Inorganic and Organozinc Fluorocarboxylates: Synthesis, Structure and Materials Chemistry

A L Johnson, A Kingsley, G Kociok-Köhn, K C Molloy and A Sudlow

Abstract

The organozinc fluorocarboxylates RZnO₂CR₅ and RZnO₂CR₆.TMEDA, along with Zn(O₂CR₅)₂.TMEDA (R = Me, Et; R₅ = C₂F₅, C₃F₇) have been synthesised. The structures of EtZnO₂C₂F₅ (5), EtZnO₂C₃F₇ (7), EtZnO₂C₂F₅.TMEDA (11), Zn(O₂C₂F₅)₂.TMEDA (13), along with products from the adventitious reaction with either O₂ or H₂O, Zn₁₀Me₄(OMe)₄(O₂CC₂F₅)₁₂(Ο)₂ (2), Zn₈Et₂(O₂CC₂F₅)₁₂(O)₂ (6), Zn₈Et₄(ΟEt)₄(O₂CC₂F₅)₁₂(Ο)₂ (8), [Zn(O₂CC₃F₇)₂.TMEDA]₁₂.H₂O (15) have been determined. Thin films of oriented ZnO have been deposited on glass substrates by low-pressure chemical vapour deposition (LPCVD) using 3 and 10 as precursors, though no fluoride incorporation in the films was noted. LPCVD using 13 as precursor also yielded fluoride-free ZnO, but lacking the oriented growth observed using 3, 10. However, 5, which exhibits short intermolecular Zn…F contacts in the solid state, thermally decomposes to bulk ZnF₂.
Introduction

Zinc carboxylates have long attracted the interest of chemists due to their fundamental roles in biological systems, as catalysts (for example, co-polymerisation of CO\textsubscript{2} / epoxides, cyclopropanation among others), hydrogen storage and as secondary building units for a vast array of metal-organic frameworks (MOFs). As a result, in excess of 5000 zinc carboxylate structures can be found in the Cambridge Crystallographic database, though, remarkably, only 16 are organozinc carboxylates of which 12 adopt a conventional RZn(O\textsubscript{2}CR') arrangement.

Our interest in this area is the possible use of volatile zinc carboxylates as precursors for ZnO materials. ZnO has a hexagonal wurtzite structure and is a wide bandgap semiconductor with a bandgap of 3.3eV; conductivity can be increased with the addition of dopants such as B, Al, Ga, In. In particular, we are interested in fluorine-doped zinc oxide (ZnO:F) as an alternative transparent conducting oxide (TCO) to the more common In\textsubscript{2}O\textsubscript{3}:Sn (ITO) or fluorine-doped tin oxide (FTO). In ZnO:F, fluorine atoms enter the ZnO lattice in substitutional form; Gordon et. al have theorised that due to this, fluorine doping gives the lowest resistivity to ZnO. ZnO:F has been identified as having the highest transparency and being one of the least toxic TCOs, as well as being cheap and abundant, both pre-requisites for sustainable commercial exploitation.

Thin films of ZnO:F have been deposited using spray pyrolysis, sol-gel spin coating and sputtering. Gordon et. al have studied the deposition of ZnO:F by CVD extensively and have deposited films initially using a multi-source approach, i.e. Et\textsubscript{2}Zn, EtOH and C\textsubscript{6}F\textsubscript{6} and later using Et\textsubscript{2}Zn.TMEDA, EtOH and C\textsubscript{6}H\textsubscript{5}C(O)F. The earlier precursors in particular grew high quality films with a very low sheet resistance of 5Ω/square and a visible absorption of 3%. We have previously used organotin fluorocarboxylates to successfully deposit FTO, and have now attempted to use the same methodology for ZnO:F. While a search of the Cambridge Crystallographic database reveals numerous structures containing the Zn(O\textsubscript{2}CCF\textsubscript{3}) moiety, only two reports concern more fluorinated carboxylic acid derivatives of zinc.

Experimental

All operations were carried out under an atmosphere of dry dinitrogen or argon using standard Schlenk and glove-box techniques. Hexane, dichloromethane and tetrahydrofuran solvents were dried using an Innovative Technology, Inc. Solvent Purification System (SPS) system and degassed under dinitrogen or argon prior to use. Deuterated THF and chloroform (C\textsubscript{6}D\textsubscript{6}) NMR solvents were purchased from Aldrich and
dried over molecular sieves before use. All dry solvents were stored under dinitrogen or argon in Young’s flasks over 4 Å molecular sieves.

1H and 13C NMR experiments were performed at ambient temperature using a Bruker Avance-300; 1H and 13C NMR chemical shifts are referenced internally to residual non-deuterated solvent resonances. 19F NMR experiments were performed at ambient temperature using a Bruker Avance-400 and reference internally to residual non-deuterated solvent resonances. All chemical shifts are reported in δ (ppm) and coupling constants in Hz. The following abbreviations have been used for multiplicities: s (singlet), d (doublet), t (triplet), q (quartet), sept (septet), br (broad), m (unresolved multiplet). Elemental analyses were performed externally by Stephen Boyer of London Metropolitan University, UK using a Carlo Erba Flash 2000 Organic Elemental Analyzer. Thermogravimetric analyses (TGA) were performed using a Perkin Elmer TGA 4000 Thermogravimetric Analyzer.

Synthesis

Synthesis of [MeZn(O$_2$CC$_2$F$_5$)$_n$](1): C$_2$F$_5$COOH (0.65 g, 4.0 mmol) was added to a stirred solution of Me$_2$Zn (2 ml of 2M solution in hexane, 4.0 mmol) in hexane (10 ml) at -78 °C. Solution was stirred overnight while slowly warming up to room temperature, a white precipitate remained. Solution was warmed to 50 °C, leaving a clear solution, crystals were obtained on slow cooling of the solution to room temperature (0.61 g, 63 %, mp 115-116 °C). Analysis found (calc. for C$_4$H$_3$F$_5$O$_2$Zn): C 19.8 (19.8), H 1.2 (1.3) %. 1H NMR (300 MHz, THF-d_8) δ ppm: -0.81 (s, 3H, CH$_3$), 13C NMR (300 MHz, CDCl$_3$) δ ppm: 163.2 (br. s, CO$_2$), 119.8 (qt, $J = 286.6$, 35.4 Hz, CF$_3$), 108.0 (tq, $J = 264.2$, 37.2 Hz, CF$_2$), -18.2 (br. s, CH$_3$), 19F NMR (400 MHz, THF- d_8) δ ppm: -85.7 (br. s, CF$_3$), -123.0 (br. s, CF$_2$)

Synthesis of Zn$_{10}$Me$_4$(OMe)$_4$(O$_2$CC$_2$F$_5$)$_{12}$(2): Initial attempts to recrystallize 1 with the addition of CH$_2$Cl$_2$ (10 ml) and cooling to 5 °C produced 2 (0.38 g, 41 %, mp 81-83 °C). Analysis found (calc. for C$_{22}$H$_{12}$F$_{30}$O$_{14}$Zn$_5$): C 19.3 (19.0), H 1.0 (0.9) %. 1H NMR (300 MHz, THF- d_8) δ ppm: 3.44 (br. s, 3H, OCH$_3$), -0.81 (s, 3H, ZnCH$_3$), 13C NMR (300 MHz, CDCl$_3$) δ ppm: 163.7 (br. s, CO$_2$), 119.8 (qt, $J = 285.9$, 36.6 Hz, CF$_3$), 108.0 (tq, $J = 262.4$, 37.8 Hz, CF$_2$), 53.8 (br. s, OCH$_3$), -18.2 (br. s, CH$_3$), 19F NMR (400 MHz, THF- d_8) δ ppm: -83.8 (s, CF$_3$), -121.2 (s, CF$_2$)
Synthesis of [MeZn(O_2CC_3F_7)]_n (3): Prepared using the same synthesis method as 1 using C_2F_5COOH (0.86 g, 4.0 mmol) and Me_2Zn (2 ml of 2 M solution in hexane, 4.0 mmol); yield 0.72 g, 62 %, mp 81-83 °C.

