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ABSTRACT
We use a parent sample of 118 gamma-ray burst (GRB) afterglows,with known redshift and host

galaxy extinction, to separate afterglows with and without signatures of dominant reverse-shock emis-
sion and to determine which physical conditions lead to a prominent reverse-shock emission. We
identify 10 GRBs with reverse shock signatures - GRBs 990123, 021004, 021211, 060908, 061126,
080319B, 081007, 090102, 090424 and 130427A. By modeling theiroptical afterglows with reverse
and forward shock analytic light curves and using Monte Carlo simulations, we estimate the param-
eter space of the physical quantities describing the ejecta and circumburst medium. We �nd that
physical properties cover a wide parameter space and do not seemto cluster around any preferential
values. Comparing the rest-frame optical, X-ray and high-energyproperties of the larger sample of
non-RS-dominated GRBs, we show that the early-time (< 1ks) optical spectral luminosity, X-ray
afterglow luminosity and 
 -ray energy output of our reverse-shock dominated sample do not di�er
signi�cantly from the general population at early times. However, the GRBs with dominant reverse
shock emission have fainter than average optical forward-shockemission at late time (> 10 ks). We
�nd that GRBs with an identi�able reverse shock component show high magnetization parameter
RB = "B;r ="B;f � 2 � 104. Our results are in agreement with the mildly magnetized baryonic jet
model of GRBs.
Subject headings:Gamma-ray burst: general

1. INTRODUCTION

The study of gamma-ray burst (GRB) afterglows
started with their discovery in 1997 (Costa et al. 1997;
van Paradijs et al. 1997). Since then, afterglow ob-
servations have established the cosmological nature of
GRBs (e.g., Gomboc et al. 2012), provided informa-
tion on their stellar progenitors (Hjorth et al. 2012)
and prompted the study of GRB circumburst environ-
ment (e.g., Petitjean & Vergani 2011), their host galax-
ies (Berger 2011; Fynbo et al. 2012), and intergalactic
medium in the GRB line-of-sight (e.g., Vergani et al.
2009; Chornock et al. 2013, and references therein).

Afterglow emission has also been considered as a pow-
erful probe capable of revealing physical properties in
gamma-ray burst ejecta as well as the medium through
which the �reball propagates. According to the standard
afterglow model (Sari & Piran 1995; M�esz�aros & Rees
1997), a relativistically expanding �reball propagating
through a medium surrounding a GRB progenitor drives
a shock into the medium, known as a forward shock (FS).
Heated electrons behind the shock emit synchrotron ra-
diation, giving rise to FS afterglow emission (Sari et al.
1998). In addition to the forward shock, a reverse shock
(RS), propagating back into the �reball, can be produced
(Sari & Piran 1999b).

The FS afterglow model has proven to describe late-
time afterglow behavior well. The environmental depen-
dence of afterglow light curve evolution has been calcu-

Electronic address: jure.japelj@fmf.uni-lj.si

lated analytically for two limiting cases: constant density
interstellar medium (ISM) (e.g., Sari et al. 1998) and
stellar wind environment with a density pro�le / r � 2

(e.g., Chevalier & Li 2000), where r is distance from
the progenitor. The distinct temporal and spectral be-
havior of the two environments can be used to determine
the nature of the medium surrounding the progenitors
(Schulze et al. 2011) using predicted relations between
temporal and spectral afterglow slopes, i.e., closure re-
lations (e.g., Zhang et al. 2006). However, in order to
constrain the values of the microphysical parameters in
the ejecta (the ratio of the electron and magnetic energy
density over the internal energy density in the shocked
region, "e and "B , electron energy distribution index p),
an analysis of the FS emission alone is insu�cient. Emis-
sion from the RS can be used to measure the values of
microphysical parameters, to derive a Lorentz factor of
the ejecta, and to constrain the nature of the ejecta itself
(Zhang et al. 2003; Kobayashi & Zhang 2003).

The evolution of the RS emission has been mostly
studied for two limiting cases (Kobayashi 2000): (i )
the thick shell case, in which a RS becomes relativistic
and starts to decelerate shell material, and (ii ) the thin
shell case, in which a RS stays sub-relativistic and is
too weak to decelerate the shell. Observational evidence
suggest that the two limiting cases might not describe
the real conditions very well (e.g., Virgili et al. 2013).
Intermediate events (between the relativistic and sub-
relativistic cases) should be handled by numerical stud-
ies (Nakar & Piran 2004; Harrison & Kobayashi 2013).

http://arxiv.org/abs/1402.3701v2
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All these studies assume a brief central engine activity
and a constant Lorentz factor of the ejecta, resulting in a
short-lived reverse shock emission. However, ejecta could
be composed of shells of di�erent Lorentz factors. In such
scenario, slower shells continue to feed the blast wave,
giving rise to a long-lived reverse shock emission. In this
case, depending on the mycrophysics parameters, light
curve can be completely dominated by a RS emission
for the duration of the afterglow (Uhm & Beloborodov
2007; Genet et al. 2007). This work focuses exclusively
on the short-lived RS emission.

RS emission is expected to be especially prominent at
low frequencies (optical to radio) and can be recognized
by its characteristic rising and decaying slopes. For a
typical set of micropysical parameters and initial Lorentz
factor of the shell, the optical band lies between the typ-
ical (� m;r ) and cooling (� c;r ) synchrotron frequencies of
the RS. In a constant ISM medium, the emission is pre-
dicted to reach its peak at the �reball deceleration time
and then decay with a characteristic power-law slope of
� 2 (Kobayashi 2000) for both thin- and thick-shell
cases. The rising index should be very steep (� � 5) for a
thin-shell or shallow (� � 1=2) in the thick-shell approx-
imation. In the case of a wind medium, a shallow rise
and a steeper decay slope of� 3 are expected (for stan-
dard parameters) for both thick- and thin-shell scenarios
(Kobayashi & Zhang 2003b; Zou et al. 2005). Depend-
ing on the relative strength and peak times of a reverse
and forward shock afterglow component, three di�erent
light curve con�gurations are expected to be observed
(Zhang et al. 2003; Gomboc et al. 2009):

� Type I: light curve with prominent reverse and for-
ward shock afterglow peaks,

� Type II: light curve with characteristic 
attening
due to bright RS afterglow outshining the FS emis-
sion,

� Type III: light curve with simultaneous FS and RS
peaks, where the former outshines the latter.

RS emission arising from mildly magnetized out
ows is
predicted to be highly polarized (Lyutikov et al. 2003;
Granot & K•onigl 2003; Rossi et al. 2004). Polarimetric
measurements of early-time afterglow emission can thus
provide a complementary method of recognizing or con-
�rming a RS emission component (Mundell et al. 2007a;
Steele et al. 2009; Mundell et al. 2013).

Before 2005, only a few afterglows had been ob-
served less than � 1 hour after the GRB trigger,
with RS components being identi�ed in three of them
(GRB 990123 - e.g., Sari & Piran 1999a, Kobayashi
2000, Soderberg & Ramirez-Ruiz 2002; GRB 021004 -
e.g. Kobayashi & Zhang 2003, Kobayashi & Zhang
2003b; GRB 021211 - e.g., Fox et al. 2003, Wei 2003).

With the launch of NASA's Swift satellite
(Gehrels et al. 2004) and the advent of purpose-
built rapid-response autonomous robotic telescopes
(such as the Liverpool Telescope and Faulkes telescopes
[LT/FT; Steele et al. 2004], Rapid Eye Mount [REM;
Zerbi et al. (2001)], Robotic Optical Transient Search
Experiment [ROTSE; Akerlof et al. 2003], etc.), the
possibility of routinely observing the very early afterglow
of large numbers of GRBs became a reality. RS optical


ashes were expected to be ubiquitous in this new era
of rapid follow-up. Surprisingly, the rate of detected
RS components has been extremely low (Roming et al.
2006; Melandri et al. 2008; Gomboc et al. 2009;
Oates et al. 2009). The lack of detections has been
attributed either to strongly magnetized out
ows, which
can suppress the RS emission (Zhang & Kobayashi
2005), the RS emission peaking at lower frequencies
than the optical band (e.g. IR/mm) at early time
(Mundell et al. 2007b; Melandri et al. 2010), or
prompt optical emission originating in an internal shock
region outshining any contemporaneous external RS
emission (Kopa�c et al. 2013).

To better understand the nature of RS emission, we
compile a sample of GRBs with optical afterglows which
show RS signatures. We compare their rest-frame op-
tical, X-ray and 
 -ray properties to a larger sample of
GRBs with no apparent RS contribution in their optical
afterglow. To investigate whether the physical conditions
in the GRB ejecta of our RS afterglow sample show sim-
ilar or di�erent properties, we use a simple analytical
model of reverse- and forward-shock emission and apply
it to our RS sample using Monte Carlo simulations. We
examine a parameter space that describes our afterglows
well and discuss relations between various parameters.

