An Investigation into Axial Impacts of the Cervical Spine using Digital Image Correlation

Timothy Patrick Holsgrove,¹ Dario Cazzola,² Ezio Preatoni,² Grant Trewartha,² Anthony W Miles,¹ Harinderjit Singh Gill,¹ Sabina Gheduzzi¹

¹Centre for Orthopaedic Biomechanics, Department of Mechanical Engineering, University of Bath, Bath, UK
²Sport, Health and Exercise Science, Department for Health, University of Bath, Bath, UK

Corresponding author:
Timothy Patrick Holsgrove
Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, 210 South 33rd Street, Room 240 Skirkanich Hall, Philadelphia, PA 19104, United States
Telephone: +1 215 746 0132
Email: thols@seas.upenn.edu

Keywords
Impact; spine; injury; digital image correlation; DIC
Abstract

Background Context: High-energy impacts are commonly encountered during sports such as Rugby Union. Whilst catastrophic injuries resulting from such impacts are rare, the consequences can be devastating for all those involved. A greater level of understanding of cervical spine injury mechanisms is required, with the ultimate aim of minimizing such injuries.

Purpose: The present study aimed to provide a greater understanding of cervical spine injury mechanisms, by subjecting porcine spinal specimens to impact conditions based on those measured in vivo. The impacts were investigated using high-speed digital image correlation (DIC), a method not previously adopted for spinal impact research.

Study Design: In-vitro biomechanical study

Methods: The study was funded through an institutional grant from the Rugby Football Union Injured Players Foundation. Eight porcine specimens were impacted using a custom-made rig. The cranial and caudal axial loads were measured at 1 MHz. Video data were captured with two cameras at 4 kHz, providing measurements of the 3D deformation and surface strain field of the specimens using DIC.

Results: The injuries induced on the specimens were similar to those observed clinically. The mean (±SD) peak caudal load was 6.0 (±2.1) kN, which occurred 5.6 (±1.1) ms after impact. Damage observable with the video data occurred in six specimens, 5.4 (±1.1) ms after impact, and the peak surface strain at fracture initiation was 4.6 (±0.5) %.

Conclusions: This study has provided an unprecedented insight into the injury mechanisms of the cervical spine during impact loading. The posture represents a key factor in injury initiation, with lordosis of the spine increasing the likelihood of injury.
Introduction

Sports such as Rugby Union (rugby) routinely involve high-energy impact forces. On rare occasions, these impacts can result in catastrophic injuries to the cervical spine that have devastating consequences for all those involved. Whilst the risk of injury or fatality in rugby is comparable to similar activities involving contacts, and to general employment-related incidents [1], it remains important to minimize such risks. It has been estimated that approximately 40% of serious cervical spine injuries in rugby occur during scrummaging [2], and the relatively controlled nature of the set-scrum (in which the eight forward players of each team bind together and then engage with one another under the referee’s instruction) may offer the best potential to reduce risk through an improved understanding of injury mechanisms, and appropriate guidelines to the governing bodies of the game.

Previous research investigating axial impacts and injury mechanisms in the cervical spine has focused on head constraint [3], the effect of the impact surface angle and padding [4, 5], vertebral compression [6], horizontally positioned impacts [7], the effect of axial preload [8], and burst fracture injuries [9]. These studies have demonstrated the complex nature of spinal injuries, and the variation of injury mechanism(s) under seemingly similar conditions. Assessments of the injury mechanisms due to axial loading encountered in rugby scrummaging, have been reported as being due to hyperflexion, and buckling [2, 10, 11]. However, care must be taken in classifying cervical spine injury mechanisms, as injury may have occurred due to more than one mechanism, and prior to any outwardly observable change in head position [3, 12]. It may, therefore, be necessary to focus on specific forms of impact situations in a highly controlled manner, in order to fully understand the likely injury mechanisms, and how they may be avoided.
Catastrophic neck injury during scrummaging may occur as a result of a head impact to a front row player due to improper engagement between the front rows of the opposing teams, or during the collapse of a scrum [2]. Should a head impact occur, severe pocketing will result as a player’s head lodges in the shoulder and neck areas of the front row of the opposing team. Such conditions give rise to a cervical spine impact in which both the cranial and caudal regions are highly constrained.