Analysis found (calc. for C_{18}H_{37}F_5O_8Zn): C 20.5 (20.6), H 1.2 (1.0) %. ^1H NMR (300 MHz, THF- d_8) δ ppm: -0.80 (s, 3H, CH_3), ^13C NMR (300 MHz, CDCl_3) δ ppm: 165.5 (br. s, CO), 119.0 (qt, J = 288.2, 34.3 Hz, CF_2), 109.8 (tt, J = 266.3, 34.3 Hz, CF_2CF_3), 109.6 (tt, J = 265.3, 33.3 Hz, O_2CCF_2), -18.4 (br. s, CH_3), ^19F NMR (500 MHz, CDCl_3) δ ppm: -82.4 (br. s, CF_2), -119.1 (br. s, CF_2), -128.3 (br. s, CF_2)

Synthesis of Zn_{10}Me_4(OME)_4(O_2CC_3F_7)_12 (4): Initial attempts to recrystallize 3 with the addition of CH_2Cl_2 (10 ml) and cooling to 5°C produced 4; yield 0.41 g, 36 %, mp 141-142 °C. Analysis found (calc. for C_{26}H_{42}O_9Zn_5): C 19.8 (19.9), H 0.8 (0.7) %. ^1H NMR (300 MHz, THF- d_8) δ ppm: 3.52 (br. s, 3H, OCH_3), -0.84 (s, 3H, ZnCH_3), ^13C NMR (300 MHz, CDCl_3) δ ppm: 162.5 (br. s, CO), 117.5 (qt, J = 286.6, 34.7 Hz, CF_3), 108.3 (tsxt, J = 266.1, 39.1 Hz, CF_2CF_3), 108.2 (tt, J = 267.3, 32.9 Hz, O_2CCF_2), 52.2 (br. s, OCH_3), -6.1 (s, ZnCH_3), ^19F NMR (400 MHz, THF- d_8) δ ppm: -81.8 (s, CF_3), -118.5 (br. s, CF_2), -127.9 (s, CF_2)

Synthesis of [EtZn(O_2CC_3F_7)]_n (5): Prepared using the same synthesis method as 1 using C_2F_5COOH (0.65 g, 4.0 mmol) and Et_2Zn (4 ml of 1 M solution in hexane, 4.0 mmol), leaving a clear solution with a small amount of white precipitate. Crystals were obtained from was from filtering the solution and cooling to -20°C (0.71 g, 70 %, mp 89-91 °C). Analysis found (calc. for C_{18}H_{37}F_5O_8Zn): C 23.6 (23.4), H 1.9 (2.0) %. ^1H NMR (500 MHz, THF- d_8) δ ppm: 1.17 (t, J = 8.04 Hz, 3H, CH_3), 0.21 (q, J = 8.20 Hz, 2H, CH_2), ^13C NMR (500 MHz, THF- d_8) δ ppm: 164.1 (br. s, CO), 119.7 (qt, J = 284.3, 34.5 Hz, CF_3), 108.0 (tq, J = 264.3, 37.2 Hz, CF_2), 12.6 (s, CH_3), -2.7 (br. s, CH_2), ^19F NMR (500 MHz, THF- d_8) δ ppm: -83.9 (br. s, CF_3), -121.2 (br. s, CF_2)

Synthesis of Zn_2Et_2(O_2CC_3F_7)_12(O_2) (6): From synthesis of 5, the small amount of white precipitate was dissolved in CH_2Cl_2 (10 ml) and hexane (10 ml), solution was filtered and colourless crystals were obtained on cooling to 5 °C (0.09 g, 10 %, mp 134-136 °C). Analysis found (calc. for C_{40}H_{10}F_{65}O_{26}Zn_2): C 18.2 (18.3), H 0.5 (0.4) %.

Synthesis of [EtZn(O_2CC_3F_7)]_n (7): Prepared using the same synthesis method as 1 using C_2F_5COOH (0.86 g, 4.0 mmol) and Et_2Zn (4 ml of 1 M solution in hexane, 4.0 mmol); yield 0.79 g, 65 %, mp 96-99 °C. Analysis
Also prepared by the same method:

\[
\text{MeZn(O}_2\text{CC}_2\text{F}_7)\text{TMEDA (10)}: \text{Using C}_3\text{F}_7\text{COOH (0.86 g, 4.0 mmol), Me}_2\text{Zn (3 ml of 2M solution in hexane, 6.0 mmol) and TMEDA (0.47 g, 4.0 mmol): yield 1.42 g, 87 %, mp 97-99°C. Analysis found (calc. for C}_{13}\text{H}_{19}\text{F}_8\text{N}_2\text{O}_2\text{Zn}: C 33.2 (32.4), H 4.5 (4.7), N 6.9 (6.9) %. }\]

\[
\text{H NMR (300 MHz, THF- d}_8) \text{ δ ppm: 2.69 (s, 4H, NCH}_2\text{), 2.45 (s, 12H, NCH}_3\text{), -0.93 (s, 3H, ZnCH}_3\text{), }\]

\[
\text{13C NMR (500 MHz, THF- d}_8) \text{ δ ppm: 161.7 (t, J = 25.1 Hz, C) }\]

\[
\text{Also prepared by the same method:}
\]
EtZn(O₂CC₂F₅)TMEDA (11): Using C₂F₅COOH (0.65 g, 4.0 mmol), Et₂Zn (6 ml of 1M solution in hexane, 6.0 mmol) and TMEDA (0.47 g, 4.0 mmol); yield 1.36 g, 91 %. On standing, crystals formed in oil. Analysis found (calc. for C₁₁H₂₁F₃N₂O₂Zn): C 35.3 (35.5), H 5.6 (5.7), N 7.5 (7.5) %. ¹H NMR (300 MHz, THF- d₅) δ ppm: 2.68 (s, 4H, NCH₃), 2.45 (s, 12H, NCH₃), 1.18 (t, J = 8.10 Hz, 3H, ZnCH₂), 0.10 (q, J = 8.30 Hz, 2H, ZnCH₂COOH), 13C NMR (300 MHz, THF- d₅) δ ppm: 162.2 (t, J = 26.1 Hz, CO₂), 120.2 (q, J = 284.7, 34.7 Hz, CF₃), 108.2 (tq, J = 262.4, 37.2 Hz, CF₂), 57.8 (s, NCH₃), 47.1 (s, NCH₃), 13.4 (s, ZnCH₂CH₃), -3.3 (s, ZnCH₃CH₃), ¹⁹F NMR (400MHz, THF- d₅) δ ppm: -85.5 (CF₃), -122.6 (CF₂).

EtZn(O₂CC₂F₅)₂TMEDA (12): Using C₂F₅COOH (0.86 g, 4.0 mmol), Et₂Zn (6 ml of 1M solution in hexane, 6.0 mmol) and TMEDA (0.47 g, 4.0 mmol); yield 1.51 g, 89 %. Analysis found (calc. for C₁₂H₂₁F₅N₂O₂Zn): C 33.9 (34.1), H 4.9 (5.0), N 6.5 (6.4) %. ¹H NMR (300 MHz, THF- d₅) δ ppm: 2.68 (s, 4H, NCH₃), 2.46 (s, 12H, NCH₃), 1.18 (t, J = 8.10 Hz, 3H, ZnCH₂), 0.09 (q, J = 8.30 Hz, 2H, ZnCH₂COOH), 13C NMR (500 MHz, THF- d₅) δ ppm: 161.6 (t, J = 24.5 Hz, CO₂), 119.3 (q, J = 287.0, 34.5 Hz, CF₃), 110.2 (tsxt, J = 264.3, 36.1 Hz, CF₂CF₃), 108.2 (tt, J = 264.3, 30.9 Hz, O₂CCF₂), 57.8 (s, NCH₃), 47.1 (s, NCH₃), 13.3 (s, ZnCH₂CH₃), -3.3 (s, ZnCH₃CH₃), 19F NMR (400MHz, THF- d₅) δ ppm: -83.6 (CF₃), -119.8 (CF₂), -122.6 (CF₂).

Synthesis of [Zn(O₂CC₂F₅)₂]TMEDA (13): C₂F₅COOH (1.30 g, 8.0 mmol) was added to a stirred solution of Et₂Zn (4 ml of 1M solution in hexane, 4.0 mmol) and TMEDA (0.47 g, 4.0 mmol) in hexane (10 ml) at -78 °C. Solution was stirred overnight while slowly warming up to room temperature. Solvent and volatiles were removed in vacuo, a white solid remained. Solid was redissolved in THF (5 ml) and colourless crystals were obtained on cooling to -20°C (1.74 g, 86 %, mp 97-99 °C). Analysis found (calc. for C₂₃H₁₆F₁₀N₂O₂Zn): C 28.3 (28.4), H 3.1(3.2), N 5.5 (5.5) %. ¹H NMR (300 MHz, THF- d₅) δ ppm: 2.73 (s, 4H, NCH₃), 2.50 (s, 12H, NCH₃), 13C NMR (300 MHz, THF- d₅) δ ppm: 162.7 (t, J = 26.7 Hz, CO₂), 119.8 (q, J = 285.9, 34.7 Hz, CF₃), 108.1 (tq, J = 263.0, 37.8 Hz, CF₂), 57.5 (s, NCH₃), 46.8 (s, NCH₃), ¹⁹F NMR (400MHz, THF- d₅) δ ppm: -85.7 (CF₃), -123.1 (CF₂).
Also prepared by the same method:

\[\text{[Zn(O}_2\text{CC}_3\text{F}_7\text{)}_2\text{TMEDA]}_2 \text{(14)} \]: Using \(\text{C}_3\text{F}_7\text{COOH} (1.71 \text{ g}, 8.0 \text{ mmol}) \), \(\text{Et}_2\text{Zn} (4 \text{ ml of 1M solution in hexane, 4.0 mmol}) \) and TMEDA (0.47 \text{ g}, 4 \text{ mmol}); yield 2.05 \text{ g}, 85 \%, mp 119-120 °C. Analysis found (calc. for \(\text{C}_{14}\text{H}_{16}\text{F}_{14}\text{N}_2\text{O}_4\text{Zn} \)): C 27.8 (27.7), H 2.5 (2.7), N 4.7 (4.6) %.

