyacid oxidase cannot be involved. The oxidation product in this alternative pathway is 2-oxo-2-phenylacetate (phenylglyoxylic acid). Previous studies4 have shown that the majority of 2-oxo-2-phenylacetate is not reduced in vivo to mandelic acid 1 (in rats), with only around 1% of the total substrate been converted. Moreover, the reduction reaction appears not to be completely stereoselective, with a reported ratio of products of ca. 9:1 (1R:1S). Other studies have reported that metabolism of S-mandelic acid 1S is stimulated by NADPH,35 implying that reduction could take place under some circumstances. The exact pathway for mandelic acid chiral inversion therefore remains unclear.

\section{Experimental}

\subsection{General Experimental}

All chemicals were obtained from the Sigma-Aldrich Chemical Co. or Fisher Scientific Ltd and were used without further purification, unless otherwise noted. Reagents were of analytical grade or equivalent (synthesis) or biochemical grade. Oasis HLB cartridges were obtained from Waters Corporation. Myristoyl-CoA 11 and 3-Fenoprofenoyl-CoA were synthesised as previously described.21 Reactions were performed at ambient temperature, unless otherwise stated. Solvents were evaporated under reduced pressure. NMR spectra were recorded on Bruker Avance III 400.04 MHz or 500.13 MHz spectrometers. Chemical shifts are reported to the nearest 0.01 p.p.m, and coupling constants (J values) are reported to 0.1 Hz. Multiplicities of peaks are described as follows: s, singlet; d, doublet; t, triplet; m, multiplet. Mass spectra were obtained using VG7070E and Bruker microTOF spectrometers in the ES+ mode at the University of Bath Mass Spectrometry Service. Solutions in organic solvents were dried over anhydrous magnesium sulfate and evaporated under reduced pressure. Aqueous solutions were prepared in 18.2 Mega-Ωcm-1 Nanopure water and pH adjusted with HCl or NaOH solutions as appropriate. Construction of expression plasmids for human AMACR26 and ACOT127 and ACOT22 have been previously described. E. coli BL21 (DE3) pLysS and Rosetta2 (DE3) expression strains were obtained from Novagen.

\subsection{Synthesis of S-mandelic acid O-TBDMS ether 5514}

TBDMSCI (331 mg, 2.2 mmol, 2.2 eq.) and imidazole (163 mg, 2.4 mmol, 2.4 eq.) were added to a solution of S-mandelic acid 1S (152 mg, 1.0 mmol) in anhydrous THF (3 mL) cooled to -4 °C and the reaction mixture was stirred for 1 h. The reaction was allowed to warm to room temperature and stirred for a further 3 h before filtration and concentration in vacuo. NaOH (1.0 M, 3 mL) was added and the mixture stirred for 105 minutes before dilution with 3 mL water. The reaction was extracted with diethyl ether (2 x 5 mL), and the reaction mixture acidified to pH ~3.5 with 1.0 M citric acid buffer, pH 3.5 and extracted with diethyl ether (3 x 5 mL). The combined organic layers were dried over MgSO\textsubscript{4}, filtered and concentrated to give 55 as a colourless solid (230 mg, 86 %)3 1 1: 1H NMR (400.04 MHz, CDCl\textsubscript{3})13 δ 9.30 (br s, 1H), 7.49-7.28 (m, 5H), 5.22 (s, 1H), 0.92 (s, 9H), 0.12 (s, 3H), 0.00 (s, 3H).

\subsection{Synthesis of R-mandelic acid O-TBDMS ether 5R}

The title compound was synthesised from 1R (152 mg, 1.0 mmol) by the same method to give 5R (232 mg, 87 %). NMR data was identical to 5S.