The aim of the present study was to provide an increased understanding of the injury mechanisms associated with constrained axial impacts of the cervical spine. The testing conditions for the investigation were aimed at replicating the constraints of rugby scrummaging. Injury mechanisms were investigated using a combination of load measurement and high-speed imaging. Digital image correlation (DIC), which has not previously been used in spinal impact research, was used to investigate both movements and strain fields induced by the impact on a multi-level cervical spine specimen.

Methods

Eight porcine cervical spinal specimens (C2-C6) were harvested from pigs aged between eight and twelve months at the time of slaughter, with an average mass of approximately 60 kg (Bartlett & Sons Ltd., Bath, UK). The specimens were dissected from longer sections of spine (C1-T2), all musculature was removed, but facet capsules and ligaments were left intact with the exception of the anterior longitudinal ligament (ALL). The ALL was removed to provide better visibility to the anterior aspect of the vertebral bodies, which was used to measure the surface strain field using DIC. Pilot holes were made in the lateral aspects of the vertebral bodies to accommodate steel eyelets for the application of the follower-load. Following the dissection, specimens were wrapped in paper towel, sprayed with 0.9 % saline solution, triple-sealed in plastic bags, and then stored at -24 °C.
Prior to impact testing, µCT scans were acquired for each specimen using a Nikon XT225 ST (Nikon Metrology UK, Hertfordshire, UK), and a Perkin Elmer PE1620 detector (PerkinElmer, Buckinghamshire, UK). A total of 2,160 projections were acquired for each specimen. Image reconstruction was performed with CT Pro 3D software (Version 3.1.3, Nikon Metrology), resulting in a voxel resolution of 0.06 to 0.10 mm.

On the morning of testing each specimen was left to thaw for six hours at room temperature (20 ± 2 °C) whilst still triple-sealed in plastic bags. During the last hour of thawing, the specimen was removed from the plastic bags, eyelets were screwed into the vertebral bodies, and three self-tapping screws were driven into the cranial and caudal ends to aid stability when potted in using low melting point alloy (MCP75; Mining & Chemical Products Ltd., Northamptonshire, UK). Care was taken during potting to ensure that the C3-C4 disc was aligned with the horizontal plane, and the specimen was in the neutral position.

Following potting, the posterior aspect of each specimen was covered with paper towel sprayed with 0.9 % saline solution, while the anterior aspect of the vertebral bodies was dried with paper towel, and painted with white paint, followed by a speckle spray of black paint to provide a means to perform the DIC measurements. The specimen was then mounted in a custom-made impact fixture, and a follower-load was applied to each side of the specimen using constant force springs rated at 51 N (CFS5.2, Misumi Europa GMBH, Schwalbach, Germany) via Bowden cables. This resulted in a follower-load of 51 N on each side of the specimen, with a further 50 N applied to the cranial end of the specimen due to the weight of the impact plate. This preload magnitude is comparable to previous in-vitro cervical spine studies that have replicated the weight of the head and the stiffening effect due to passive muscle activity [8, 13, 14].
The impact fixture (Figure 1) comprised an impact plate linked to a frame via two double linear bearing units (Model LTDR25, AB SKF, SE-415 50 Göteborg, Sweden). The impact fixture held the caudal end of the specimen rigidly, and allowed only vertical movement to the cranial end, which aimed to replicate the constrained nature of an improper scrummage engagement in which the torso is constrained, and the head severely pocketed.

Impacts were applied to the impact plate via a falling mass of 12.86 kg constrained with a custom linear bearing assembly. A drop height of 250 mm was used to produce an impact velocity of approximately 2.2 m/s, which is similar to relative impact velocity of scrum engagement measured in-vivo using the “crouch, bind, set” call [15]. This call was introduced by the International Rugby Board in 2014 (Law 20.19(g) Law Amendment Trial [16]). A layer of 5 mm thick nitrile rubber was bonded to the top surface of the impact plate to prevent ringing vibrations. Two 22 kN compression-extension load cells (Model SLC41/005000, RDP Electronics Ltd., Wolverhampton, UK) were used, one mounted between the cranial specimen pot and the impact plate, and one mounted between the caudal specimen pot and the baseplate. Load data was captured using a TiePie Handyscope HS5 (TiePie Engineering, Sneek, The Netherlands) and TiePie Multi Channel software (Version 1.0.29.0, TiePie Engineering).