\(^1\text{H NMR (500 MHz, THF-} \delta \text{)} \delta \text{ ppm: 2.72 (s, 4H, NCH}_2\text{), 2.49 (s, 12H, NCH}_3\text{)}. \n\)^{13}\text{C NMR (500 MHz, THF-} \delta \text{)} \delta \text{ ppm: 162.8 (br. s, CO}_2\text{), 119.1 (qt, J = 287.0, 34.5 Hz, CF}_3\text{), 110.0 (tsxt, J = 266.1, 36.1 Hz, CF}_2\text{CF}_3\text{), 109.8 (tt, J = 265.2, 37.1 Hz, O}_2\text{CCF}_2\text{), } 57.7 \text{ (s, NCH}_2\text{), 47.0 (s, NCH}_3\text{)}\). \n\)^{19}\text{F NMR (500MHz, THF-} \delta \text{)} \delta \text{ ppm: } -83.8 \text{ (t, J = 8.67 Hz, CF}_3\text{), -120.6 (br. s, CF}_2\text{), -129.6 (s, CF}_2\text{).}

Recrystallization of \(\text{14} \) from THF produced a few crystals of the hydrated species \[\text{[Zn(O}_2\text{CC}_3\text{F}_7\text{)}_2\text{TMEDA]}_2\text{H}_2\text{O} \text{(15)} \], which has been characterised solely by X-ray crystallography.

Crystallography

Experimental details relating to the single-crystal X-ray crystallographic studies are summarised in Table 1. For all structures, data were collected on a Nonius Kappa CCD diffractometer at 150(2) K using Mo-K\(_\alpha\) radiation (\(\lambda = 0.71073 \) Å). Structure solution was followed by full-matrix least squares refinement and was performed using the WinGX-1.70 suite of programmes.\(^{23}\) There were several issues with the structure determinations, specifically associated with disorder in the fluorocarbon groups, details of which are given below; in no case is the overall structure compromised by the difficulties in addressing these disorders.

In \(\text{2} \), there are two \(\text{Zn}_5 \) units linked through an inversion centre at the heart of the dimer. Two of the \(\text{C}_2\text{F}_5 \) groups show disorder, one in the ratio 50:50 and the other in the ratio 70:30; two internuclear distances \[\text{[C(4)- F(2) and C(7)- F(7A)]} \] have been restrained.

Difficulties in solving and refining the structure of \(\text{8} \) were concentrated at the ‘determination of space group’. The absences recorded were indicative of 3 possibilities viz. \(\text{Pnm2}_1, \text{Pn21m} \) and \(\text{Pnmm} \), none of which afforded a reasonable starting point. Ultimately, the structure was solved in a low symmetry space group, and the location of the motif used to establish the correct assignment (\(\text{P22}_1\text{2}_1\text{2}_1 \)) as presented herein. The employment of special positions invoked in the model, give rise to a special absence – in this case the ‘n’ glide - which is not ‘real’. Refinement was uneventful, and residual electron density is chemically insignificant, being a ripple close to one of the zinc atoms in the aggregate that constitutes the core of this compound.
Table 1. Crystal data and structure refinement for 2, 5–8, 11, 13, 15.

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>11</th>
<th>13</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C₄₄H₄₄F₆₀O₂₈Zn₁₀</td>
<td>C₁₀H₁₀F₁₀O₂Zn₂</td>
<td>C₁₀H₁₀F₁₀O₂Zn₂</td>
<td>C₈H₈F₇O₉Zn</td>
<td>C₄₀H₄₀F₄₂O₁₇Zn₉</td>
<td>C₁₁H₂₁F₃N₂O₇Zn</td>
<td>C₂₄H₃₂F₂₈N₂O₉Zn₂</td>
<td>C₂₈H₃₄F₂₈N₂O₉Zn²</td>
</tr>
<tr>
<td>Formula weight</td>
<td>2794.33</td>
<td>514.92</td>
<td>2634.81</td>
<td>307.47</td>
<td>2113.68</td>
<td>373.67</td>
<td>1015.28</td>
<td>1233.33</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
<td>Triclinic</td>
<td>Monoclinic</td>
<td>Monoclinic</td>
<td>Orthorhombic</td>
<td>Monoclinic</td>
<td>Orthorhombic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁/n</td>
<td>P 1</td>
<td>C2/c</td>
<td>C2/c</td>
<td>P22,2₁</td>
<td>P₂₁/n</td>
<td>Pc2₁b</td>
<td>P 1</td>
</tr>
<tr>
<td>a (Å)</td>
<td>10.3599(4)</td>
<td>9.5320(7)</td>
<td>20.1556(5)</td>
<td>19.1655(8)</td>
<td>13.260(2)</td>
<td>8.5671(2)</td>
<td>12.6211(2)</td>
<td>9.7929(2)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>20.8103(10)</td>
<td>9.7246(6)</td>
<td>17.4860(5)</td>
<td>10.4966(4)</td>
<td>13.903(2)</td>
<td>15.6795(5)</td>
<td>16.2796(2)</td>
<td>15.4901(3)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>19.4299(10)</td>
<td>10.1299(9)</td>
<td>23.4712(5)</td>
<td>10.0172(3)</td>
<td>18.434(3)</td>
<td>12.7444(3)</td>
<td>19.1244(3)</td>
<td>15.5496(4)</td>
</tr>
<tr>
<td>α (°)</td>
<td>62.429(5)</td>
<td>95.574(1)</td>
<td>112.553(1)</td>
<td>102.881(3)</td>
<td>109.487(1)</td>
<td>104.898(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β (°)</td>
<td>97.699(3)</td>
<td>86.995(4)</td>
<td>102.881(3)</td>
<td>109.487(1)</td>
<td>104.898(1)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ (°)</td>
<td>88.439(4)</td>
<td>96.891(1)</td>
<td>109.487(1)</td>
<td>104.898(1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V (Å³)</td>
<td>4151.2(3)</td>
<td>831.21(11)</td>
<td>7639.6(3)</td>
<td>1964.47(13)</td>
<td>3398.5(9)</td>
<td>1613.86(7)</td>
<td>3929.42(10)</td>
<td>2242.78(9)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>ρ calc (mg m⁻³)</td>
<td>2.236 3</td>
<td>2.057</td>
<td>2.291</td>
<td>2.079</td>
<td>2.066</td>
<td>1.538</td>
<td>1.716</td>
<td>1.826</td>
</tr>
<tr>
<td>μ(Mo-Kα) (mm⁻¹)</td>
<td>3.041</td>
<td>3.004</td>
<td>2.992</td>
<td>2.589</td>
<td>2.947</td>
<td>1.577</td>
<td>1.362</td>
<td>1.237</td>
</tr>
<tr>
<td>F(000)</td>
<td>2704</td>
<td>504</td>
<td>5072</td>
<td>1200</td>
<td>2068</td>
<td>768</td>
<td>2032</td>
<td>1228</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.10x0.10x0.10</td>
<td>0.45x0.20x0.10</td>
<td>0.15x0.10x0.05</td>
<td>0.45x0.10x0.10</td>
<td>0.20x0.20x0.15</td>
<td>0.40x0.35x0.25</td>
<td>0.50x0.50x0.40</td>
<td>0.30x0.30x0.30</td>
</tr>
<tr>
<td>Theta range (°)</td>
<td>3.62 - 25.03</td>
<td>5.18 - 24.97</td>
<td>3.68 - 27.51</td>
<td>3.21 - 27.46</td>
<td>3.58 - 27.46</td>
<td>4.35 - 27.49</td>
<td>4.61 - 27.45</td>
<td>2.94 - 27.54</td>
</tr>
<tr>
<td>Refl'ns collected</td>
<td>41678</td>
<td>7439</td>
<td>65172</td>
<td>17749</td>
<td>26448</td>
<td>20503</td>
<td>52992</td>
<td>45149</td>
</tr>
<tr>
<td>Independent refl's [R(int)]</td>
<td>7213 [0.3187]</td>
<td>2874 [0.0627]</td>
<td>8731 [0.1223]</td>
<td>2238 [0.0503]</td>
<td>7744 [0.0808]</td>
<td>3677 [0.0376]</td>
<td>8910 [0.0515]</td>
<td>10254 [0.0619]</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Refl's observed (>2σ)</td>
<td>4200</td>
<td>2321</td>
<td>4916</td>
<td>1752</td>
<td>5934</td>
<td>3177</td>
<td>7608</td>
<td>6782</td>
</tr>
<tr>
<td>Data Completeness</td>
<td>0.982</td>
<td>0.984</td>
<td>0.993</td>
<td>0.996</td>
<td>0.994</td>
<td>0.992</td>
<td>0.992</td>
<td>0.990</td>
</tr>
<tr>
<td>max min trans</td>
<td>0.7532,0.3450</td>
<td>0.8648,0.6624</td>
<td>0.7818,0.3887</td>
<td>0.5533,0.3412</td>
<td>0.6939,0.5712</td>
<td>0.6118,0.5491</td>
<td>0.7078,0.7078</td>
<td></td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.073</td>
<td>1.063</td>
<td>1.021</td>
<td>1.052</td>
<td>1.074</td>
<td>1.084</td>
<td>1.037</td>
<td>1.018</td>
</tr>
<tr>
<td>Final R₁, wR₂</td>
<td>0.0736,0.1702</td>
<td>0.0831,0.2256</td>
<td>0.0569,0.0978</td>
<td>0.0317,0.0729</td>
<td>0.0748,0.1999</td>
<td>0.0303,0.0712</td>
<td>0.0374, 0.0941</td>
<td>0.0472,0.1073</td>
</tr>
<tr>
<td>Final R₁, wR₂ (all data)</td>
<td>0.1422,0.2132</td>
<td>0.0982,0.2430</td>
<td>0.1310,0.1210</td>
<td>0.0503,0.0808</td>
<td>0.0934,0.2114</td>
<td>0.0381,0.0769</td>
<td>0.0487,0.1027</td>
<td>0.0890,0.1254</td>
</tr>
<tr>
<td>Largest diff. peak, hole (eÅ⁻³)</td>
<td>1.081,-1.113</td>
<td>3.859,-1.026</td>
<td>0.650,-0.609</td>
<td>0.472,-0.571</td>
<td>3.035,-1.103</td>
<td>0.384,-0.372</td>
<td>0.424,-0.376</td>
<td>0.917,-0.708</td>
</tr>
<tr>
<td>Flack parameter</td>
<td>0.02(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.007(11)</td>
</tr>
</tbody>
</table>
In 13 there is disorder in two out of the four C$_2$F$_5$ groups in the ratio 1:1. There is potential disorder in one more C$_2$F$_5$ group, however it was not possible to resolve this; in particular, C(21) has a very large ADP and could potentially be split into two positions but attempts to effect this resulted in divergent refinement. All internuclear distances in the disordered groups have been idealised and some of the ADPs equalised.

