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Abstract. It is well established that the solitary waves of FPU-type chains converge

in the high-energy limit to traveling waves of the hard-sphere model. In this paper we

establish improved asymptotic expressions for the wave profiles as well as an explicit

formula for the wave speed. The key step in our approach is the derivation of an

asymptotic ODE for the appropriately rescaled strain profile.
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1. Introduction

Traveling waves in nonlinear Hamiltonian lattice systems are ubiquitous in many

branches of sciences and their mathematical analysis has attracted a lot of interest

over the last two decades. In the simplest case of a spatially one-dimensional lattice

with nearest-neighbor interactions – often called Fermi-Pasta-Ulam or FPU-type chain

– the analytical problem consists of finding a positive wave-speed parameter σ along

with a distance profile R and a velocity profile V such that

R′(x) = V
(
x+ 1

2

)
− V

(
x− 1

2

)
,

σ V ′(x) = Φ′
(
R
(
x+ 1

2

))
− Φ′

(
R
(
x− 1

2

)) (1)
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is satisfied for all x ∈ R. Here Φ is the nonlinear interaction potential and the position

uj(t) of particle j can be recovered by

uj(t) = U
(
j −√σ t

)
, U(x) :=

∫ x

x0

V (y) dy ,

which implies the identities

u̇j(t) =
√
σ V
(
j −√σ t

)
and uj+1(t)− uj(t) = R

(
j + 1

2
−√σ t

)

for the atomic velocities and distances, respectively. In particular, u satisfies Newton’s

law of motion

üj(t) = Φ′(uj+1(t)− uj(t))− Φ′(uj(t)− uj−1(t)) , j ∈ Z . (2)

The existence of several types of traveling wave solutions (with periodic, solitary,

front-like, or even more complex profile functions) can be established in different

frameworks; see, for instance, [5, 2] for constrained optimization problems, [9] for critical

point techniques, [8] for spatial dynamics, and [10, 13] for almost explicit solutions.

However, very little is known about the uniqueness of the solutions to the advance-

delay differential equation (1) or their dynamical stability within (2). The only nonlinear

exceptions are the Toda chain – which is completely integrable, see [11] and references

therein – and the Korteweg-de Vries (KdV) limit of solitary waves in chains with so called

hardening. The latter has been investigated by Friesecke and Pego in a series of four

seminal papers starting with [4]. In this limit, solitary waves have small amplitudes,

carry low energy, and are spread over a huge number of lattice sites. The discrete

difference operators in (1) can therefore be approximated by continuous differential

operators and the asymptotic properties are governed by the KdV equation, which is

completely integrable and well understood.

Another interesting asymptotic regime concerns solitary waves with high energy in

chains with rapidly increasing potential. Here the profile functions localize completely

since V converges – maybe after some affine rescaling – to the indicator function of

an interval, see [3, 12] or [6] for potentials Φ that posses a singularity or grow super-

polynomially, respectively. The physical interpretation of the high-energy limit is that

the particles interact asymptotically as in the hard-sphere limit, that means by elastic

collisions only.

The high-energy limit is another natural candidate for tackling the analytical

problems concerning the uniqueness and the stability of traveling wave. In this context

we are especially interested in the spectral properties of the linearized traveling waves

equation – see the discussion in section 3.6 – but the convergence results from the

aforementioned papers do not give any control in this direction. They are too weak and

provide neither an explicit leading order formula for σ nor the next-to-leading order

corrections to the asymptotic profile functions. In this paper we derive such formulas

and present a refined asymptotic analysis of the high-energy limit for potentials with

sufficiently strong singularity.



Asymptotic formulas for solitary waves 3

1.1. The high-energy limit

In order to keep the presentation as simple as possible, we restrict our considerations to

the example potential

Φ(r) =
1

m(m+ 1)

(
1

(1− r)m −mr − 1

)
with m ∈ (1, ∞) , (3)

which is convex and well-defined for r < 1, satisfies

Φ(0) = Φ′(0) = 0 , Φ′′(0) = 1 ,

and becomes singular as r ↗ 1. The condition m > 1 is quite essential and shows up

several times in our proofs. The other details are less important and our asymptotic

approach can hence be generalized to the case

Φ is convex and smooth on some interval [a, b] with Φ′(a) = 0

such that the limit limx↗b Φ(x)(b− x)m does exist .

This class also includes – after a reflection with respect to the distance variable – all

Lennard-Jones-type potential, which blow up on the left of the global minimum.

To simplify the exposition further, we merely postulate the existence of a family

of solitary waves with certain properties but sketch in section 1.4 how our assumption

can be justified rigorously. Specifically, we rely on the following standing assumption,

where unimodal profile means increasing and decreasing for negative and positive x,

respectively.

Assumption 1 (family of high-energy waves). (Vδ, Rδ, σδ)0<δ<1 is a family of solitary

waves with the following properties:

(i) Vδ and Rδ belong to L2(R) ∩ BC1(R) and are nonnegative, even, and unimodal.

(ii) Vδ is normalized by ‖Vδ‖2 = 1− δ and Rδ takes values in [0, 1).

Moreover, the potential energy explodes in the sense of pδ :=
∫
R Φ(Rδ(x)) dx→ +∞ as

δ → 0.