Image data was acquired with two high-speed cameras (Fastcam SA3 Master and Slave, Photron Europe Ltd., West Wycombe, Buckinghamshire, UK) using Photron FASTCAM Viewer software (PFV Version 3.3.5.0, Photron Europe Ltd.). Digital image correlation of the video data was completed using Vic-3D (Version 2009.1.0, Correlated Solutions, Inc., Columbia, USA). The DIC system was automatically calibrated prior to testing each specimen using fifty images of a 120 x 90 mm target with 5 mm spacing.
Synchronized acquisition of the load and image data was triggered as the mass was dropped, with load and image data acquired at 1 MHz and 4 kHz respectively.

After testing, 24 x-ray images were acquired of each specimen at intervals of 15° in the axial plane. These images were used in conjunction with physical inspection to determine the damage induced.

Data Analysis

The load data was filtered with a fourth-order dual-pass, low-pass Butterworth filter with a cut-off frequency of 5 kHz (Matlab Version R2012b, Mathworks, Inc., Natick, MA, USA). A number of parameters of interest were calculated, the definitions of which are detailed below. For ease of communication relevant parameters are reported in terms of mean (±standard deviation) throughout this manuscript.

The impact time was identified as the point at which the load in the cranial load cell exceeded 200 N [8]. The data period analyzed included the time of impact to 0.03 s post-impact; this encompassed the entire primary impact for all specimens. The magnitudes of the maximum cranial \(F_{cra} \) and caudal \(F_{cau} \) loads were identified, as was the time from impact until the maximum cranial \(T_{cra} \) and caudal \(T_{cau} \) loads. The time to injury \(T_{2/3} \) was also identified, which was defined as the time at which the caudal load dropped to 2/3 of the peak level [8]. The image data were used to identify the time at which observable injury occurred \(T_{inj} \), defined as the frame at which fracture or major disc pathology such as a prolapse, was induced. The peak cranial and caudal loads were compared using Wilcoxon Signed Rank Tests. Comparisons were made of \(T_{cau} \), \(T_{inj} \), and \(T_{2/3} \) using a Friedman’s Test with Wilcoxon Signed Rank Tests for post-hoc analysis. Significance was based on a \(p \) value of 0.05 in all comparisons. Statistical analyses were performed with SPSS software (Version 21.0.0.0, IBM Corporation, Armonk, NY, USA).
Images from 0.05 s prior to the impact to 0.03 s after the impact were analyzed using DIC (141 video frames). For each specimen, the frame at 0.05 s prior to impact was used as the reference frame (at which the strain was considered zero); measurements of the major principal strain magnitude, the strain in the axial direction, and the 3D movement relative to the reference frame were assessed.

The DIC system allowed data to be obtained for each inspection point of an image for every frame of the analysis. The arrangement in the present study resulted in the entire anterior aspect (both vertebral bodies and intervertebral discs) of each specimen equating to approximately 3000 inspection points. This provided a large amount of data but artefacts around the edge of the analysis area, and losses of information in certain frames, made automated data analysis unreliable. Therefore, the DIC data were used to assess the behaviour of the specimens generally, and at specific times and locations of interest.

Results

The pre-impact µCT data and visual inspection showed that all specimens were healthy, with no evidence of injury, disease, or degeneration. Impacts resulted in major damage to six of the eight specimens.

The impact was rapidly transferred through the spine to the caudal load cell (Figure 2). The impact was defined as the moment that the load exceeded 200 N in the cranial load cell; in all specimens this load was reached at the caudal end in less than 1 ms (0.8 (±0.1) ms). The movement of the C5 level during the impact often blocked camera visibility of the C6 level; therefore, DIC analysis was completed on the C2-C5 levels only.
The maximum load in the cranial and caudal load cells was 5.8 (±2.0) kN and 6.0 (±2.1) kN respectively, which was reached at a time of 5.1 (±1.0) ms and 5.6 (±1.1) ms respectively after impact (Table 1). Damage observable from the video data occurred in six out of eight specimens, 5.4 (±1.1) ms after impact. The time to injury, $T_{2/3}$, as defined from the caudal load cell data, for the six specimens in which observable injury occurred, was 7.9 (±2.1) ms.