In 15 there is disorder in two of the four C$_3$F$_7$ groups in the ratio 60:40. All C-C and some C-F internuclear distances in the disordered C$_3$F$_7$ group based on C(31)-C(34) have been restrained. The hydrogen atoms of the water ligand have been located in the difference Fourier map and freely refine

Materials Chemistry

TGA Analysis of the complexes was performed using a Perkin Elmer TGA 4000 Thermogravimetric Analyzer. Data points were collected every second at a ramp rate of 20 °C min$^{-1}$ in a flowing (50 mL min$^{-1}$) N$_2$ stream. CVD was carried out on an ElectroGas Systems cold-walled reactor with associated gas lines and electronic heater controls. Specific conditions used for precursors 3, 10, 13 were: 3: Films were grown at 450°C onto glass for 2 hours with the line and bubbler temperatures set to 150°C and a pressure of 47.2 Torr; 10: Films were grown on glass substrates at a reactor temperature of 400°C, with a line and bubbler temperature of 90°C and a pressure of 39.6 Torr for a duration of 90 mins; 13: Films were grown on glass substrates at a reactor temperature of 450°C and a bubbler and line temperature of 150°C for 120 minutes at a pressure of 39.8 Torr. In all cases, there was a bleed of mixed N$_2$ (300 ml min$^{-1}$) and O$_2$ (60ml min$^{-1}$) as carrier gas

Results and Discussion

Synthesis and Structures

Organozinc fluorocarboxylates were prepared following a literature method for the preparation of EtZnO$_2$CPh (Eqn. 1). The resulting air- and moisture-sensitive white products were isolated and characterized by NMR, which are unexceptional save that they confirm the retention of one alkyl group on zinc and, from the 13C NMR, that the fluorocarbon residue remains intact; yields were in the range 61 – 70 %

$$\text{R}_2\text{Zn} + \text{R}_1\text{CO}_2\text{H} \xrightarrow{\text{hexane}, -78^\circ\text{C}, \text{Ar}, -\text{Rh}} (\text{RZnO}_2\text{CR}_1)_n \quad \text{(1)}$$

(1) R = Me, R$_f$ = C$_2$F$_5$
(3) R = Me, R$_f$ = C$_3$F$_7$
(5) R = Et, R$_f$ = C$_2$F$_5$
(7) R = Et, R$_f$ = C$_3$F$_7$
Initial attempts to recrystallize (1) and (3) by adding CH₂Cl₂ to the hexane solution and cooling to -20°C produced two oxidation products, Zn₁₀Me₆(OMe)₄(O₂CR)₄Cl₂ [R₁ = C₂F₅ (2); C₃F₇ (4)]. Both (2) and (4) showed ¹H NMR resonances due to the different ZnMe and ZnOMe peaks with shifts of -0.81, 3.44 ppm (2) and -0.84, 3.52 ppm (4) in a 1:1 ratio. The presence of OMe groups is consistent with a reaction of 1, 3 with O₂, as the reaction between O₂ and dialkylzinc compounds is known to produce first zinc peroxides which then transform to the thermodynamically more stable alkoxides.²⁵-²⁷

Similarly, a small number of crystals of Zn₆Et₄(O₂CC₂F₅)₁₂(O)₂ (6) were obtained from dissolving the hexane insoluble precipitate left from the synthesis of 5 in a hexane/CH₂Cl₂ mixture and cooling to -20°C, though the amount of material was sufficient only for crystallography and microanalysis. The inclusion of oxygen atoms within the cage could be plausibly attributed to two different mechanisms. Lewiński et al. have synthesised a similar cage, [Zn(O₂CPh)₄]₄O, on addition of dry O₂ to [EtZn(O₂CPh)]₄. They speculated that the mechanism starts with attack of O₂ on the Zn-C bond to form a peroxide, EtOOZn(O₂CPh), which could then associate with any remaining [EtZn(O₂CPh)]₄ to form [EtZn(O₂CPh)]₄[EtOOZn(O₂CPh)]₄. Homolysis of the O-O bond then produces both alkoxyl and oxyzinc radicals and the latter is the origin of the Zn-O-Zn moiety in the final product.²⁵-²⁶ Alternatively, 6 could simply be a product from the hydrolysis of 5. 6 can also be reformulated as (EtZnL)₂(ZnL₂)₅(ZnO)₂ (L = O₂CC₂F₅) and it is possible that in solution 5 undergoes Schlenk equilibria to form a mixture of EtZnO₂CC₂F₅, Et₂Zn and Zn(O₂CC₂F₅)₂, with which a small amount of water in the solvent would hydrolyse Et₂Zn to form ZnO which is trapped by the remaining species; Schlenk equilibrium of this type are common for alkylzinc alkoxides.²⁶ The controlled hydrolysis of EtZn₄(O₂CR)₃(THF) to form Zn₄(O)(O₂CR)₄ has recently been reported.⁸

Finally, Zn₆Et₄(OEt)₄(O₂CC₂F₇)₄(O) (8) was obtained from initial attempts to recrystallize 7 from the addition of CH₂Cl₂ to the hexane solution and cooling to -20°C. Although the structure itself is very different to that of 6 it is likely that a similar mechanism is involved in its formation i.e. reaction 7 with either O₂ or water. The ¹H spectrum of 8 shows the EtZn and ZnOEt groups [¹H δ of -0.01 (2H, ZnCH₃), 0.96 (3H, ZnCH₂CH₃), 1.07 (3H, OCH₂CH₃) and 3.74 ppm (2H, OCH₂)] while the ¹³C NMR includes the expected coupling between ¹⁹F and ¹³C of the R₁ ligand.