Throughout the paper the convention F�; t / t � � � � �

is adopted, where � and � are spectral and temporal
afterglow slopes, respectively. Standard cosmology with
H0 = 71 km s� 1 Mpc� 1, 
 M = 0 :3 and 
 � = 0 :7 is
assumed. Times are given with respect to GRB trigger
time.

2. SAMPLE SELECTION AND BROAD-BAND DATA

In order to compare the rest-frame properties of GRBs
with and without RS contribution in optical wavelenghts,
we compile a comprehensive sample of GRBs with mea-
sured redshift. For a GRB to be included in the sam-
ple, it must have available optical/NIR afterglow obser-
vations with data published or submitted up to Sep 2013
in refereed journals (GRBs with data published only in
GCNs1 are not included in our sample). Furthermore,
in order to calculate rest-frame luminosities, knowledge
of the optical spectral index (� O ) and host galaxy ex-
tinction in the line-of-sight ( AV ) is required. A sample
of 118 GRBs (27 detected in the pre-Swift era) satisfy
all of the above requirements. GRBs in this sample are
summarized in Table A.1 in the Appendix.

2.1. Optical data

Photometric measurements were collected from pub-
lished data. For observations carried out with multi-
ple �lters showing no signi�cant color evolution in the
afterglow, we shift all light curves to a common band
(using the measured spectral index� O ) to achieve im-
proved time coverage. Rest-frame extinction of some
intermediate-redshift bursts is rather high. In those
cases, we use NIR data, if available, in order to reduce un-
certainty due to host extinction correction. Where neces-
sary, we correct late-time light curves for host contribu-
tion. We do not include data contaminated by supernova
emission. We correct observed magnitudes for Galac-

1 http://gcn.gsfc.nasa.gov/
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tic extinction assuming Galactic extinction maps pro-
vided by Schlegel et al. (1998) and average extinction
pro�le given in Cardelli et al. (1989). Magnitudes are
converted to 
ux densities using proper �lter-dependent
zero-magnitude 
uxes for calibration (Fukugita et al.
1995, 1996). Flux densities are further corrected for host
extinction AV , using values and extinction laws reported
in Table A.1. Knowing the spectral slope of an afterglow,
its monochromatic light curve, observed at frequency�
at time tobs after a GRB trigger time, is transformed to
a rest-frame spectral luminosity using:

L � R (t rest ) =
4�d L (z)2

(1 + z)1� � 0 + � F� (tobs)
� � R

�

� � � O

; (1)

wheredL (z) is the luminosity distance, F� is the 
ux den-
sity corrected for host and Galactic extinction, and t rest is
time measured in the GRB rest frame. Luminosities are
calculated at the rest-frame frequency� R corresponding
to the Cousin R �lter.

2.2. X-ray data

After the launch of the Swift satellite, afterglow obser-
vations in the 0.1 - 10 keV energy range with the XRT
telescope (Burrows et al. 2005b) became routine. Af-
terglow light curves observed with the XRT were studied
extensively by Margutti et al. (2013), who report best-
�t models to unabsorbed X-ray light curves in the rest-
frame 0.3 - 30 keV energy range. We use their results
to construct rest-frame X-ray light curves for 79 GRBs
in our sample. These GRBs are 
agged with a letter
\ B " in the 9 th column of Table A.1. The advantage of
using these �tted light curves is that 
ares, commonly
found in X-ray light curves (e.g., Burrows et al. 2005a;
Chincarini et al. 2007), have been removed in the �tting
procedure.

2.3. High-energy data

We collected prompt 
 -ray properties, namely the du-
ration of the prompt burst ( T90) and isotropic equivalent
emitted energy (E 
; iso), from the literature (values and
references are reported in Table A.1). Most of the en-
ergy values are reported for emitted energy in the rest-
frame range of 1-104 keV. Values which have not been
calculated for this particular energy range,are marked
as lower limits (in all those cases the energy range is
within 1-104 keV limits). T90, corresponding to the time
in which 90% of the burst 
uence is recorded, is energy
dependent (i.e., 
 -ray emission observed in di�erent en-
ergy bands lasts for di�erent time periods; Virgili et al.
(2012); Qin et al. (2013)). Since GRBs in our sample
have been detected with di�erent instruments with dif-
ferent spectral characteristics, the reportedT90 values
are in general calculated for di�erent energy bands.

2.4. Radio data

We note that �ve of the RS candidates in
our sample have a detected radio afterglow
(GRB 990123 - Kulkarni et al. 1999b; GRB 021004
- Kobayashi & Zhang 2003; GRB 080319B -
Racusin et al. 2008; GRB 090424 - Chandra & Frail
2009; GRB 130427A - Laskar et al. 2013). Although
we do not discuss detailed radio properties, we use the

Table 1
Sample properties

Sample N Early detection Reverse Non-reverse

Sample A 118 79 10 36
Sample B 79 63 6 34

Note . | Summary of the two samples used in the paper:
a full sample of 118 GRBs (Sample A) and a subsample of
79 GRBs which were observed with the Swift XRT instru-
ment and analyzed by Margutti et al. (2013) (Sample B).
For each sample we report the number of GRBs with early
(t rest < 500 s) optical afterglow observations, the number of
RS candidates, and the number of GRBs for which we do not
�nd evidence for RS emission in optical afterglow.

radio detections in Section 4 where we apply theoretical
models to the observed RS sample afterglow light curves.

2.5. Selection of GRBs with reverse shock contribution

We constructed two samples from our parent sample:

� Sample A with all 118 GRBs,

� Sample B with 79 GRBs with both optical and
Swift XRT detection, whose XRT data were an-
alyzed by Margutti et al. (2013).

The two samples are summarized in Table 1. Evidence
for a possible RS signature must be looked for at an
early stage of optical afterglow emission. In the third
column in Table 1 we report the number of afterglows
where optical emission was detected earlier than 500 s
after the start of the GRB in the rest frame. In the last
column we report that 36 (34) GRBs in Sample A (B)
show no evidence of RS emission despite a well sampled
early-time light curve. As discussed in the Introduction,
that does not necessarily imply a complete absence of a
RS component. Early optical afterglow light curves of
the remaining GRBs show complicated emission compo-
nents, which cannot be easily classi�ed in the context
of purely forward- and reverse-shock emission. We con-
sider an afterglow as a RS-sample candidate if its light
curve resembles the Type I or Type II morphology. We
base our �nal decision on single-burst studies, where a
detailed analysis con�rms, or at least does not disprove
the existence of RS emission component.

In our full sample (A) we have 10 afterglows
that show evidence of an optical RS contribution:
GRB 990123, 021004, 021211, 060908, 061126, 080319B,
081007, 090102, 090424 and 130427A. For �ve of
them a RS component has been �rmly con�rmed
(GRB 990123 - e.g., Sari & Piran 1999a; GRB 021211
- e.g., Fox et al. 2003, Wei 2003; GRB 061126 -
Gomboc et al. 2008; GRB 081007 - Jin et al. 2013;
GRB 130427A - Laskar et al. 2013; Perley et al. 2014).
However, the remaining �ve either lack good early-
time photometric coverage (GRB 060908 - Covino et al.
2010; GRB 090102 - Gendre et al. 2010; Steele et al.
2009; GRB 090424 - Jin et al. 2013) or have di�erent
interpretations (GRB 080319B - RS (Bloom et al. 2009)
vs. two-component jet model (Racusin et al. 2008);
GRB 021004 - RS (Kobayashi & Zhang 2003,b) vs. mul-
tiple energy injections (de Ugarte Postigo et al. 2005)).
GRB 021004 is the only case in our sample with a pos-
sible Type I light curve, while the other nine are Type
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Figure 1. Afterglow luminosity uncertainty estimates due to SED
uncertainties (�lled histogram) and with added Galactic ex tinction
uncertainties (empty histogram). Most of the values of the � nal
estimates are below 0.25 dex.

II. Light curves of the ten afterglows in Sample A are
discussed in detail in Section 4.

There are other cases of possible RS afterglows
(GRB 060111B - Klotz et al. 2006, Stratta et al. 2009;
GRB 060117 - Jelinek et al. 2006; GRB 091024 -
Virgili et al. 2013), which do not have measured red-
shift and/or optical spectral slopes and therefore have
not been included in our sample.