\subsection{Synthesis of S-2-hydroxy-2-phenylacetyl-CoA 2S}

5S (58 mg, 0.22 mmol) was dissolved in anhydrous dichloromethane (2 mL) and stirred with carbonyldimidazole (71 mg, 0.44 mmol, 2.0 eq.) for 45 minutes. The reaction was extracted with water (5 x 5 mL), dried over MgSO\textsubscript{4}, filtered and concentrated to dryness. The residue was dissolved in THF (2 mL) and aq. NaHCO\textsubscript{3} (0.1 M, 2 mL) and stirred with reduced coenzyme A, tri-lithium salt (20 mg, 0.025 mmol) for >16 h. The reaction mixture was diluted with water (1 mL), acidified to pH ~3.5 with 1 M HCl and stirred with anhydrous KF (27 mg, 0.46 mmol) for 18 h. The mixture was extracted with diethyl ether (5 x 5 mL) and freeze-dried. The product 2S was purified by solid-phase extraction using an Oasis HLB cartridge. After loading the cartridge was washed with water (3 mL) and eluted with water/acetoniitrile (4:1, 7 mL). The elution fraction was concentrated in vacuo and freeze-dried to give 2S as a colourless solid (4.3 mg). 1H NMR (500.13 MHz, D\textsubscript{2}O) δ 8.45 (s, 1H), 8.15 (1H), 7.41-7.24 (m, 5H), 6.07 (d, 1H, J= 7.0 Hz), 5.24 (s, 1H), 4.20-4.08 (m, 2H), 3.94-3.87 (m, 2H), 3.82 (dd, 1H, J= 9.5, 4.2 Hz), 3.44 (dd, 1H, J= 9.5, 4.3 Hz), 3.30-3.10 (m, 4H), 3.06-2.85 (m, 2H), 2.20-2.07 (m, 2H), 0.75 (s, 3H), 0.63 (s, 3H); HRMS (EI) Calcd. for C\textsubscript{23}H\textsubscript{34}N\textsubscript{2}O\textsubscript{8}SNa: 922.1267, Found: 922.1240.

\subsection{Synthesis of R-2-hydroxy-2-phenylacetyl-CoA 2R}

The title compound was synthesised from 5R (40 mg, 0.15 mmol) by the same method to give 2R (3.0 mg). NMR and other data were identical to 2S.

\subsection{Synthesis of S-2-phenylpropanoyl-CoA 8S}

9S (30 mg, 0.20 mmol) was dissolved in dichloromethane (2 mL) and stirred with carbonyldimidazole (65 mg, 0.40 mmol) for 45 minutes. The reaction was extracted with water (5 x 5 mL), dried over MgSO\textsubscript{4}, filtered and concentrated to dryness. The residue was dissolved in THF (2 mL) and aq. NaHCO\textsubscript{3} (0.1 M, 2 mL) and stirred with coenzyme A, tri-lithium salt (16 mg, 0.02 mmol) for >16 h. The reaction mixture was diluted with water (1 mL) and acidified to pH ~3.5 with 1 M HCl. The mixture was extracted with diethyl ether (5 x 5 mL) and freeze-dried. The product was purified by solid-phase extraction using an Oasis HLB cartridge. After loading, the cartridge was washed with water (3 mL) and eluted with water/acetoniitrile (1:1, 7 mL). The elution fraction was concentrated in vacuo and freeze-dried to give 8S as a colourless solid (2.0 mg): 1H NMR (500.13 MHz, D\textsubscript{2}O) δ 8.58 (s, 1H), 8.31 (s, 1H), 7.30-7.16 (m, 5H), 6.11 (d, 1H, J= 5.5 Hz), 4.22-4.10 (m, 1H), 4.00-3.89 (m, 2H), 3.77 (dd, 1H, J= 9.5 4.5 Hz), 3.49 (dd, 1H, J= 9.5 3.9 Hz), 3.30-3.13 (m, 4H), 2.99-2.79 (m, 2H), 2.20-2.07 (m, 2H), 1.38 (d, 3H, J= 7.2 Hz), 0.84 (s, 3H), 0.69 (s, 3H); HRMS (EI) Calcd. for C\textsubscript{23}H\textsubscript{34}N\textsubscript{2}O\textsubscript{8}Sr: 898.1654, Found: 898.1640.