In order to influence the volatility of the organozinc fluorocarboxylates, their synthesis was repeated in the presence of tetramethylethlenediamine (TMEDA) to attempt to break up the polymeric structures of the former (see below). Thus, 1:1 adducts 9 - 12 were synthesised in the reaction between R₂Zn (R = Me, Et) and R₂CO₂H (R₁ = C₂F₅,C₃F₇) in the presence of TMEDA in hexane, using a slight excess of R₂Zn to ensure
all the carboxylic acid reacted (Eqn. 2). Volatiles were removed in vacuo, yielding the desired products as oils, though in the case of 11 this crystallized on standing over several days. 1H NMR showed the correct 1:1 stoichiometry of alkylzinc species to TMEDA ligand.

$$1.5R_2Zn + R_fCO_2H + \text{TMEDA} \xrightarrow{\text{hexane} \ \ -78^\circ C, \ Ar, \ -RHH} (RZnO_2CR_f).\text{TMEDA} \quad (2)$$

(9) $R = \text{Me}, \ R_f = \text{C}_2F_5$
(10) $R = \text{Me}, \ R_f = \text{C}_2F_7$
(11) $R = \text{Et}, \ R_f = \text{C}_2F_5$
(12) $R = \text{Et}, \ R_f = \text{C}_2F_7$

TMEDA adducts of zinc fluorocarboxylates $\text{Zn}(O_2CR_f)_2$.TMEDA were similarly synthesized from the reaction between Et_2Zn and two equivalents of fluorocarboxylic acid in the presence of TMEDA in hexane (Eqn. 3). 1H and 13C NMR confirmed the presence of TMEDA and the carboxylate ligand, respectively.

$$\text{Et}_2Zn + 2R_fCO_2H + \text{TMEDA} \xrightarrow{\text{hexane} \ \ -78^\circ C, \ Ar, \ -2RH} \text{Zn}(O_2CR_f)_2.\text{TMEDA} \quad (3)$$

(13) $R_f = \text{C}_2F_5$
(14) $R_f = \text{C}_3F_7$

Crystals of [Zn(O_2CC_F_7)_2.TMEDA].H_2O (15) were also obtained on cooling a solution of 14 in THF to -20°C over a period of 3 months.

Structural Analysis

The structures of $R\text{ZnO}_2CR_f$ ($R = \text{Et}, \ R_f = \text{C}_2F_5$ 5, C_2F_7 7) have been determined and are essentially the same; a twinned crystal of 1 ($R = \text{Me}, \ R_f = \text{C}_2F_3$) was also studied, and although a complete structure determination could not be completed, the data were sufficient to show that it also adopts the same structure as both 5 and 7. Accordingly, only data for 7 is discussed here, with details for 5 available as supplementary data.

The structure of $\text{EtZnO}_2\text{CC}_2F_7$ (5) (Fig. 1) is that of a polymeric chain in which each carboxylate ligand bridges two zinc atoms. In addition, O(1) of the ligand bridges two zinc atoms in a μ_2 manner, such that [EtZnO_2CC_F_3]_2 dimers are joined via four-membered ZnO_2 rings. There is one long and one short Zn-O interaction, the shorter one involving the singly bridging-oxygen atoms [Zn-O(2): 1.9853(17) Å] with the longer Zn-O contacts belonging to the μ_2-oxygen atoms [Zn-O(1): 2.1528(17), Zn-O(1') 2.1634(16) Å]. Although zinc is nominally four-coordinate, bond angles around the metal lie in the range 77.40(7) - 140.15(10)*, a degree of distortion which could be due to the close intermolecular contact with $\text{F}(2)$
This separation is longer than the sum of the covalent radii (2.04 Å) but shorter than the sum of the van der Waals radii (2.91 Å).

Figure 1: The asymmetric unit of 7 showing the labelling scheme used in the text and tables; thermal ellipsoids are at the 25% level. The figure shows a section of the polymer chain propagating along c. Selected geometric data: Zn–C(1) 1.939(3), Zn–O(1) 2.1528(17), Zn–O(2) 1.9853(17), Zn–O(1') 2.1634(16), Zn…F(2) 2.789(16), O(1)–C(3) 1.262(3), O(2)–C(3) 1.237(3) Å; C(1)–Zn–O(1) 117.20(10), C(1)–Zn–O(2) 140.15(10), C(1)–Zn–O(1) 115.45(9), O(1)–Zn–O(2) 94.76(7), O(1)–Zn–O(1) 77.40(7), O(2)–Zn–O(1') 93.26(7)°. Symmetry operations: ' -x, y,1/2-z; " -x,-y,-z.

Four other RZnO₂CR' structures free from additional donor groups have been reported which have lower degrees of oligomerization than those of 1, 5, 7, namely hexameric EtZnO₂CPh,⁴⁴ tetrameric C₆F₅ZnO₂CR' (R' = mesityl, 2-ClC₆H₄)⁶ and dimeric when R is the extremely bulky m-terphenyl.⁸ A more direct comparison can be made with the polymeric nature of EtZnO₂CCH₃,³ although here a sheet structure is adopted in which Zn₂O₂ rings are linked by 16-membered [Zn(O₂CCH₃)]₄ tetramers rather than the [Zn(O₂CR)]₂ dimers seen in 7 et al.

The simple RZnO₂CR₈ are very sensitive to either O₂ and/or H₂O, and react to yield the Zn₁₀ (2, 4), Zn₉ (6) and Zn₈ (8) aggregated products. As far as we are aware, Zn₇ clusters, e.g. Zn₇(O)₁₂(O₂CMe)₁₀(1-Meim)₂ (1-Me-im = 1-methylimidazole)²⁹ are the largest comparable systems reported to date. Both 2 and 4 adopt
the same Zn$_{10}$Me$_4$(OMe)$_4$(O$_2$CR)$_{12}$ formula, though disorder in the C$_3$F$_7$ groups in 4 hindered full structural determination, but it adopts the same framework as that of 2 (Fig. 2).

The structure of 2 (Fig. 2a) consists of a cage of five zinc atoms, surrounded by six bridging carboxylate ligands, two OMe groups and two Me groups; one of the carboxylate ligands [based on C(18)] bridges to a symmetry-related second Zn$_5$ cage to yield an overall Zn$_{10}$ aggregate. Of the five zinc atoms, Zn(1) is in the centre of the cage and is six-coordinated in a ZnO$_6$ environment, exhibiting a slightly distorted structure with bond angles ranging from 80.7(3)° – 101.6(3)° between adjacent atoms and 168.1(3)° – 174.7(3)° between opposite atoms. Of the remaining four zinc atoms, Zn(3) is five-coordinate ZnO$_5$ and Zn(2), Zn(4) and Zn(5) are all four-coordinate though the first of these has ZnO$_4$ coordination and the latter pair bear methyl groups and are ZnCO$_3$ in ligation. A simplified view of the Zn$_5$ core is shown in Fig. 2b.

Five-coordinate Zn(3) exhibits very distorted geometry (τ value of 0.42), which is roughly half way between square-based pyramid and trigonal bipyramidal geometry. Zn(2), Zn(4) and Zn(5) all exhibit distorted tetrahedral geometry, with a much higher degree of distortion seen in Zn(4) and Zn(5), with bond angles ranging from 88.6(3)° - 114.7(3)°, 76.2(3)° - 129.7(4)° and 75.9(3)° – 143.6(5)° respectively.
Figure 2: (a, top) The asymmetric unit of 2 showing the labelling scheme used in the text and tables and
(b, bottom) a simplified view of the Zn\(_5\) core; thermal ellipsoids are at the 25 \% level. Fluorine
atoms have been removed for clarity. Selected internuclear distances: Zn(1)-O(1) 2.095(7),
Zn(1)-O(2) 2.081(8), Zn(1)-O(4) 2.103(7), Zn(1)-O(6) 2.010(8), Zn(1)-O(7) 2.107(8), Zn(1)-
O(12) 2.180(8), Zn(2)-O(1) 1.995(7), Zn(2)-O(2) 1.986(7), Zn(2)-O(10) 1.923(8), Zn(2)-O(14')
1.932(7), Zn(3)-O(1) 2.023(7), Zn(3)-O(8) 2.056(8), Zn(3)-O(9) 2.071(9), Zn(3)-O(11) 2.035(7),
Zn(3)-O(13) 2.014(7), Zn(4)-O(2) 2.090(7), Zn(4)-O(3) 2.026(8), Zn(4)-O(12) 2.207(8), Zn(4)-
C(21) 1.931(13) Å. Symmetry operation: 1-x, -y, -z.