2.6. Optical luminosity caveats and uncertainties

Optical luminosity light curves, obtained using the out-
lined procedure, are subject to a number of uncertain-
ties due to a lack of precise knowledge of afterglow spec-
tral behavior. The �rst contribution to the error comes
from the measured quantities AV and � O . The values
we compiled in Table A.1 were obtained with a stan-
dard procedure, i.e., by �tting the afterglow spectral en-
ergy distribution (SED) - in either broadband NIR to
X-ray or only NIR to UV wavelength range - with a
featureless power-law or broken power-law model to de-
scribe the afterglow continuum emission (e.g., Sari et al.
1998), which is then extinguished by scattering and ab-
sorption of light on dust and gas in the GRB line-of-sight
(e.g., Kann et al. 2006, 2010, Schady et al. 2007, 2010,
Greiner et al. 2011, Zafar et al. 2011, Covino et al.
2013, Zaninoni et al. 2013). When X-ray data are not
included in analysis, a degeneracy between the spectral
slope and the extinction is harder to break, which can
result in less accurate parameter values (Covino et al.
2013).

We perform a Monte Carlo (MC) simulation to esti-
mate the luminosity uncertainty due to errors in the mea-
surements ofAV and � O . In order to make a realistic es-
timate, we take into account the degeneracy between the
two parameters. We assume that both parameters are
distributed according to a bivariate normal distribution 2,

2 Since we do not know the actual distribution of the two pa-

where the correlation coe�cient � is estimated using the
SED �t results of Kann et al. (2010). We measure a
Pearson correlation coe�cient of � = 0 :35 � 0:15 and
adopt this value for our analysis, estimating the errors
by performing a MC simulation in which we take into
account the errors of the best-�t parameters. Once we
randomly draw both AV and � O , we calculate the lumi-
nosity from Eq. (1) and its di�erence � log L from best-�t
parameters value (logarithmic values are used through-
out the paper). We repeat the outlined procedure for
10,000 times for each afterglow. Simulated di�erences
� log L are distributed according to a normal distribu-
tion centered at 0. By �tting the distribution we obtain
a standard deviation of the distribution, which is our 1-�
error luminosity estimate for a particular afterglow. A
distribution of error estimates for Sample A is shown in
Figure 1 (�lled histogram).

We consider another potential source of error: the cor-
rection for Galactic extinction. Galactic extinction maps
provided by Schlegel et al. (1998) are used to correct
the data and play an important role in the derivation
of AV and � O for almost all GRB afterglows analyzed
in the literature. In order to be consistent, we use the
same maps in our work. However, by analyzing the col-
ors of stars observed with the Sloan Digital Sky Survey,
Schla
y et al. (2010) and Schla
y & Finkbeiner (2011)
�nd that the values reported by Schlegel et al. (1998)
are systematically overestimated by approximately 14%.
Another problem is the use of a total-to-selective ex-
tinction ratio RV = 3 :1 for the conversion of redden-
ing to absolute extinction, since this is only an average
value of an otherwise rich ensemble of values correspond-
ing to di�erent lines-of-sight. For example, examining a
few hundred lines-of-sight Fitzpatrick & Massa (2007)
found RV = 2 :99 � 0:27. We estimated (i ) the relative
error one obtains in calibration by using overestimated
Galactic extinction values and (ii ) the relative error due
to the dispersion of RV values by using a MC simula-
tion. Combining both errors in quadrature reveals that
the combined uncertainty in 
ux calibration does not rise
over � 10% for most of the sample. However, this error
contribution is more or less negligible when compared to
the uncertainties in measuringAV and � O . This is clearly
shown in Figure 1 where we plot the combination of both
e�ects with a solid black line. Most of the values3 are
below 0.25 dex, which we take as a reference uncertainty
estimate in this study.

While there are some afterglows with multiepoch SED
analyses (e.g., 080319B), most afterglows in our sample
had � O measured only at one epoch, thus we cannot ac-
count for spectral evolution when calculating rest-frame
luminosities (see Eq. 1). To understand the magnitude
of this e�ect, we calculate how much the luminosity val-
ues would change if the real spectral slopes di�ered from
those reported in Table A.1 by � � = 0 :5 (e.g., as ex-
pected from the passing of the cooling frequency through
the observing band; Sari et al. 1998). For most cases in
our sample, the corresponding change is� 0:25 dex.

Throughout the paper we use isotropic equivalent lumi-

rameters, we assume the normal distribution as the most natu ral
choice.

3 Errors reach much higher values in a few cases mostly due to
large uncertainties in derived extinction values (see Tabl e A.1).
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Figure 2. R-band spectral luminosity light curves of our sample of 118 G RBs. � Trest is the time measured relative to the start of
the GRB 
 -ray emission and given in the GRB rest frame. Observed 
uxes have been corrected for Galactic and host extinction and
transformed to luminosities as described in Section 2.1. (a ) Full and dashed red lines represent the mean and 25% and 75% q uartiles of the
spectral luminosity distribution at each time bin. Spectra l luminosity distributions at the three epochs, marked with dashed vertical lines,
are plotted in Fig. 3. Afterglows with RS contribution are pl otted in blue. (b) Contour plot showing the spectral luminos ity distribution
- the color scale represents the number of afterglows in a spe ci�c bin (0.1 dex in time and 0.5 dex in luminosity space). (c) Number of
afterglows in a speci�c time bin (0.1 dex) in rest (blue) and o bserver frame (gray); the contribution of pre- Swift (dashed) and Swift -era
(dotted) afterglows are also shown. We use the actual observ ed data to create this plot. However, in the subsequent analy sis we use light
curve models, �tted on the measurements (see Section 3).

nosities, as the beaming angles are unknown for most of
the GRBs in the sample. The interpretation of late-time
properties (Section 3) and modeling of late-time data
(Section 4) could be wrong if the steepening of the light
curves that is due to relativistic beaming e�ect (Rhoads
1997; Sari et al. 1999c), is not taken properly into ac-
count. We discuss the implications in Sections 3.2 and
4.2.

3. RESULTS AND DISCUSSION

Rest-frame R-band spectral luminosity light curves of
afterglows from our sample, corrected for Galactic and
host extinction, are plotted in Figure 2a. Figure 2b shows
light curves binned with a temporal step of 0.1 dex and

luminosity step of 0.5 dex - the latter is based on the
error estimate discussed in Section 2.6. In the following,
all times are given as rest-frame values, unless stated
otherwise.

3.1. Model Fitting

Di�erent temporal light curve sampling makes the
qualitative comparison of afterglows di�cult. To over-
come this, we �t each afterglow light curve with a model,
which is taken to be a power-law, a multiple-broken
power-law (e.g., Beuermann et al. 1999; Granot & Sari
2002) or a linear combination of the two. It is not
our goal to test the overall properties of the sample ob-
jects within the context of our model, rather to present
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a detailed light curve study tailored to the �ne details
of each individual GRB. Therefore, we do not provide
�t results for each case (detailed sample studies have
been performed by e.g., Zeh et al. 2006; Li et al. 2012;
Zaninoni et al. 2013). We also investigate whether using
�tted light curves or original data change sample prop-
erties (e.g., luminosity distribution, see Section 3.2). We
�nd that there are no signi�cant changes and in the fol-
lowing we use �tted model afterglows.

Next, we examine the luminosity properties of the 27
pre-Swift GRBs to see whether they di�er from the popu-
lation of Swift -era GRBs. As can be seen from Figure 2c,
pre-Swift afterglows mainly populate the late-time part
of the plot and are expected to be biased toward brighter
afterglows. However, using a two-sample Kolmogorov-
Smirnov test on the spectral luminosity distributions of
the pre-Swift and Swift afterglows in the time interval
of � 1 � log � T [days] � 1 we obtain probabilities higher
than P = 0 :7 that the two populations are drawn from
the same distribution. A similar result is obtained us-
ing a two-sample Anderson-Darling (AD) test (P � 0:6
in that time interval). Those two tests suggest that the
populations are drawn from the same distribution. Ad-
ditionally, the mean luminosity as a function of time (see
Section 3.2) is practically identical for Swift and pre-
Swift populations in this time interval. With this in
mind, we treat the two populations as one in the sub-
sequent analysis.

3.2. Optical spectral luminosity distribution - the
general case

We �rst investigate the time-dependent spectral lumi-
nosity distribution of all Sample A afterglows. For each
time bin we compute the mean and two quartiles (25%
and 75%) of the distribution, which are plotted in Fig-
ure 2a with solid and dashed red lines, respectively. The
time dependency of the mean itself can be represented
with a broken power-law (Beuermann et al. 1999). By
�tting the data and assuming a smoothness parameter
of n = 1 we get: � 1 = 0 :81 � 0:02; � 2 = 1 :71 � 0:12
and tb = 2 :34 � 0:35 days (with � 2=dof = 36=42). To
check whether the late-time steepening, which could in
principle be attributed to a jet break 4, has an impact on
derived properties for the general population, we look for
late-time breaks. In the cases for which the steepening is
found, we extrapolate pre-break light curves to late times
assuming a constant decay index. Afterglow light curves
with only late-time observations are discarded. We �nd
no statistical di�erence between jet-corrected sample and
the original sample for times � T < a few days.