\subsection{Synthesis of R-2-phenylpropanoyl-CoA 8R}

In similar fashion to the preparation of 8S, 8R was obtained from...
the reaction of 9R (30 mg, 0.20 mmol) and coenzyme A, tri-
lithium salt (16 mg, 0.02 mmol) in THF (2 mL) and aq. NaHCO3
(2 mL, 0.1 M) to give 8R as a colourless solid (2.7 mg). NMR
and other data were identical to 8S.

5 ACOT assays

Human ACOT1 and ACOT2 were expressed as recombinant His-
tag proteins in E. coli BL21 (DE3) pLysS.22 Cells (~2 g) were
lysed using Bugbuster (Novagen) in the presence of Benzonase
and enzyme purified by metal-chelate chromatography. Purified
enzyme was exchanged into 20 mM HEPES-NaOH, pH 7.27 and
protein concentrations determined by UV-visible spectrometry.
Protein purity was ca. 95 – 98% by SDS-PAGE analyses.

Assays contained 0.109 mg (2.27 nmol) of ACOT1 or 0.099
mg (1.80 nmol) of ACOT2. Reactions were carried out at pH
7.27,22 as this minimises spontaneous hydrolysis of DTNB.40
The following substrates (Tables 1 and 2) were used in the assays:
Myristoyl-CoA 11 (known substrate for ACOT enzymes22, 32); S-
2-hydroxy-2-phenylacetyl-CoA 2S; R-2-hydroxy-2-phenylacetyl-
CoA 2R; S-2-phenylpropanoyl-CoA 8S; and R-2-
phenylpropanoyl-CoA 8R. Stock concentrations of acyl-CoA
esters were determined using 1H NMR.21 Solutions of acyl-CoA
esters were diluted in HEPES-NaOH, pH 7.27 except for
myristoyl-CoA 11 where buffer was supplemented with BSA as
previously described.22 This was required to reduce substrate
inhibition due to the formation of micelles. Kinetic analyses of 11
with ACOT1 and ACOT2 used substrate concentrations of 2 – 60
µM. All other kinetic analyses used concentrations of 5 – 200
µM. Assays were initiated by addition of enzyme (50 µL) to
substrate: DTNB (2 x stock solution) and the reaction monitored
for up to 15 minutes. Rates at each substrate concentration were
measured using three independent repeats. Reaction rates were
obtained by plotting changes in absorbance for the linear progress
curve with Excel. Activities in nmol.min.

3. Data was analysed using SigmaPlot 11 and enzyme kinetics
module 1.3, fitting to the Michaelis-Menten equation with and
without competitive substrate inhibition. The correct model
was chosen based on convergence of fitting and visual inspection
of plots. Kinetic plots for all substrates are available in
Supplementary Information. Km, Vmax and values are reported in
Tables 1 and 2 as mean values ± SE. Kcat values are reported for
those substrates showing substrate inhibition.

AMACR assays

Human AMACR was expressed in E. coli Rosetta2 (DE3) grown
at 37 °C and 220 r.p.m. until an O.D.600 = ~1.5 was reached.
Cultures were cooled to 22 °C, induced with 0.25 mM IPTG and
incubated overnight under the same conditions.21 Cells (~2 g)
were lysed using the ‘one shot’ (Constant Systems) in ~30 mL
NaH2PO4-NaOH, 300 mM NaCl and 10 mM imidazole pH 7.2,
supplemented with 1 mM PMSF, 1 mM benzamidine-HCl, and
250 µ Benzonase (Novagen) and stirred with N-lauroyl-sarcosine
[1.5% (w/v)] at 4 °C for 1 hour. The sample was centrifuged
(Beckmann JA-14 rotor, 10,000 r.p.m., 15,300 g, 10 minutes),
filtered through a 0.45 µ filter, and purified by metal-chelate
chromatography as previously described.26 Purified enzyme
was dialysed into 20 mM NaH2PO4-NaOH, pH 7.4 and stored at -80
°C. Protein concentration was determined by UV-visible
spectroscopy.21 Protein purity of pooled fractions was ca. 95 – 98%
% by SDS-PAGE analyses.