All the carboxylate groups bridge over at least two zinc atoms; of the six unique carboxylate ligands two
bridge between zinc atoms within the Zn\(_5\) unit [those based on C(6), C(12)], three have an additional \(\mu_2\)-link
between two metals [i.e. coordinate three Zn in total; ligands based on C(3), C(9) and C(15)], while the final
carboxylate [involving C(18)] bridges between Zn\(_5\) moieties. The singly-bridging oxygen atoms have
interactomic distances that range from 1.923(8) Å – 2.071(9) Å while the \(\mu_2\)-oxygen atoms have slightly
longer interactomic distances, ranging from 2.103(7) Å – 2.258(7) Å. The oxygens of the OMe groups bridge
in a \(\mu_3\) mode over three zinc atoms, Zn(1), Zn(2) and Zn(3) in the case of O(1) and Zn(1), Zn(2) and Zn(4) in
the case of O(2). The Zn-O interatomic distances range from 1.986(7) Å – 2.095(7) Å, within the same range
as the singly bridging oxygen atoms of the carboxylate groups and slightly shorter than the \(\mu_2\)-oxygen atoms.
Both Me groups are bonded to only one zinc atom each [Zn(4) and Zn(5)] and sit on the outskirts of the cage.

As far as we are aware, the Zn\textsubscript{10} framework of 2 and 4 are unique, but are clearly related to three known Zn\textsubscript{5}R\textsubscript{4}(O\textsubscript{2}CR')\textsubscript{6} species (R = Et, R' = Me; R = C\textsubscript{6}F\textsubscript{5}, R' = 2,4,6-Me\textsubscript{3}C\textsubscript{6}H\textsubscript{3}, 3-Me\textsubscript{2}NC\textsubscript{6}H\textsubscript{4})6 in that (i) there has been oxygen insertion into two Zn-R bonds of such species and (ii) the Zn\textsubscript{5} units in these compounds are now linked by one bridging carboxylate from each unit in 2, 4.

The nona-zinc species Zn\textsubscript{9}Et\textsubscript{2}(O\textsubscript{2}CC\textsubscript{2}F\textsubscript{5})\textsubscript{12}(O\textsubscript{2})6 (Fig. 3) contains a six-coordinate ZnO\textsubscript{6} [Zn(1)] which sits on an inversion centre about which the cluster is built. 6 contains two other ZnO\textsubscript{6} moieties [Zn(4), Zn(4')] and six four-coordinate zinc species, of which four have a ZnO\textsubscript{4} environment [Zn(2), Zn(3) and their symmetry-related partners] and two are ZnCO\textsubscript{3} species [Zn(5), Zn(5')], which are the ethylzinc moieties at the two ends of the molecule. In contrast to 2 and 4, the carboxylate groups in 6 are predominantly O,O-bridging between two zinc atoms with one end also acting in a \(\mu_2\)-manner generating Zn-O-Zn linkages [eight, based on C(1), C(4), C(7), C(13) and symmetry-related groups], while only four ligands act purely in an O,O-bridging mode [based on C(10), C(16) and their partners]. Finally, O(13) acts in a \(\mu_4\)-manner linking Zn(1) − Zn(4) inclusive. Of the two six-coordinate Zn atoms, Zn(1) exhibits a geometry which is much closer to a perfect octahedron with bond angles of 180.0° between opposite oxygen atoms and bond angles in the range 80.19(13)° - 99.81(13)° between adjacent oxygen atoms. Zn(4) shows a much more distorted geometry for which the corresponding ranges of angles are 154.92(15)° - 178.03(15)° and 74.36(13)° - 103.57(14)° respectively. Of the four-coordinate zinc atoms, Zn(5) shows much more distortion [bond angles range: 73.01(14)° − 135.2(2)°] than either Zn(2) and Zn(3) [bond angles: 98.20(18)° − 113.81(15)° and 99.31(18)° − 113.78(15)°, respectively]. The singly-bridging oxygen atoms have Zn-O interatomic distances that range from 1.938(4) Å − 1.983(4) Å, while the \(\mu_2\) oxygen atoms have longer Zn-O interatomic distances [2.101(4) − 2.454(4) Å]; the oxygen atom in the centre of the molecule, O(13), bridges over four Zn atoms and has Zn-O interatomic distances that are within the same range as the singly bridging carboxylate oxygen atoms [1.937(3) Å − 1.995(3) Å].
Figure 3: The asymmetric unit of 6 showing the labelling scheme used in the text and tables; thermal ellipsoids are at the 25% level. Only the α-carbon of the C₂F₅ groups have been included for clarity; C(18) is hidden behind O(10). Selected internuclear distances: Zn(1)-O(1) 2.173(4), Zn(1)-O(3) 2.172(4), Zn(1)-O(13) 1.995(3), Zn(2)-O(2) 1.942(4), Zn(2)-O(3) 1.978(4), Zn(2)-O(7) 1.955(4), Zn(2)-O(13) 1.937(3), Zn(4)-O(1') 2.423(4), Zn(4)-O(3) 2.454(4), Zn(4)-O(6) 2.108(4), Zn(4)-O(10) 2.101(4), Zn(4)-O(12) 1.938(4), Zn(4)-O(13) 1.940(3), Zn(5)-O(6) 2.270(4), Zn(5)-O(10) 2.236(4), Zn(5)-O(11) 1.950(5), Zn(5)-C(19) 1.924(6) Å.

Symmetry operation: 1-x, 1-y, 1-z.

The asymmetric unit of octa-zinc Zn₈Et₄(OEt)₄(O₂CCF₇)₆(O) (8) (Fig 4) is one half of the formula unit, the remainder generated by a two-fold axis through the μ₄-O(1) at the centre of the cluster. The asymmetric unit of 8 comprises two five-coordinate ZnO₅ centers [Zn(1), Zn(2)] internal to the cluster and two four-coordinate ZnCO₃ units, which, as in 6, are at the ends of the aggregate. In addition to the μ₄-O(1), there are two μ₂-OEt groups, two carboxylates which O,O-bridge and additionally link two metals in a μ₂- manner through one oxygen [based on C(1), C(5)], and one carboxylate with is O,O-bridging only [based on C(9)]. Zn(1) and Zn(2) both adopt a distorted trigonal bipyramidal coordination and τ values ³⁰ of 0.66 and 0.61 respectively. Zn(1) has two oxygens from the carboxylate groups in the axial positions [O(2) and O(7)] with one more carboxylate oxygen [O(3)], one oxygen from an OEt group [O(9)] and the central O(1) in the equatorial positions. Similarly, Zn(2) has O(4) and O(6) in axial positions, both from carboxylate groups, and the central O(1), O(8) from an OEt and O(5) from a carboxylate group in the equatorial positions. Zn(3) and
Zn(4) are both four-coordinate with a distorted tetrahedral structure and bond angles ranging from 78.9(2)° – 130.8(5)° and 79.4(2)° – 130.8(4)°, respectively. The singly bridging oxygens all have similar Zn-O interatomic distances [2.005(6) Å – 2.049(7) Å] and are similar to those involving the μ₃-OEt ligands [1.975(6) Å – 2.122(5) Å], while the μ₂-oxygen atoms have longer Zn-O interatomic distances [2.111(6) Å – 2.406(6) Å]. O(1) is in the centre of the cage, bridging over four zinc atoms with the two shortest Zn-O interactions [1.955(4), 1.950(4) Å].

Figure 4: (a, top) The asymmetric unit of 8 showing the labelling scheme used in the text and tables; thermal ellipsoids are at the 25 % level. Fluorine atoms have been removed for clarity; C(6) and
C(7) are hidden by C(5); (b, bottom) the Zn₈O₁₇ core of 8. Selected internuclear distances
Zn(1)-O(1) 1.955(4), Zn(1)-O(2) 2.406(6), Zn(1)-O(3') 2.017(6), Zn(1)-O(7') 2.049(7), Zn(1)-O(9) 1.975(6), Zn(3)-O(2) 2.113(6), Zn(3)-O(8) 2.122(5), Zn(3)-O(9) 2.066(6), Zn(3)-C(17) 1.991(12) Å. Symmetry operation: x, 1-y, -z.