Luminosity distributions at three epochs (as marked in
Figure 2 with dashed vertical lines) are shown in Figure
3. The rest-frame luminosity distribution has previously
been investigated, with some works �nding evidence
of a bimodal distribution at late times (Nardini et al.
2006, 2008; Liang & Zhang 2006; Kann et al. 2006).
Later studies on smaller, more homogeneous samples
(Melandri et al. 2008; Oates et al. 2009; Cenko et al.
2009), as well as large sample studies (Kann et al.
(2010); Zaninoni et al. (2013)), do not �nd signi�cant

4 Only a handful of GRBs have observed achromatic jet breaks
(Liang et al. 2008) as predicted by a standard theory, theref ore
the identi�cation and con�rmation of a jet break is not trivi al.
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Figure 3. Spectral luminosity distributions at three di�erent
epochs. Vertical dashed lines indicate the mean values of th e dis-
tributions. Shadowed regions show the area where 50% of the d ata
within each distribution lies (e.g., the area between 25% an d 75%
quartiles). The spectral luminosity of GRB 080319B at the th ree
epochs is marked with arrows.
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Figure 4. Luminosity light curves of three GRB afterglows, di-
vided by the mean luminosity light curve (see red solid line in
Figure 2a). Dashed lines show the light curves which are not c or-
rected for host extinction. The latter are divided by the mea n light
curve of the extinction-uncorrected data. Uncertainty, es timated
in Section 2.6, is � 0:25 dex.

bimodality. As suggested by Figure 3, we also �nd no
evidence for late-time bimodality.

Luminosities at early times are more dispersed than
at late times. This can be seen both from the calcu-
lated standard deviation as well as the interval between
the 25% and 75% quartiles of the distributions: both
quantities are decreasing with time. A number of e�ects
could be the cause for the larger early-time dispersion:
di�erent emission components (e.g., forward- or reverse-
shock afterglow emission, internal-shock emission) or un-
accounted spectral evolution when calculating the lumi-
nosities (see Eq. 1 and discussion in Section 2.6).

Comparing distributions at di�erent epochs is not a
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Figure 5. Luminosity light curves of RS candidates, divided by the mean light curve of the sample, calculated for Sample A (l eft) and
Sample B (right). Coloring for both �gures: GRB 990123 - gray , 021004 - violet, 021211 - dark green, 060908 - dark blue, 061126 - red,
080319B - black, 081007 - orange, 090102 - light green, 090424 - light blue, 130427A - brown. In the case of Sample B, normal ized X-ray
band light curves have been also calculated and are plotted w ith dashed lines. Uncertainty, estimated in Section 2.6, is � 0:25 dex.

trivial task, since not all afterglows cover all time inter-
vals. Another more subtle problem is that afterglow light
curves show a wide variety of properties, with various de-
cay slopes (e.g. Oates et al. 2009) and features that can
change their temporal evolution, like late-time rebright-
enings (e.g. Monfardini et al. 2006; Nardini et al. 2011;
Greiner et al. 2013; Gomboc et al. 2014) or density
bumps (e.g. Lazzati et al. 2002; Guidorzi et al. 2005).
Consequently, the relative position of afterglows in the
luminosity distribution changes with time. An example
is shown in Figure 3, where the arrows point to the value
of spectral luminosity of GRB 080319B at the three cho-
sen epochs. In the following we therefore plot afterglow
light curves which are divided by the \mean light curve"
(solid red line in Figure 2a). This approach allows us
to immediately evaluate the relative 
ux of an afterglow
(e.g., brighter or fainter with respect to the mean) and its
temporal behavior. We show this for three distinct cases
in Figure 4. The naked-eye burstGRB 080319B (e.g.
Racusin et al. 2008; Bloom et al. 2009), the brightest
afterglow ever observed at an early stage, initially decays
very fast and behaves like an average afterglow at late
time. GRB 100901A (Gomboc et al. 2014) is among the
faintest at the beginning but experiences an extreme late-
time rebrightening, making it among the brightest in the
� 0:1 � 1 days time range. GRB 061007 (Mundell et al.
2007b; Ryko� et al. 2009) shows an early peak and a
remarkably smooth decay without breaks, bumps, etc.
However, its temporal decay index (steeper than the de-
cay of the mean) and its absolute luminosity result in
di�erent time evolution with respect to the mean.

3.2.1. The Role of Host Extinction

To show that the correction for host extinction is an
important step in the analysis of rest-frame optical prop-
erties, we repeat the procedure, this time taking the data
not corrected for host extinction. Results are shown as
dashed lines in Figure 4. For 62% of the sample, the mea-
sured host extinction is low enough that the di�erence be-
tween the host extinction corrected and uncorrected light
curves is within our error estimate (i.e., less than 0.25
dex, see Section 2.6). For 19%, the di�erence is larger

than 0.5 dex. Measured rest-frame extinction values,AV ,
are generally not very high for most of the afterglows
(e.g., Zafar et al. 2011). However, due to relatively high
redshifts, the light we observe in the optical band was
actually emitted in the UV part of the spectrum, where
light is considerably attenuated even at low dust quan-
tities in the line-of-sight. The three most attenuated af-
terglows in our sample are GRB 060210 (Curran et al.
2007; Stanek et al. 2007), GRB 080607 (Perley et al.
2011) and GRB 100621 (Kr•uhler et al. 2011).

3.3. Afterglows with and without RS emission
3.3.1. Optical properties

Normalized luminosity light curves of the Sample A RS
candidates are shown in Figure 5 (left). The afterglows
are found to span �ve orders of magnitude in spectral
luminosity at early times. The two bright afterglows de-
cay rather fast, compared to the rest of the sample: after
� 1 day they behave like an average afterglow. This is
in agreement with the result presented by Oates et al.
(2009, 2012), who found that the brighter the afterglow
the faster it decays. The faint group, however, stays at
the faint end of the distribution for most of the after-
glow duration. The case of GRB 021004 is curious - it
is among the brightest afterglows at times> 1 day, in
complete contrast to the other RS afterglows.

First we check whether our RS sample is drawn from
the same population as afterglows without a RS com-
ponent. We compare our 10 RS candidates to the 36
Sample A afterglows with early-time observations and
no compelling evidence of a RS using the two-sample KS
test. The statistics are applied to each time bin, i.e., we
compare the distribution of the two groups as a func-
tion of time. We �nd a KS probability PKS � 0:65 and
PKS � 0:06 when comparing distributions at early time
(log � T [days] < � 2) and late time (log � T [days] > � 1),
respectively. In addition, we estimate the error on the
statistics by taking into account the estimated luminos-
ity error and performing a MC simulation. The uncer-
tainty does not reach over � PKS = 0 :04. We can thus
reject the null hypothesis that the samples are the same
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at late times to the 90% con�dence level. At early times,
we cannot prove or disprove the hypothesis. We con�rm
this conclusion with the AD test. Due to the scatter
in the brightness distribution at early times (see Fig-
ures 2 and 3) it is not surprising that our RS sample
is not signi�cantly di�erent from the rest of the pop-
ulation. The late-time result, however, is more curi-
ous. GRB 021004 seems to be an outlier. Its bright-
ness at late time could be a result of multiple energy
injections (de Ugarte Postigo et al. 2005), a feature not
recognized in any other RS-candidate light curve. We
repeat the statistical analysis on the two samples ex-
cluding GRB 021004. We obtain late-time probabilities
PKS < 0:03 and PAD < 0:04 (including the uncertainty).
Given these two results we can reject the hypothesis at
the con�dence level of 95%. Apart from GRB 021004
all afterglows with a reverse component are quite faint.
Since the reverse component dominates only early-time
emission, the result of the two tests suggests the possi-
bility that the FS afterglows accompanied with reverse
component are generally fainter. This could in principle
be attributed to a selection e�ect: RS emission in the
presence of a very bright FS could be masked by the FS
emission.