Damage included anterior fractures of the vertebral body (Figure 3), bilateral dislocation with facet fractures, disc prolapses and/or decompressions, and fat emboli being ejected from the vertebral bodies. All major injuries occurred in the C4-C6 region of the spine. Anterior inferior extension teardrop fractures occurred at the C5 level in four specimens at the junction of the vertebral body and the C5-C6 intervertebral disc. In one of these specimens the anterior inferior fracture was not complete but was combined with vertical fracture of the anterior vertebral body in the sagittal plane (Figure 4). One specimen sustained an incomplete anterior superior teardrop fracture to the C6 level at the junction of the vertebral body and the C5-C6 disc. All disc prolapses were limited to the C5-C6 disc, though some decompression occurred at the C4-C5 disc in one specimen. Facet capsule injury also occurred at the C5-C6 level, with the exception of one case where it was observed at the C4-C5 level. Facet fractures were observed at the C6 level, with one case at the C5 level.

The peak caudal load was significantly higher than the peak cranial load ($p=0.036$). Comparisons between T_{cau}, $T_{2/3}$, and T_{inj} were only completed for the six specimens where injury was observed in the high-speed images (CS1-2, CS4 and CS6-8). No significant difference was found between T_{cau} and T_{inj} ($p=0.595$) but $T_{2/3}$ occurred significantly later than both T_{cau} ($p=0.028$) and T_{inj} ($p=0.028$).

The vertebral position in the sagittal, coronal, and axial planes were analyzed at 2.5 ms intervals using single points taken at the centre of the anterior aspect of each vertebral body using a target-based template. Sagittal displacement was greatest at the C4 level, and this occurred 7.5 ms after
impact, amounting to 4.75 (±1.26) mm, with the two lowest values of 2.89 and 3.72 mm corresponding to the uninjured specimens. The mean vertical displacement was greatest 10 ms after impact at all vertebral levels with values of 5.45 (±1.57) mm, 4.70 (±1.32) mm, 4.80 (±1.20) mm, and 5.29 (±1.27) mm for C2, C3, C4, and C5 respectively. The displacement in the coronal plane was below 1.50 mm in all specimens at all vertebral levels during the impacts.

The 3D motion analysis demonstrated that all specimens underwent increased lordosis due to the impact resulting in a tendency to first order buckling (C-shaped) in the caudal region of the spine. This was more pronounced in those specimens that suffered injuries but similar observations were made when no injury was induced.

The major principal surface strain in the vertebral bodies reached values in excess of 4 % prior to fracture, with mean peak strains of 4.6 (±0.5) %. The maximum principal strains occurred in the axial direction, and the anterior body fractures occurred as a result of tension. The axial compression due to the impact exhibited lower strain values, with a mean peak compressive strain in the C2 vertebrae of 2.6 (±1.4) %, which occurred 0.6 (±0.5) ms after the peak caudal load was reached.

Discussion

This study aimed to provide a greater understanding of the injury mechanisms of the cervical spine due to axial impacts relating to misdirected rugby scrummaging. The constraint and impact velocity of impacts in vivo were simulated in vitro using porcine cervical spine specimens. Specimens were tested in a neutral posture with a physiological preload, and resulted in structural damage comparable to axial impacts in vivo. The loads transferred through the spine were measured, and high-speed imaging used with DIC to measure the surface strain field of the anterior aspect of the
vertebral bodies, and provide 3D reconstructions of the vertebral movement relative to the pre-
impact position.

Porcine specimens were used, as they provide similar characteristics to human cadaveric specimens
[17, 18]. Previous impact studies with human cadaveric specimens have used specimens with a
mean age from 52 years [3] up to 87 years [7]. Specimens toward the upper end of this range would
be more likely to sustain fractures, and soft tissue injury due to axial impacts than a regular rugby
player in their twenties or thirties. Such differences may lead to inconsistencies between the failure
mechanisms observed in-vitro compared to those sustained in young, healthy adults in-vivo. Porcine
specimens provide a consistent means to test spinal specimens with good bone density, and without
disc degeneration, which may reasonably reflect the skeletal profile of a young adult rugby player.