The structure of EtZn(O₂CC₂F₅).TMEDA 11 is monomeric in the solid state, with the carboxylate group showing monodentate coordination (Fig. 5); the Zn-O(2) bond [3.1341(16) Å] is outside the sum of the respective van der Waals radii (2.91 Å). The ligands are arranged about the central Zn atom in a distorted tetrahedral arrangement, with bond angles ranging from 84.86(6)° [N(1)-Zn-N(2)] to 126.98(8)° [C(10)-Zn-O(1)]. The TMEDA group shows iso-bidentate coordination, with identical internuclear distances between zinc and the two nitrogen atoms. Interestingly, despite the monodentate coordination of the carboxylate group, the internuclear distances between C(1) and both oxygen atoms are very similar, which can be rationalised by the presence of a weak hydrogen bond between O(2) and a hydrogen atom from an adjacent molecule [H(6b')]. The structure of EtZn(O₂CMe)(C₅H₄N) has recently been determined 32 and differs from 11 by incorporating a bridging carboxylate and a monodentate N-donor, though the coordination number at zinc is constant at four across both species.

Figure 5: (a) The asymmetric unit of 11 showing the labelling scheme used in the text and tables; thermal ellipsoids are at the 25 % level. Selected geometric data: Zn-C(10) 1.977(2), Zn-O(1)
2.0102(13), Zn-N(1) 2.1388(17), Zn-N(2) 2.1409(16), O(1)-C(1) 1.262(2), O2-C(1) 1.213(2) Å; C(10)-Zn-O(1) 126.98(8), C(10)-Zn-N(1) 120.15(9), C(10)-Zn-N(2) 119.12(8), O(1)-Zn-N(1) 96.22(6), O(1)-Zn-N(2) 99.12(8), N(1)-Zn-N(2) 84.86(6)°; O(2)-H(6B') 2.54, C(6)...O(2) 3.484(3) Å, ∠C(6')-H(6B')...O(2) 160°. Symmetry operation: x-1, y, z.

In contrast, Zn(O2CCF2)2.TMEDA (13) forms a dimer with four carboxylate ligands bridging between the two zinc atoms with the two TMEDA ligands capping each end of the dimer; both metals adopt a distorted octahedral ZnO4N2 coordination (Fig. 6). All the carboxylate groups show bidentate coordination and in each case embody a short Zn-O to one metal and a longer, coordinate interaction with the other. There is minor difference in the behaviour of the two TMEDA ligands, with that bonded to Zn(1) TMEDA doing so in an iso-bidentate manner, while the TMEDA bonded to Zn(2) has slight asymmetry in the Zn-N internuclear distances. Of compounds of the same generic composition, only the structure of Zn(O2CCH3)2.TMEDA structure appears to have been reported in literature and, in contrast to 13, is monomeric with two aniso-bidentate acetate ligands and an iso-bidentate TMEDA ligand.33

Figure 6: The asymmetric unit of 13 showing the labelling scheme used in the text and tables; thermal ellipsoids are at the 25% level. Fluorine atoms have been removed for clarity; Selected geometric data for Zn(1) as typical of the two metal atoms: Zn(1)-O(1) 1.978(2), Zn(1)-O(3) 2.134(3), Zn(1)-O(5) 1.972(2), Zn(1)-O(7) 2.350(3), O(1)-C(13) 1.241(5), O(2)-C(13) 1.223(5),
O(3)-C(16) 1.220(5), O(4)-C(16) 1.249(5), Zn(1)-N(1) 2.185(3), Zn(1)-N(2) 2.199(3) Å; O(1)-Zn(1)-O(3) 84.82(12), O(1)-Zn(1)-O(5) 161.59(10), O(1)-Zn(1)-O(7) 85.02(11), O(1)-Zn(1)-N(1) 96.08(13), O(1)-Zn(1)-N(2) 98.31(12), O(3)-Zn(1)-O(5) 85.93(11), O(3)-Zn(1)-O(7) 113.71(9), O(3)-Zn(1)-N(1) 163.95(11), O(3)-Zn(1)-N(2) 80.99(12), O(5)-Zn(1)-O(7) 84.18(10), O(5)-Zn(1)-N(1) 97.20(13), O(5)-Zn(1)-N(2) 95.91(12), O(7)-Zn(1)-N(1) 82.32(12), O(7)-Zn(1)-N(2) 165.23(12), N(1)-Zn(1)-N(2) 83.03(14)°.

Prolonged crystallisation of Zn(O2CC3F7).TMEDA (14) yielded small amounts of crystals of the hydrate, [Zn(O2CC3F7).TMEDA].H2O (15), which adopts the same structure as [Zn(O2CCF3).TMEDA].H2O reported by others.34 While the overall dimeric nature and ZnO4N2 coordination is retained from 13, the presence of a molecule of water, which bridges in a \(\mu_2 \)-manner between metals, causes two of the carboxylate groups to become monodentate in 15 (Fig. 7). In turn, these are then engaged in intramolecular hydrogen bonding with the water molecule. The two bidentate carboxylate groups have very similar interatomic distances between the oxygen and the zinc, ranging from 2.078(2) – 2.097(2) Å while the two monodentate carboxylate groups have slightly longer bonds [Zn(1)–O(2) 2.143(2), Zn(2)–O(8) 2.127(2) Å]; the water molecule which bridges between the two zinc atoms has even longer Zn-O internuclear distances [Zn(1)–O(1) 2.184(2), Zn(2)–O(1). 2.205(2) Å].
Figure 7: The asymmetric unit of 15 showing the labelling scheme used in the text and tables; thermal ellipsoids are at the 25 % level. Fluorine atoms have been removed for clarity; C(44) is hidden behind O(6). Selected geometric data for Zn(1) as typical of the two metal atoms: Zn(1)-O(1) 2.184(2), Zn(1)-O(2) 2.143(2), Zn(1)-O(4) 2.089(2), Zn(1)-O(7) 2.097(2), O(2)-C(21) 1.253(4), O(3)-C(21) 1.237(4), O(4)-C(31) 1.230(4), O(5)-C(31) 1.238(4), Zn(1)-N(1) 2.181(3), Zn(1)-N(2) 2.159(3) Å; O(1)-Zn(1)-O(2) 86.99(9), O(1)-Zn(1)-O(4) 91.01(9), O(1)-Zn(1)-O(7) 87.40(9), O(1)-Zn(1)-N(2) 179.16(9), O(1)-Zn(1)-N(1) 96.02(9), O(2)-Zn(1)-O(4) 85.76(9), O(2)-Zn(1)-O(7) 173.14(8), O(2)-Zn(1)-N(1) 90.72(9), O(2)-Zn(1)-N(2) 93.60(9), O(4)-Zn(1)-O(7) 90.40(9), O(4)-Zn(1)-N(1) 171.98(9), O(4)-Zn(1)-N(2) 88.43(10), O(7)-Zn(1)-N(1) 93.79(9), O(7)-Zn(1)-N(2) 91.98(10), N(1)-Zn(1)-N(2) 84.59(10) º; H(2)-O(3) 1.72(5), O(1)-H(2)…O(3) 169(4) °.

Materials Chemistry

TGA data for RZnO₂CRᵢ complexes (1, 3, 5, 7) are shown in Fig. 8 and reveal quite different behaviour for the species with Rᵢ = C₃F₇ (3,7) to those with the shorter C₂F₅ function (1, 5).

![TGA data for RZnO₂CRᵢ](image)

Figure 8. TGA data for RZnO₂CRᵢ (1, 3, 5, 7)

All four species show an initial weight loss of ca 5% (R = Me) or 10% (R = Et), starting at ca. 130°C, which are consistent with the loss of R (presumably as R-R or RH). Thereafter, both 1 and 5 undergo an ill-
defined series of decomposition steps ultimately leaving a residue at ca. 430 °C of 30.5 and 38.9 %, respectively; these values correspond most closely to either ZnO (33.0%) or ZnF₂ (39.9%) for 1, 5. The formation of ZnF₂ is plausible given the close intermolecular Zn…F contact seen in the solid-state structure (ESI), analogous to that seen in 7 (Fig. 1), and the precedent for the formation of metal fluorides from, for example, metal fluoroalkoxides, under similar circumstances.35 When a larger sample of 5 was heated to 400°C under N₂, the temperature maintained for 1 hour and then cooled to room temperature at 1°C/min, the black residue (11.6 % carbon impurity) that remained was shown to be tetragonal ZnF₂ by PXRD (Fig. 9). While accurate quantitative EDX analysis proved difficult due to sample charging, the atomic ratios broadly correspond to a mixture of largely ZnF₂ with a second, oxygen-containing species which is possibly Zn(OH)F but there is no direct evidence for this in the PXRD (Fig. 9) (EXD atomic % found: Zn 28.9, F 60.2, O 5.5; calc. for 0.18 Zn(OH)F + 0.82 ZnF₂ = Zn 31.4, F 57.2, O 5.7). Annealing in air converted the sample to a white crystalline material which EDX suggests contains only traces of fluorine (ca. 3.2±1.7 atom%) and who's PXRD pattern can be indexed to ZnO (ESI), with quantitative EDX approximating to ZnO₁.₁₇ with negligible carbon contamination (< 0.1 %).