3.3.2. X-ray and 
 -ray properties

Observed preference toward fainter optical FS compo-
nents might also reveal itself at higher energies. Six of our
RS sample candidates have available X-ray light curves.
None of the light curves shows strong evidence of a
plateau phase: plateau, which is found in a large fraction
of X-ray light curves (Nousek et al. 2006; Zhang et al.
2006), is a natural prediction of a long-lived RS model
(Uhm & Beloborodov 2007; Genet et al. 2007). A
possible end of a plateau phase is observed in GRBs
060908, 090102, 090424 and 081007. GRBs 080319B
and 130427A (the latter is not in the Margutti et al.
(2013) sample and therefore not included in ours) have
no plateau phase, while the X-ray observations of GRB
061126 started too late to con�dently exclude the pres-
ence of a plateau. We repeat the analysis we did on
Sample A with Sample B, where in addition to optical,
we also have X-ray light curves. The results are pre-
sented in Figure 5 (right). We note that the mean light
curve of the Sample B optical afterglows is very similar
that of the Sample A afterglows, so the normalized op-
tical light curves of the RS candidates are more or less
unchanged. Normalized X-ray light curves are plotted
as dashed lines. Late-time X-ray afterglows seem to be
clustered in two groups. GRBs 061126, 080319B, 090102
and 090424 are among the brighter, while GRBs 060908
and 081007 are among the fainter group. However, they
are all very near the mean X-ray light curve, given the
much larger spread in late-time X-ray luminosities.

The above result can be investigated from the perspec-
tive of the Sample B afterglow energetics. To accomplish
this, we �rst transform thr optical spectral luminosities
to luminosities (multiplying by the Rc frequency win-
dow). We then choose a common time interval for the
six RS candidates and as many other Sample B after-
glows, attempting to maximize both optical and X-ray
light coverage. The best compromise is to take the rest-
frame time interval of 1 � 30 ks in which a total of 45
afterglows have observations. We compute the energy
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Figure 6. Energy emitted in the R band and 0.3-30 keV X-ray
band in a rest-frame time interval of 1 - 30 ks. A total of 45
afterglows from Sample B were observed in that time interval . RS
afterglows are plotted with red points. Afterglows with no a pparent
RS component are plotted with un�lled circles and the rest of the
sample with black points. The line represents a power-law �t to
all measurements with a power-law index of 1.01 � 0.12.
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Figure 7. High energy properties of our Sample A. Only GRBs
with both E 
; iso and T90 measured are included. RS candidates
are plotted with red points. Afterglows with no apparent RS c om-
ponent are plotted with un�lled circles and the rest of the sa mple
with black points. Upper/lower limits are indicated with ar rows.
Red and black dashed lines represent the median energy of the RS
and overall sample, respectively. The black dotted line rep resent
the median energy of afterglows without RS.

emitted in that interval and plot it in Figure 6. In gen-
eral we observe a clear correlation between the energy
emitted in the two energy bands. We �t the data with a
simple power-law function and obtain a slope of 1.01�
0.12. Afterglows with RS components are plotted in red
and afterglows without a clear RS component are plot-
ted with un�lled points. The latter have no preferential
position in the plot. The six RS sample points are all be-
low the best-�t power-law line. This could be a hint that
X-ray afterglows accompanying RS candidates are rela-
tively bright, in contrast to their optical counterparts.
Unfortunately, only six RS afterglows in our sample fall
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in Sample B, preventing us from drawing any strong con-
clusion. In addition, we note that the X-ray light curves
used in this analysis are integrated in the rest frame en-
ergy range of 0.3-30 keV, while optical light curves are
obtained with observations through a relatively narrow
frequency window.

Finally, we investigate E iso and T90, which are plot-
ted in Figure 7. Equivalent isotropic energies of the RS
GRBs do not show any preferential values. This is fur-
ther con�rmed using the KS and AD tests to compare
the samples of RS and non-RS GRBs, where we obtain
probabilities PKS = 0 :44 and PAD = 0 :31. We therefore
cannot reject or con�rm the hypothesis that the two sam-
ples come from the same distribution. We caution that
the T90 values are calculated for di�erent energy ranges.
For this reason we plot the values in Figure 7 but do not
use them for further analysis.

4. REVERSE SHOCK MODELING

As discussed in the Introduction, reverse- and forward-
shock emission components in an afterglow can be used
to constrain the physical conditions in the GRB ejecta.
Ideally, one would like to observe the behavior of both
forward- and a reverse-shock emission, clearly distin-
guishing their respective afterglow peaks (i.e., Type I
light curve). In this case, under the assumption that
the electron distribution index, p, and the ratio of the
electron energy density and the internal energy density
in the shocked region,"e, are the same in front of and
behind the contact discontinuity, one can constrain the
initial Lorentz factor, � 0, and the magnetization param-
eter RB = "B;r ="B;f , where "B;r and "B;f are the ratio
of the magnetic energy density and the internal energy
density in the reverse and forward shock region, respec-
tively (Zhang et al. 2003)5. However, in most cases only
one or neither peak is observed. Our RS sample mostly
contains Type II light curves, where the RS emission
dominates. Gomboc et al. (2008), extending the analy-
sis of Zhang et al. (2003), showed how an approximate
value of RB in the case of Type II light curves can be
estimated in the limiting case of thin- or thick-shell RS
description. To estimate RB , the values of � 0, the shell
deceleration time, and FS peak time have to be known.
Harrison & Kobayashi (2013) extended this analysis to
the intermediate RS case.

Traditionally, information on the physical properties of
the GRB ejecta is inferred by �tting an empirical func-
tion to the observed multiwavelength light curve. In-
stead, we use an alternative approach in which we per-
form a Monte Carlo simulation to �nd a parameter space
of light curves that best match the observed light curves,
i.e., we assume the light curve is a combination of RS and
FS emission and determine a set of physical parameters
to reproduce it.

4.1. A Simple Reverse plus Forward Shock Model

We constructed a simple model of a reverse and for-
ward shock afterglow. The connection of long GRBs
with massive stars implies a circumburst environment

5 Note that Zhang et al. (2003) and Zhang & Kobayashi
(2005) de�ne the ratio of magnetic �eld strength in the rever se

and forward shock region as RB = B r =B f =
�
" B ;r ="B ;f

� 1=2 while
we assumeRB = " B ;r ="B ;f (e.g., Harrison & Kobayashi 2013)

in the form of a stellar wind. However, light curve
and SED analysis of afterglows reveals that a constant-
density ISM is a better approximation in majority of
cases (e.g., Schulze et al. 2011) and the real conditions
may be even more complicated (see discussion in Section
4.4). Therefore, we decided to assume a constant ISM
environment in our modeling, having in mind that this is
only a rough approximation of real conditions (see also
Section 4.6). Furthermore, we assumed a slow-cooling
spectrum in which the typical synchrotron frequency, � m ,
is below the cooling synchrotron frequency,� c. In this
case the spectrum is composed of three power-law seg-
ments: F� / � 1=3; � � (p� 1)=2; � � p=2, joined at break fre-
quencies� m and � c (Sari et al. 1998). Since we are pri-
marily interested in optical wavelengths, we ignore syn-
chrotron self-absorption (we look into this more care-
fully in Section 4.4). Dependencies of� m , � c, and the
peak 
ux in the spectral domain F�; max (not to be con-
fused with light curve peak Fp ) on the physical param-
eters and their temporal scalings were computed follow-
ing equations in Shao & Dai (2005), which are based on
theoretical grounds described by Sari et al. (1998) and
Kobayashi (2000) for forward and reverse shock after-
glows, respectively. For simplicity, we assume that only
the thin-shell scenario applies to our data. Even though
GRBs 990123 and 061126 are marginal cases (i.e., mildly
relativistic), they cannot heat the shell well and behave
similarly to the thin-shell case (e.g., Kobayashi 2000;
Gomboc et al. 2008).

The model light curve of an event occurring at redshift
z and observed at frequency� is determined by a set of
parameters

Ft;�; obs = f (t; � ; z; p; n; "B;f ; "B;r ; "e; EK ; � 0); (2)

where n is the density of circumburst ISM, EK is the
isotropic equivalent kinetic energy of the shell, and �0
the initial Lorentz factor of the shell. Apart from "B
we assume the same values of microphysical parameters
in the forward and reverse shock region. Our goal is to
compare a theoretical model to the observed 
ux density
optical light curves of our afterglows. Light curves are
computed for � = � R . Redshift, z, is known for all after-
glows in the sample. We are left with seven free param-
eters that have to be constrained by the actual observed
light curve. We constrain the electron energy distribu-
tion index, p, by measuring the late-time (i.e., time when
the contribution of the reverse component is negligible)
FS afterglow decay index,� f , and assuming the relation
� f = 3( pf � 1)=4 (Sari et al. 1998), where we use the
subscript f to emphasize that pf is measured from the
FS decay slope. Since the RS decay is also dependent
on p, we constrain p to a very narrow interval around
pf . This allows us to improve the modeling of RS decay
slope in case the value ofpf does not provide a very good
result. We assume the parameters can take the following
values: p 2 [pf � 0:05; pf + 0 :05], "B;f 2 [10� 5; 10� 1], "e 2
[10� 4; 0:5], n 2 [10� 1; 104] cm� 3, EK 2 [1050; 1056] erg,
� 0 2 [50; 104] and "B;r = RB "B;f , where RB 2 [1; 105].
The latter assumption can result in an unphysical sce-
nario with "B;r + "e > 1: such events are not considered in
further simulation. We also assume that all parameters,
apart from p, are uniformly distributed in log space. This
is an arbitrary choice due to the lack of knowledge on the
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actual parameter distributions. As an additional con-
straint we place a limit on the radiative e�ciency of the
prompt gamma emission to be� 
 > 0:01 (Zhang et al.
2007), thus placing the upper limit on the allowed EK
for each speci�c event.