Previous studies have reported peak neck forces of approximately 2 kN as a result of peak head
forces of 3 to 12 kN [3-5, 8]. The present study used an impact velocity lower than many previous
studies in order to better represent velocities measured in vivo for scrummaging [15]. The drop mass
was also lower (12.86 kg) than previously used [3, 4, 8]. However, the peak caudal loads were higher
than most previously reported values, though they were within the range of cranial and caudal loads
measured in-vitro by Ivancic [7] of 7.5 (±0.76) kN, and similar to the engagement forces of machine-
based scrummaging measured in vivo using a “fold-in” technique, which ranged from 4.25 (±0.8) kN
in high-school teams to 8.6 (±2.0) kN in International teams [19].

A physiological follower-load was used to simulate the passive muscle activity required to stabilize
the cervical spine, and specimens were constrained such that the most caudal vertebra was rigidly
fixed (C6), and the most cranial vertebra (C2) was constrained so as to only move axially. This
combination of preload application and constraint made the specimens less prone to buckling, and
therefore able to transfer greater axial load through the spine, including two specimens that
sustained peak loads of over 6 kN without major injuries.

Saari et al. [8] reported a mean time to injury of 2 ms with a follower-load, which is considerably less
than the mean time to observed injury of 5.9 ms in the present study. Mean time to injury without a
follower-load or padded impact surface has been reported as 6 ms [8], and 5 ms [3]. This suggests
that the results of the present study fit within the range of published data, but the differences
between studies may relate to both the specimen constraint and the application of a physiological
preload. This highlights the importance of testing specimens in a manner that is representative of
the in vivo scenario. Furthermore, it has been recently shown that muscle activity prior to
scrummage engagement differs according to the engagement technique [20]. The pre-activation of
muscles in the neck and torso would provide greater stability to the spine, and should be considered
in the design of future impact studies.

It is noteworthy that $T_{2/3}$ occurred significantly later than observed injuries. The time of observed
injury, T_{inj}, did not relate to specific characteristics of the load data, but no significant difference was
found between this time and the time of peak caudal load, T_{cau}. Therefore, the time of peak load
combined with high-speed video data is a more reliable way to assess time to injury than a defined
drop-off magnitude following peak caudal load.

The strain data for the anterior aspect of the vertebral bodies prior to and at the point of fracture
was comparable with previously reported values of the ultimate tensile strain of cortical bone in
bovine femurs [21], and slightly higher than the published data for the ultimate tensile strain of
trabecular bone from human cadaveric vertebrae [22].
Damage in the specimens of the present study was focused around the C5 and C6 levels, which corresponded to the principal area over which the lordotic curve of the cervical spine occurred. Such injuries reflect those seen clinically, with most cervical spine injuries due to axial impact occurring in the caudal region of the cervical spine [10].

The extension-compression injuries of the present study are similar to previous in vitro tests [8], and the anterior inferior fractures observed have also been reported in approximately one third of 156 cervical spine injuries in American Football players due to what was thought to be axial loading alone [23]. Additionally, the dislocations combined with facet fractures observed in the present study have also been reported in vivo [2, 10, 11].

The present study has shown that the above injuries can occur as a result of axial impacts but demonstrated from the DIC measurements that anterior fractures resulted from tension in the vertebral bodies due to first order buckling of the cervical spine in extension. Such loading conditions are likely to be similar to those resulting from an improper engagement during scrummaging, with a large axial load transferring down through a severely pocketed head to a highly constrained torso. However, small changes in alignment and constraint could considerably alter the load transfer, and therefore the injury mechanisms. Less constraint would provide the potential to escape from a direct axial impact. Alternatively, a straighter cervical spine in similarly constrained conditions may be better able to sustain higher loads; this may reduce the likelihood of buckling, but increase the likelihood of burst fractures in the caudal region of the cervical spine.