Figure 9 PXRD of the sample obtained by thermolysis of 5 under N₂ at 400 °C. The pattern is indexed to tetragonal ZnF₂ (PDF 89-5014).

Compounds 3 and 7 undergo more clearly defined decomposition steps at T > ca. 250 °C though we cannot make any rationale assignments to these processes. The residues (9.3, 11.5 % for 3, 5, respectively) are well below the values for either ZnO or ZnF₂ and strongly imply that these compounds are volatile.
3 was chosen as the precursor for CVD trials due to its superior volatility; LPCVD (47.2 Torr) was the chosen technique as the precursor was not deemed volatile enough for APCVD. Films were grown at 450°C onto glass over a period of 2 hours with the line and bubbler temperatures set to 150°C. Films were transparent and did not conduct to any notable extent when tested with a voltammeter. SEM imaging (Fig. 10a) reveals a uniform film consisting of crystallites of ca. 50 – 100 nm with cracks between clusters of these crystallites; EDX confirms the presence of Zn and O but could not detect any F in the film. PXRD confirms that a highly oriented ZnO film has been produced with a very intense peak corresponding to the (002) reflection (Fig. 10b). The morphology of the ZnO crystallites does merit further comment. The common modification of ZnO thin films is usually as hexagonal rods, in which polar (001) faces are parallel to the substrate i.e the c-axis and the substrate are parallel. In such a circumstance, the polar faces, which are commonly believed to be the active sites in various catalytic processes, are (i) in low abundance compared to the non-polar walls of the hexagon and (ii) largely inaccessible.36,37 The growth of vertically-aligned hexagonal microplates, in which the (001) face (c-axis) is perpendicular to the substrate, have larger surface area of available polar faces, and are seen to be more reactive e.g. enhanced photocatalytic activity.38 The enhanced intensity of the (002) reflection, such as seen in Fig. 10b, can arise from preferred (001) growth (e.g. the vertically-aligned hexagon modification with the c-axis perpendicular to the substrate) or from a larger number of (001) faces (the common hexagonal rod morphology but with the c-axis parallel to the substrate). Although the SEM image of the films deposited from 3 are of low-resolution (Fig. 10a), they appear to show clusters of vertically-aligned plates which combine into pseudo-spherical aggregates; they are certainly not consistent with the more common hexagonal rod morphology.
Figure 10. (a) SEM of the film grown from 3 by LPCVD, (b) PXRD of the film; indexing is to ZnO (PDF 89-1397); bar = 100 nm.

Clearly, in the gas phase any weak intermolecular Zn…F interactions (such as in 5 or 7) will have little, if any, influence on the film deposited, and the lack of halogen in the final film suggests that decomposition eliminates the fluorocarbon groups, as, for example, \((\text{R}_f)_2\text{CO}\) or \([\text{(R}_f)_2\text{CO}]_2\text{O}\) by analogy with the decomposition of \(\text{Zn(O}_2\text{CCCH}_3\text{)}_2\).\(^{39}\)

TGA data for the TMEDA adducts \(\text{RZnO}_2\text{CR}_f\text{.TMEDA (9 - 12)}\) (Fig. 11) show relatively consistent behaviour with no distinction between compounds with different \(\text{R}_f\) groups. Data for 11 show a three stage process, starting with loss of the ethyl group (observed residual mass 87.4, theoretical 92.2 %), then loss of TMEDA (observed residual mass 61.3, theoretical 61.0 %), and finally decomposition of the carboxylate group leaving a residual mass of 21.4% compared to 21.5 % expected for ZnO. It is likely that the remaining compounds 9, 10, 12 follow a similar pattern, though the above steps are not as clearly differentiated as for 11. Films grown using 10 as precursor by LPCVD (39.6 Torr) on glass substrates at a reactor temperature of 400°C, with a line and bubbler temperature of 90 °C over a duration of 90 mins. lead to granular (100-150 nm in diameter) ZnO films oriented in the (002) direction (ESI), very similar to those deposited from 3 Fig. 10); EDX showed no evidence for fluorine incorporation into the film, nor were the films conducting.

Figure 11. TGA data for RZnO₂CR₆.TMEDA (9 - 12)
The purely inorganic precursors \(\text{Zn(O}_2\text{CR})_2\cdot\text{TMEDA (13, 14)} \) decompose in essentially a single concerted step (Fig. 12), though a second stage in the decomposition of 14 at \(T > 290 \degree \text{C} \) is visible. In both cases the remaining residue at 350 \(\degree \text{C} \) (6.25, 12.3 \% for 13, 14, respectively) is less than that expected for \(\text{ZnO (15.8, 13.2 \%, for 13, 14, respectively), indicating some volatility to these species.} \)

![TGA data for Zn(O_2CR)_2·TMEDA (13, 14)](image)

Figure 12. TGA data for Zn(O_2CR)_2·TMEDA (13, 14)

LPCVD using 13 as precursor (glass substrate, reactor temperature 450\degree \text{C}, bubbler and line temperatures 150\degree \text{C}, 120 min., 39.8 Torr) yielded a textured, fluorine-free \(\text{ZnO film comprising very small spheres (ca. 20 nm in diameter), cracked around clusters of varying size of these spheres. PXRD confirms the films are ZnO but lack the preferred orientation shown in the films grown from 3 or 10 (Fig. 13).} \)
Conclusions

Zinc fluorocarboxylates, either RZnO₂CR₅, RZnO₂CR₅.TMEDA or Zn(O₂CR₅)₂.TMEDA, can be used to deposit ZnO by LPCVD at 400 °C by do not result in measurable fluorine incorporation into the films. Conversely, RZnO₂C₂F₅, which shows close intermolecular Zn...F contacts in the solid state, decomposes in the bulk to ZnF₂. The only other report we can find concerning the synthesis of a single-source precursor for the deposition of ZnO:F relates to EtZn[OC(Me)(CF₃)₂], but no materials chemistry was repored.⁴⁰ However, similar tin [Sn(OCH(CF₃)₂)₄(HNMe₂)₂]⁴¹ and indium alkoxides [In(OCMe(CF₃)₂)₃(H₂NBu₅)]⁴² do deposit fluorine-doped SnO₂ or In₂O₃, respectively. Interestingly, the incorporation of fluorine into In₂O₃ from the fluoroalkoxide does not occur at 550 °C, in contrast to 2-3 atom% at T < 500 °C,⁴² and in the case of ZnO:F (prepared by spray pyrolysis) the composition changes from ZnO₀.₉₀F₀.₁₀ at 400 °C to ZnO₀.₉₄F₀.₀₆ at 525 °C i.e. loss of dopant is relatively facile and thus temperature sensitive.⁴³ Moreover, in the structure of [In(OCH(CF₃)₂)₄(H₂NBu₅)] [H₂NBu₅]⁺ there is a close intramolecular In...F contact (2.924 Å),⁴⁴ well with the sum of the van der Waals radii (3.45 Å) despite the fact that it incorporates five-coordinate indium. An even shorter In...F contact is present in [In(OCMe(CF₃)₂)₃]²⁻ (2.809 Å) which contains a four-coordinate metal,⁴⁴ and these, along with their intramolecular nature, may account for the success in the indium system which is lacking with our zinc compounds.
Acknowledgements

We thank the EPSRC for funding (to A.S) via the Supergen consortium.

Supporting Information

Crystallographic data for the structural analysis (in CIF format) have been deposited with the Cambridge Crystallographic Data Center, CCDC nos. 910799 – 910806 for 2, 5 - 8, 11, 13, 15, respectively. Copies of this information may be obtained from the Director, CCDC, 12 Union Road, Cambridge, CB21EZ, UK (Fax: +44-1233-336033; e-mail: deposit@ccdc.cam.ac.uk or www.ccdc.cam.ac.uk).
References

The organozinc flurocarboxylates RZnO₂CR₆, RZnO₂CR₆.TMEDA and Zn(O₂CR₆)₂.TMEDA (R = Me, Et; R₆ = C₂F₅, C₃F₇) have been synthesised and representative examples structurally characterised. While EtZnO₂CC₂F₆ decomposes in the bulk to ZnF₂, under LPCVD conditions MeZnO₂CC₃F₇ and MeZnO₂CC₃F₇.TMEDA give highly-oriented, but fluorine-free, ZnO.