By using monochromatic light curves, we expect the
parameter space for each speci�c case will be only par-
tially constrained. In addition, the assumption that the
observed light curves can all be described as a combina-
tion of forward and reverse shock emission is a simpli�ca-
tion which may not be entirely true (see later discussion
for the need of additional emission components). For
this reason, we do not attempt to �nd the best matching
model (e.g., using� 2 statistics). Instead, we only need
to �nd a sample of parameter sets, which can reproduce
the observed light curves. By randomly choosing param-
eter values, we search for these models by imposing a few
criteria the produced light curves have to meet:

� If a RS (FS) peak is observed, its peak 
ux Fp;r
(Fp;f ) as well as its peak timetp;r (tp;f ) has to be
reproduced within arbitrarily set accuracy interval
(� log Fp < 0:2 and � log tp < 0:2). In the thin-
shell scenario and� obs = � R we expect tp;r & T90.
In practice, the last constraint has to be relaxed in
cases when the peak is not observed and the �rst
optical observation coincides with T90: we assume
j log tp;r � logT90j < 0:2

� Flattening, if observed, is characterized by its 
ux
F
at and time t 
at - in this case we requireT90 <
tp;f < t 
at .

� The last condition is normalization. We arbitrarily
choose a few points on the observed light curves
(it turns out that specifying 
ux density values at
three di�erent epochs is enough to obtain models,
which can reproduce our light curves well), and al-
low a discrepancy in 
ux density values of 0.25 dex
between the data and the model.

With this procedure we search for the �rst 200 model
light curves for each afterglow in our sample that satisfy
the above requirements. This number of events was cho-
sen to extract su�cient data for the analysis while main-
taining a reasonable simulation execution time. This
number does not a�ect the �nal conclusions. The best
model among this 200 is then searched for using� 2 statis-
tics. Observed host extinction corrected light curves and
the corresponding best theoretical models are plotted in
Figure 8. Parameter values of the best model for each
case are reported in Table 2.

4.2. Modeling details

For the case of GRB 021004, we assume the rebright-
ening at � 0:1 days is a FS peak. Early optical observa-
tions show a 
attening instead of an expected RS peak
- we assume the peak should have occurred somewhere
between the �rst and the second observation. We model
only data with observations taken before 1 day, assum-
ing that later rebrightening is due to another physical
process and would thus need an additional component.

The last data point of the afterglow of GRB 060908
(at � 1 day) is not included in the model: most possible
models thus overpredict the 
ux density at late times,

suggesting a jet break. However, a passage of the cooling
frequency through the observational band could be an
alternative scenario, as shown by the best-matching red
curve.

The light curve of GRB 061126 has a prominent bump
in the 80 - 800 s time interval (Perley et al. 2008a),
which is excluded from the model. Otherwise, the early-
time decay slope is too shallow to be successfully modeled
with a RS.

In the case of GRB 080319B we model the data after
� 100 s. The steep decay of� � 6:5 (Racusin et al.
2008) prior to this time cannot be explained within the
RS model.

We failed to model the light curve of GRB 081007. The
early-time peak (tp � 130 s), followed by a decay of
� � 2, can be explained with RS emission. However,
the light curve then experiences a transition to a shallow
decay phase with� � 0:65, too shallow to be explained
by a simple FS emission component. This shallow phase
is explained by Jin et al. (2013) as a FS emission with
continued energy injection with an energy injection index
q = 0 :5 (Zhang et al. 2006). This event is left out from
further discussion.

The multi-wavelength light curve of GRB 130427A has
been found to be described well by a RS+FS thin-shell
model with a wind environment (Laskar et al. 2013;
Perley et al. 2014). However, excluding early reverse
contributions, a FS model with ISM environment has
also been successfully applied (Maselli et al. 2013). In
this work we only consider a constant density ISM cir-
cumburst environment. Our model can reproduce the
optical light curve, assuming the break at � 0:45 days is
a jet break.

4.3. Monte Carlo Simulation Results

In Figure 9 we show the distribution of parameters of
the 200 generated light curves for each afterglow. From
the results of the the simulations it appears that the
physical conditions of our sample are very diverse: pa-
rameters occupy the whole prede�ned parameter space.

The fractions of the kinetic energy deposited to a mag-
netic �eld in the reverse and forward shock region ("B;r
and "B;f ) are unconstrained for most of the sample. The
former, while generally low, spreads for about two or-
ders of magnitude (or more) for each afterglow. Simi-
larly, "B;f occupies low values, spreading between 10� 5 <
"B;f < 10� 2. In the case of GRB 080319B the values are
crowded toward the lower limit of 10� 5, suggesting even
lower values are possible (e.g., see Panaitescu & Kumar
2004; Santana et al. 2013).

The magnetization parameterRB occupies values from
� 2 (GRBs 021004 and 130427A) to � 104 (GRB
080319B). Except for GRB 090102,RB is constrained
within one order of magnitude for all cases. This is in
contrast to the mostly unconstrained parameters"B;r and
"B;f . The reason for generally highRB values is "B;r ,
which has a role in the normalization of the RS after-
glow. Most of our sample is composed of Type II light
curves with a dominant RS component. Thus, high"B;r
values relative to "B;f are needed to obtain strong RS af-
terglows and it is not a surprise to see such high values
of RB ratio.

Values of the "e parameter are found in a wide range



11

��
��
��

�
�
�
�
�


���

����

��

��

�

�

�


���������

��

��

�

� 
���������

��

��

�

�
������
�	

��

��

�

�

� 
���������

��

��

�

�

�

�

����	���
�

�� �� �� �� �� � � �
��

��

��

� 
����	����

�� �� �� �� �� � �

��

��

��

�

�

�
����
����

�� �� �� �� �� � �
��

��

�

�

� 
����
����

�� �� �� �� �� � � �
��

��

�

�

�
����������


�� �� ��� �������


��
��

	
���

���

Figure 8. Dust-unextinguished 
ux density light curves of our sample of 10 RS candidates in the observer frame. Observational dat a
are plotted with blue points. Three green regions, in combin ation with rules reported in the text, have been used in the MC simulation
to obtain theoretical models matching the data. 200 models f or each GRB are plotted in gray and the best model among them is plotted
in red. Each model is a combination of RS (black dotted lines) and FS (black dashed lines) emission. Vertical lines mark T90 times as
reported in Table 2. FS emission prior to the �reball deceler ation time (i.e., RS peak time) is assumed to rise as t3 .
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Table 2
Best-model parameters

GRB p "e [10� 3 ] " B ;f [10� 5 ] RB = " B ;r ="B ;f n [cm� 3 ] � 0 EK [1052 erg] � 
 � 
; max

990123 2.49 79.0 5 1156 0:3 420 108.0 0.2 < � 
 < 0.9 -
021004 2.57 260.0 150 5 4:4 99 7.0 < 0.8 -
021211 2.20 130.0 3 128 9:9 154 3.0 < 0.6 0.1
060908 2.24 14.0 117 72 190:0 107 2.7 0.5 < � 
 < 0.9 0.7
061126 2.02 420.0 8 69 3:7 255 12.0 0.4 < � 
 < 0.9 0.9
080319B 2.57 68.0 4 16540 0:6 286 67.6 > 0.6 � 1
090102 2.31 0.4 2 6666 359:0 228 816.0 < 0.4 < 0.1
090424 2.06 2.7 19 25 4:0 235 258.0 < 0.6 0.1
130427A 2.08 3.3 22 4 1:5 157 521.0 < 0.8 -

Note . | Parameters, corresponding to the models that provide the best match with the observational data (see red
light curves in Figure 8). As discussed in Section 4.3, the me thod we use does not allow us to constrain the parameters -
they can only be constrained within the interval, shown by pa rameter distributions in Figure 9. In the last two columns
we report the spread of calculated radiative e�ciency value s and the most probable value of � 
; max in the distribution.
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and are quite unconstrained for GRBs 061126, 090102,
090424 and 130427A. For GRB 090102,"e is especially
low. Examining the 200 parameter sets for this GRB, we
�nd that "e and EK are strongly anti-correlated. Since
the obtained EK is also rather high, this suggests the
preference toward low"e is a result of an unconstrained
degeneracy between the two parameters.