The study has demonstrated the viability of using DIC for the 3D analysis and surface strain measurement of spinal specimens undergoing high-speed impacts. The data compares well with previous studies but also highlights the need for caution in interpreting the results from specific impact studies to various in vivo scenarios. Whilst impact conditions may appear similar, the load
transfer and injury mechanisms of the spine are complex; small changes in posture and constraint
can lead to large differences in the magnitude and timing of impact forces, and the failure
mechanisms of the spine. Whilst the tests of the present study were based on potential impacts
during rugby scrummaging, the findings can be transferred to other scenarios involving constrained
axial impacts to the cervical spine, and may therefore be applicable to sports such as American
Football.

Further research is required to combine in vivo data of the posture, constraint, and muscle forces
under normal scrummaging conditions, to more closely simulate impacts in vitro. This will provide a
greater understanding of cervical spine injury mechanisms, and how the risk of them occurring
during sports such as rugby union can be minimized.

Acknowledgements

The authors would like to thank the Rugby Football Union and the Injured Players Foundation for
their ongoing support with this research.
References

Figure 1: Impact fixture used to constrain spinal specimens for axial impacts

- Impact from drop mass
- Impact plate with nitrile rubber impact surface
- Linear bearing unit
- Cranial specimen pot connected to impact plate via load cell
- Support frame
- Cranial specimen pot connected to baseplate via load cell
Figure 2: Representative impact load profile taken from specimen CS1
Figure 3: Image frames of specimen CS7. Detail of the specimen at the time of impact (left). Crack propagating at the C5 level at the time of peak caudal load, 5.8 ms after impact (centre) and anterior vertebral fracture 10 ms after impact (right)
Figure 4: Image frames of specimen CS8. Detail of the specimen at the time of impact (left). Crack propagating vertically at the C5 level at the time of peak caudal load, 6.7 ms after impact (centre) and fluid ejection 10 ms after impact (right)
Tables

Table 1: Load and time data for the eight porcine cervical specimens

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Peak Cranial Load (kN)</th>
<th>Peak Caudal Load (kN)</th>
<th>Time to Peak Cranial Load (ms)</th>
<th>Time to Peak Caudal Load (ms)</th>
<th>Time to observed injury (ms)</th>
<th>Time to 2/3 Peak Caudal Load (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS1</td>
<td>3.94</td>
<td>4.16</td>
<td>4.1</td>
<td>4.0</td>
<td>4.5</td>
<td>5.5</td>
</tr>
<tr>
<td>CS2</td>
<td>4.61</td>
<td>4.56</td>
<td>5.0</td>
<td>5.3</td>
<td>4.1</td>
<td>5.7</td>
</tr>
<tr>
<td>CS3</td>
<td>6.16</td>
<td>6.15</td>
<td>4.0</td>
<td>4.0</td>
<td>-</td>
<td>8.8</td>
</tr>
<tr>
<td>CS4</td>
<td>10.29</td>
<td>10.88</td>
<td>4.6</td>
<td>5.5</td>
<td>6.7</td>
<td>11.5</td>
</tr>
<tr>
<td>CS5</td>
<td>6.23</td>
<td>6.55</td>
<td>6.8</td>
<td>7.2</td>
<td>-</td>
<td>9.5</td>
</tr>
<tr>
<td>CS6</td>
<td>4.82</td>
<td>5.09</td>
<td>6.2</td>
<td>6.0</td>
<td>6.5</td>
<td>7.6</td>
</tr>
<tr>
<td>CS7</td>
<td>4.70</td>
<td>4.86</td>
<td>5.3</td>
<td>5.8</td>
<td>4.6</td>
<td>6.5</td>
</tr>
<tr>
<td>CS8</td>
<td>5.99</td>
<td>6.13</td>
<td>5.1</td>
<td>6.7</td>
<td>5.8</td>
<td>7.9</td>
</tr>
<tr>
<td>Mean</td>
<td>5.84</td>
<td>6.05</td>
<td>5.1</td>
<td>5.6</td>
<td>5.4</td>
<td>7.9*</td>
</tr>
<tr>
<td>SD</td>
<td>1.98</td>
<td>2.13</td>
<td>1.0</td>
<td>1.1</td>
<td>1.1</td>
<td>2.0*</td>
</tr>
</tbody>
</table>

* T_{2/3} calculated for only those specimens with injury (i.e. CS1, 2, 4, 6-8) was 7.4 (±2.2) ms