Assays were conducted in 50 mM NaH2PO4-NaOH buffer, pH
7.4 containing ca. 85% (v/v) 2H2O, 100 µM acyl-CoA substrate
and 3.5 µM enzyme as previously described,21, 26, 27 with negative
controls containing heat-inactivated enzyme. + Fenoprofenoyl-
CoA, an Ibuprofenoyl-CoA analogue and the best AMACR
substrate reported to date,23 was used as a positive control in all
assays. Stock concentrations of acyl-CoA esters were determined
using 1H NMR.21 Assays were initiated by addition of enzyme to
the substrate in buffer, which were incubated at 30 ºC for 1 hour.
After this time samples were heated at 50 °C for 10 minutes to
inactivate the enzyme and analysed by 1H NMR (500.13 MHz).
Conversion of 2-phenylpropanoyl-CoA substrates 8S and 8R was
quantified by conversion of the 2-Me doublet at ca. 1.0 p.p.m.
to a single peak, a 1:1:1 triplet with J ~1 Hz, as previously
described for other substrates 21, 26. Conversion of 2-hydroxy-2-
phenylacetoyl-CoA 2S and 2R was monitored by reduction of the
α-proton singlet at ca. 5.3 p.p.m. due to deuterium incorporation.

Acknowledgements

This work was funded by Prostate Cancer UK. Part of this work
was performed as a Masters in Pharmacy final year project at the
University of Bath, U.K. MJ, MDT, TJW and MDL are members of the Cancer Research @ Bath network.

Notes and references

Medicinal Chemistry, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom *E-
mail: M.D.Lloyd@bath.ac.uk; †4-44-1225-386786.
Electronic Supplementary Information (ESI) available: Substrate NMR
and mass spectra data, NMR spectra of substrates incubated with
AMACR and kinetic plots of substrates of ACOT enzymes. See DOI: 10.1039/b000000x/
9 Abbreviations used: ACOT, acyl-CoA thioesterase; AMACR, α-
methyloyl-CoA racemase (a.k.a. P504S); 2-APAs, 2-arylpionic acids
(‘profens’); BSA, bovine serum albumin; Bu, tert-butyl; CoA-SH,
coenzyme A (reduced form); CYP2E1, cytochrome P450 2E1; DTNB,
5,5′-Dithiobis(2-nitrobenzoic acid); E. coli, Escherichia coli; ESI-TOF,
electrospray ionisation-time-of-flight; HEPES, 4-(2-
hydroxyethyl) piperazine-1-ethanesulfonic acid; Kcat, 1st order rate constant
for conversion of substrate to product; kcat/Km, selectivity constant; Km,
inhibitor constant; Kd, Michaelis constant; Mandelic acid, 2-hydroxy-2-
phenylacetic acid; O.D.abs, optical density at 600 nm; NAD+,
nicotinamide adenine dinucleotide (oxidised form) NMR, nuclear
magnetic resonance; PMSF, phenylmethylsulphonyl fluoride; p.p.m., parts
per million; r.p.m., revolutions per minute; SDS-PAGE, sodium dodecyl
sulphate polyacrylamide gel electrophoresis; SE, standard error; TBDMS-
Cl, tert-Butyldimethylsilyl chloride; THF, tetrahydrofuran. Vmax,
maximum rate of enzyme reaction.

99-106.
2. S. F. Helal and W. S. Elshafy, Toxicol. Ind. Health, 2013, 29, 812-
819.
3. L. Drummond, J. Caldwell and H. K. Wilson, Xenobiotica, 1989, 19,
199-207.
4. L. Drummond, J. Caldwell and H. K. Wilson, Xenobiotica, 1990, 20,
159-168.
2000, 13, 36-44.