ISM density is found to be as high as 104 cm� 3. The
values for each GRB, obtained for di�erent models, are
spread over several orders of magnitude. The distri-
butions for GRBs 990123, 061126 and 080319B imply
that the densities could have values below the assumed
lower limit of 10 � 1 cm� 3. However, removing the lower
limit constraint, densities reach unrealistically low values
down to 10� 5 cm� 3. This is a consequence of degener-
ation between n, EK and � 0: low values of the former
result in high values of the latter two. For example, in
the absence of the density constraint,EK reaches values
of 1055 ergs and more for GRBs 990123 and 080319B, im-
plying very low prompt e�ciency, which is unlikely for
this two intrinsically very bright bursts.

Values of the initial Lorentz factor, � 0, lie between a
few tens and� 600. This parameter is well constrained,
which is a consequence of relation between �0 and the
deceleration time (the latter being at least partially con-
strained by the light curves): tdec / E 1=3

K n� 1=3� � 8=3
0

(e.g., Kobayashi 2000).
EK occupies values between 1052 � 1056 erg. Al-

though it is not well constrained, we estimate the ra-
diative e�ciency of the prompt 
 -ray emission, de�ned
in Zhang et al. (2007) as� 
 = E 
; iso=(E 
; iso + EK ). As-
suming the E 
; iso values given in Table A.1, we obtain
an e�ciency for each burst, reported in Table 2. The
e�ciency is high for GRBs 060908, 061126 and 080319B,
low for GRBs, 021211, 090102 and 090424 and mostly un-
constrained for GRBs 990123, 021004 and 130427A. The
latter two have most of the values very near the limiting
e�ciency of � 
 = 0 :01, suggesting either the e�ciency is
even lower than that or, more likely, the degeneracy of
EK with other parameters is a�ecting our results. A large
spread in derived most-probable e�ciency values� 
; max
(that is, � 
 at the peak of EK distribution) is in agree-
ment with the values derived in Zhang et al. (2007).

The spread in parameter values varies considerably. In
some cases the values are completely unconstrained and
occupy several orders of parameter space. The spread
is an expected consequence of using monochromatic ob-
servations to constrain the analytic model: as already
mentioned parameters can be severely degenerated. For
example, parameters of the best and second best model
(according to � 2 statistics) can di�er for an order of mag-
nitude. This degeneration is the reason why some of
the parameters corresponding to the best matching light
curve do not represent the peak of the distributions, plot-
ted in Figure 9. Taking a subsample of models within the
200 light curves that best match observations (i.e., using
� 2 statistics) does not reduce the spread in the distri-
butions. Our analysis shows that monochromatic light
curves are not enough to constrain the parameters much
better than shown by the widths of the distributions.
Due to the nature of our MC simulation, a small frac-
tion of parameter sets results in light curves that visually
(and statistically) do not match the data very well: these

cases have very high� 2 values in the tail of � 2 distribu-
tion. The parameters corresponding to these cases are
not constrained to one region of their parameter space,
but they do occur preferentially in the tails of their dis-
tributions.

Comparing our results with previous analyses is not
trivial: while most of the models are based on the stan-
dard �reball model, di�erent studies use di�erent emis-
sion components or circumburts environment properties
in order to explain observations. Harrison & Kobayashi
(2013) undertook a numerical approach to describe con-
ditions in the intermediate RS shell regime between rel-
ativistic and sub-relativistic. They speci�cally calculate
the RB ratios for GRBs 990123 and 090102. Our re-
sults agree well with theirs (though, admittedly, our RB
parameter in the case of GRB 090102 is mostly uncon-
strained). Panaitescu & Kumar (2004) constructed sev-
eral di�erent models, trying to explain the afterglows of
GRBs 990123 and 021211. They found that a constant
ISM thick-shell RS + FS case with highly radiative dy-
namics can describe the observed optical and radio light
curves of GRB 990123, withRB > 100, EK & 1055 erg
and n & 1 cm� 3: the latter is in complete contrast to our
result. Their model, however, assumed that"e as well as
"B di�er in front of and behind the contact discontinuity.
They could also reproduce the light curve with a fully ra-
diative model in a wind environment but with the same
microphysical parameters in the two regions. A similar
analysis was done for GRB 021211, whereRB was found
to be either very high (thin-shell; RB > 103) or very
low (thick-shell; RB � 1). Instead, we �nd RB to lie
in between these two values. Our derived values ofRB
for GRB 061126 are in agreement with the one given by
Gomboc et al. (2008) (RB � 50). The results we obtain
for GRB 021004 agree with Kobayashi & Zhang (2003).
The parameter estimates we obtain for GRB 130427A dif-
fer from the values estimated by Perley et al. (2014).
This is not surprising, since we use a di�erent theoretical
premise for modeling (i.e., wind versus ISM circumburst
medium). The exception is RB , which we found to be
low in both studies.

Overall, while the parameter values themselves have a
large spread, it seems that very diverse physical proper-
ties can be found in the GRB ejecta and their surround-
ing environment. Similar results, using di�erent models,
have been obtained in previous studies. By modeling
several afterglows with a FS model, Panaitescu & Ku-
mar (2001; 2002) found that n and "B;f values occupy
similarly wide parameter spaces as found in this work.
Recently, Santana et al. (2013) modeled FS afterglow
emission and, assuming a constant"e = 0 :2, n = 1 cm � 3

and � = 0 :2, found low values of "B;f (10� 8 � 10� 3),
which are generally lower than values obtained in this
and previous studies.

According to our �ndings, most of the cases in our
sample are allowed rather low values of"e and "B;r . If
the prompt emission is due to internal shock scenario,
the same microphysical parameters should in principle
be used both for internal shocks and external reverse
shocks. The small values we infer from the modeling
suggest an ine�cient gamma-ray burst, peaking at low
energies. This inconsistency with the observed data (and
rough e�ciency values reported in Table 2) may be re-
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solved if the jetted out
ow is highly variable, i.e., com-
posed of shells with Lorentz factors di�ering by a few
orders of magnitude (e.g., Kobayashi & Sari 2001). In
this case, the density of di�erent shells should not vary
too much, otherwise its irregularity could survive the in-
ternal shock phase and a�ect the reverse shock evolution
(and thus our initial assumptions). We also note that
"e has been chosen to be the same in the reverse and
forward shock region while in principle this is not neces-
sarily true.

4.4. Radio afterglows

We check whether the models that provide a good
match in optical wavelengths can also reproduce obser-
vations at other energies. Five GRBs in the sample
(GRBs 990123, 021004, 080319B, 090424 and 130427A)
were detected in radio wavelengths. To calculate the ra-
dio afterglow, we modify the code in order to account
for the synchrotron self-absorption e�ect. We calculate
the value of the self-absorption frequency,� sa;f , assum-
ing the expression given by Granot & Sari (2002)6 and
take into account the fact that the 
ux density below
� sa;f drops signi�cantly ( F� / � 2). In the case of a RS
afterglow, we assume a simple estimate for the upper-
limit of the self-absorbed 
ux to be an emission from
a black body with the RS temperature (Sari & Piran
1999b; Kobayashi & Sari 2000; Melandri et al. 2010).
The 
ux density of a black body at the deceleration time
is (see e.g., Melandri et al. 2010, Eq. 6)

F�; BB � 1:3 � 10� 14(1 + z) �

� "e� 3
0� 2

9D � 2
L ;28

�
tdec

s

� 2

mJy: (3)

This limit initially increases / t1=2. After the typical
frequency, � m;r , crosses the observed band, the increase
steepens (/ t5=4). The combination of the increasing
limit and decaying RS emission produces a 
are (for a
schematic plot of the emission components, see Figure 8
in Melandri et al. 2010).

