Citation for published version:

Publication date:
2012

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Ibuprofen and other 2-arylpropanoic acids (2-APAs) are non-steroidal anti-inflammatory drugs (NSAIDs) and the 2S- enantiomers act by inhibition of cyclo-oxygenase 1 and 2 (COX-1 and -2). 2-APA drugs are given as racemic mixtures and chiral inversion is essential for pharmacological activity. This pathway for 2R-ibuprofen consists of conversion to the 2R-acyl-CoA ester, chiral inversion to the 2S-epimer, and hydrolysis to 2S-ibuprofen. The chiral inversion reaction is catalysed by α-methylacyl-CoA racemase (AMACR; P504S). AMACR is increased ~10-fold in prostate and other cancers, and is a novel cancer drug target. Other 2-APAs undergo chiral inversion in vivo, but it is unclear if AMACR is involved.

The present study investigates whether AMACR catalyses chiral inversion of other 2-APA-CoA esters. Substrates were incubated with human AMACR 1A in ²H₂O-containing buffer and all exchanged the 2-proton, an obligatory step for chiral inversion. Derivatization of products from chiral substrates showed a ca. 1:1 epimeric mixture of products, consistent with the proposed deprotonation/reprotonation mechanism. Steady state kinetic analysis showed that most substrates were converted with similar efficiency ($k_{cat}/K_m = 100-150$ M⁻¹ s⁻¹). Fenoprofenoyl-CoA was converted much more efficiently ($k_{cat}/K_m = ~1426$ M⁻¹ s⁻¹), due to its low K_m value (~2.3 μM cf. 26-74 μM).

The results suggest that all 2-APA drugs undergo the same chiral inversion pathway. 2-APAs may be useful for treatment of cancers with increased AMACR levels.