Applying the above prescription to our model, we cal-
culated the radio light curves, assuming previously ob-
tained parameter sets. In general, we �nd the radio 
ux
is overestimated by the models by a factor of� 5 � 10
in the best of cases. Repeating the simulation with
an additional radio constraint for these GRBs, we do
not �nd a parameter space in which the optical and ra-
dio 
ux can be simultaneously reproduced with the as-
sumed model within reasonable accuracy. Our inability
to reproduce the radio observations may be due to the
assumption of a thin- rather than thick-shell RS evo-
lution. A homogeneous environment may also be too
simple an approximation, and GRB 130427A, at least,
has been successfully modeled by a wind environment
(Laskar et al. 2013; Perley et al. 2014). On the other
hand, Liang et al. (2013) and Yi et al. (2013) recently

6 The di�erence between light curves obtained by the model
we used and the ones obtained by using the model given by
Granot & Sari (2002) is small, compared to di�erences with so me
other models (Granot & Sari 2002). There is practically no di �er-
ence in calculated � m ;f and � c; f (< 4%), while the absolute 
ux
di�ers for a factor of � 1:7 � 2:0. Assuming � sa provided by
Granot & Sari (2002) should not considerably a�ect our resul ts.

investigated temporal evolution and resulting emission
of RS and FS for a general environment density distri-
bution (e.g., n / r � k ) and found that the environment
is neither purely homogeneous nor stellar wind. Alter-
natively, assuming that all the microphysical parameters
have di�erent values in front of and behind the contact
discontinuity might help to reproduce other wavebands
(Panaitescu & Kumar 2004).

GRB 021004 can in principle be reproduced at radio
wavelengths, but a more complete light curve in mm
wavelengths (de Ugarte Postigo et al. 2005) reveals our
models overpredict the peak time in the mm band by a
factor of � 10. This result suggests that the peak in op-
tical we assumed to be attp � 0:1 days might not be due
to passage of� m;f through the optical band but rather an
energy injection, as claimed by de Ugarte Postigo et al.
(2005).

4.5. X-ray afterglows

All sevenSwift -era afterglows from our RS sample have
also been observed with the XRT instrument onboard
Swift. We check whether the models that match the op-
tical data well can also reproduce the X-ray afterglows.
For this we calculate the corresponding light curves at 10
keV and compare them to the unabsorbed 
ux density
light curves available in the online light curve repository7

(Evans et al. 2010).
X-ray light curves are reproduced well only for

GRB 090424. The X-ray 
ux is underestimated by a fac-
tor of � 10 in the case of GRB 090102. For all other cases
(except GRB 081007, for which we can model neither the
optical nor X-ray band) we obtain a correct absolute 
ux
scale but incorrect decay slopes. The di�erence between
the decay indices of optical and X-ray light curves at late
times (in a constant density ISM medium) is expected to
be � � = 0 if both observational bands are in the same
spectral regime, or � � = 0 :25 after the passage of cooling
frequency between optical and X-ray band (Sari et al.
1998). However, using a large sample of afterglows with
optical and X-ray observations, Zaninoni et al. (2013)
found that only 20% of the events follow this theoretical
prediction. We compare decay indices of late-time opti-
cal and X-ray light curves and �nd the following slope
di�erences: � � = 0 :66� 0:06; 0:59 � 0:08; 0:62 � 0:15,
0:68� 0:07, 0:26� 0:06 and 0:47� 0:05 for GRB 060908,
061126, 080319B, 090102, 090424 and 130427A, respec-
tively. Due to di�erences in decay indices we cannot use
the X-ray light curves to further constrain our results.

4.6. Modeling caveats

The simple model we use has several caveats.
Granot & Sari (2002) have demonstrated that di�erent
variations of the standard FS model, when used to de-
rive values of physical parameters, give results that in
extreme cases may di�er by several orders of magnitude.
The model does not incorporate emission produced by
the inverse Compton e�ect, which is expected to delay
the transition between the fast- and slow-cooling phase
and decrease the cooling frequency in the FS (Wu et al.
2005). The latter could a�ect our results only in the case
of GRBs 021004 and 060908, since in all other GRBs

7 http://www.swift.ac.uk/burst analyser/
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Figure 9. Distribution of parameter values RB , n, � 0 , EK , " e, and " B ;r for 200 models that match the light curves well. Vertical das hed
lines correspond to the positions of best-�t models: the val ues are provided in Table 2. Some histograms have been colore d in order to
make distributions easier to separate visually.
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the cooling frequency is much higher than the optical
band at the times of our analysis. The e�ect, whose con-
tribution is non-negligible in dense environments with
n > 1cm� 3 (Sari & Esin 2001; Wu et al. 2005), is es-
pecially important at high energies and may contribute
to the failure of this models to reproduce the X-ray light
curves (see previous discussion). In principle, early FS
evolution should be modi�ed to include radiation losses
- a correction that is dependent on"e (Sari 1997). We
also model sharp light curve breaks whereas in reality
these breaks are smooth (Granot & Sari 2002). We note
that we only consider afterglows produced in an ISM
environment. Wind environment models have di�erent
parameter dependencies and di�erent light curve evolu-
tion (Chevalier & Li 2000; Kobayashi & Zhang 2003b;
Zou et al. 2005). In addition, RS time evolution and its
dependency on the various parameters di�ers for thin-
and thick-shell models.

5. CONCLUSIONS

In this work we present a detailed study of a sample of
10 GRB afterglows that show RS signatures in early op-
tical light curves. The sample is composed of one Type I
(in which both reverse and forward shock afterglow light
curve peaks are observed) and nine Type II light curves
(in which the characteristic steep-to-shallow light curve
evolution, caused by the dominant RS at early time and
the later rise of FS emission, is observed), as classi�ed in
Zhang et al. (2003) and Gomboc et al. (2009). The 10
afterglows represent only a fraction of a much larger sam-
ple, composed of 118 afterglows with measured redshift
and host galaxy extinction, which we compiled in order
to investigate the rest-frame properties of the former in
relation to the larger sample.

We compare the rest-frame optical, X-ray and 
 -ray
properties of the RS sample to a sample of afterglows
without compelling RS signatures. Early-time RS emis-
sion is found to span over several orders in spectral
luminosity, which is consistent with the general early-
time spread in afterglows' brightness (e.g., Kann et al.
2010). On the other hand, we �nd that all but one af-
terglow from our sample are among the faintest at late
times (t rest > 10 ks). Since only 6 out of 10 RS after-
glows were observed with theSwift XRT instrument, we
cannot draw any �rm conclusions about the X-ray prop-
erties of the sample. The high-energy properties (i.e.,
isotropic equivalent energy) of RS and non-RS GRBs in
our full sample do not statistically di�er.

Using a simple analytic model of a RS and FS after-
glow we reproduce the observed optical light curves of our
RS sample by using a MC simulation. Derived physical
properties do not reveal any preferential values within
the assumed parameter space. This is similar to the re-
sults obtained in previous analyses which concentrated
on late time FS emission (e.g., Panaitescu & Kumar
2001, 2002). Failure to reproduce X-ray and radio ob-
servations, where available, points to the need to either
change the basic assumptions of the model (e.g., thick-
vs. thin-shell scenario, ISM vs. stellar wind circumburst
medium) or introduce more complicated emission com-
ponents beyond the simple standard theory.

According to Zhang & Kobayashi (2005), a strong RS
emission is produced when the GRB out
ow is baryonic,
i.e., only mildly magnetized. Furthermore, in order to

produce a RS afterglow that can outshine the FS emis-
sion (Type II light curve), a magnetization parameter of
RB > 1 is required. We �nd that our RS sample after-
glows have preferentially both low"B;r as well as highRB
values. Consequently, the presence of strong RS emission
(compared to FS emission) requires"B;f < " B;r . In the
standard FS afterglow model, the peak in the spectral
domain Fmax ;f is proportional to "1=2

B;f (Sari et al. 1998).
Thus, a low value of"B;f is expected to produce fainter FS
emission, which is what we �nd in our RS sample at op-
tical wavelengths. In addition, the time of the FS peak is
proportional to tp / "1=3

B;f (Sari et al. 1998). This could
explain the lack of Type I light curves, since the FS peak
for low RB ratio is likely to occur when the RS afterglow
component is still very bright. Due to di�erent models
used in the literature as well as our mostly unconstrained
values of"B;f , we cannot test whether the derived"B;f in
afterglows with prominent RS components is generally
lower than in non-RS events. The interpretation of faint
late-time optical afterglows in our RS sample may be re-
vised if there is an intrinsic correlation between"B;f and
other parameters that de�ne the afterglow emission (e.g.,
Santana et al. 2013 recently found a hint of correlation
between parameters"B;f and EK ).

Fifteen years after the discovery of GRB 990123, it is
clear that larger samples of con�rmed RS components
are vital to understand the nature of RS emission and to
determine the origin of RS suppression. In addition to
the standard techniques involving light curve and spec-
tral analysis, unambiguous identi�cation of RS compo-
nents may become increasingly possible via the detection
of early time optical polarization (Mundell et al. 2007a;
Steele et al. 2009; Mundell et al. 2013) with simulta-
neous multicolor light curves using new polarimeters on
robotic telescopes, such as RINGO3, mounted on the Liv-
erpool Telescope (Arnold et al 2012).
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by the UK Swift Science Data Centre at the University
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Royal Society, the Wolfson Foundation and the Science
and Technology Facilities Council (STFC) for funding.
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