Beside of δ there exist two other small quantities, namely

εδ := 1−Rδ(0) , µδ :=
√
σδ ε

m+2
δ , (4)

which feature prominently in the asymptotic analysis. The amplitude parameter εδ
quantifies the impact of the singularity and appears naturally in many of the estimates

derived below. The parameter µδ, which looks rather artificial at a first glance, is also

very important as it determines the length scale for the leading order corrections to the

asymptotic profile functions V0 and R0.

For the interaction potential (3) and the waves from Assumption 1, the existing

results for the limit δ → 0 are illustrated in Figures 1, 2 and can be summarized as

follows.
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Figure 1. Numerical examples of solitary waves for the potential (3) and as in

Assumption 1: The graphs of Vδ (black, dashed) and Rδ (gray, solid) are plotted

for m = 1.5 (top row) and m = 2.5 (bottom row). In the high-energy limit δ → 0

(from left to right column), Vδ and Rδ approach the indicator function V0 and the tent

map R0, respectively. See section 1.4 for details concerning the numerical scheme.
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Figure 2. Parameter plots for three different choices of m and the simulations from

Figure 1: pδ represents the potential energy, εδ is the amplitude parameter from (4),

and σ̃δ := σδ/
(
µ2εmδ

)
measures the relative deviation of the speed parameter σ with

respect to the asymptotic value from (32)

Theorem 2 (localization theorem). In the high-energy limit, we have

‖Vδ − V0‖2 + ‖Rδ −R0‖∞ + εδ + µδ
δ→0−−−−−−→ 0

with

V0(x) := χ(x) R0(x) := max {0, 1− |x| } ,
where χ denotes the indicator function of the interval [−1

2
, +1

2
].

We give a short proof in section 1.3. The corresponding results in [3, 12] also

provide lower and upper bounds but no explicit expansion for σδ.

1.2. Statement of the asymptotic result

Our strategy for deriving a refined asymptotic analysis is to blow up the profile

functions near the critical spatial positions and to identify equations that determine

the asymptotic wave shape with respect to a rescaled space variable x̃. Specifically,

we use the transition scaling in order to describe the asymptotic velocity profile near

x = ±1
2
, while the distance profile can be rescaled at both the tip position x = 0 and the
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x

µδ

Vδ(x), Rδ(x)

TiFo Tr

11/2

Figure 3. Schematic representation of the different scalings: The transition scaling

describes the jump-like behavior of Vδ near x = ± 1
2 while the foot and the tip scaling

magnify the turns of Rδ at x ≈ ±1 and x ≈ 0, respectively. The width parameter µδ
is introduced in (4) and satisfies µδ ∼ εδ according to Corollary 13.

S̃0(x̃) S̃′′
0 (x̃)

x̃ x̃

Figure 4. Graph of the function S̃0 and its second derivative for m = m1 (black) and

m = m2 (dark gray) and m = m3 (light gray) with m1 < m2 < m3.

foot positions x = ±1, see Figure 3 for an illustration. Our main findings can informally

be summarized as follows.

Main results. In the high-energy limit δ → 0, all relevant information on (Rδ, Vδ, σδ)

can be obtained from the function S̃0, which is defined by the ODE initial value problem

S̃ ′′0 (x̃) =
2

m+ 1
· 1
(

1 + S̃0(x̃)
)m+1 , S̃0(0) = S̃ ′0(0) = 0 (5)

and plotted in Figure 4. More precisely,

(i) the velocity profile Vδ converges under the transition scaling,

(ii) the distance profile Rδ converges under both the tip scaling and the foot scaling,

(iii) the rescaled parameters δmσδ, δ
−1εδ, and δ−1µδ converge,

where the respective limit objects can be expressed in terms of S̃0 and all error terms are

at most of order O(δm).

The details concerning the convergence under the tip, the transition, and the foot

scaling are presented in the Theorems 7, 9, and 15, respectively, while Corollary 13

provides the explicit scaling laws for εδ, µδ, and σδ. Moreover, the combination of

all partial estimates gives rise to the global approximation results in Theorem 16 and

Corollary 17.

The above results provide an improved understanding of the high-energy limit

of solitary waves. In particular, it seems that our asymptotic formulas can be used
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to control the spectrum of the linearized traveling wave equation, see the brief and

preliminary discussion in section 3.6.

The paper is organized as follows. In the remainder of the introduction we prove

the localization theorem and discuss both the results from [3, 12] and the justification

of Assumption 1 in greater detail. Then section 2 is devoted to the tip scaling, which

turns out to be most fundamental step in our asymptotic analysis. In particular, we

identify the intrinsic scaling parameters in section 2.1 and link afterwards in section 2.2

the rescaled distance profile to the initial value problem (5). In section 3 we finally

employ the results on the tip scaling and establish all other asymptotic formulas.

1.3. Preliminaries

In this section we prove Theorem 2 since it provides the starting point for our asymptotic

analysis in section 2 and section 3. To this end it is convenient to reformulate the

advance-delay-differential equation (1) as

R = AV , σ V = AΦ′(R) , (6)

where the operator A stands for the convolution with the indicator function χ. This

reads

(AV )(x) =

∫ x+
1
2

x−1
2

V (y) dy

and the elimination of R reveals that (1) can be viewed as a symmetric but nonlinear and

nonlocal eigenvalue problem for the eigenvalue σ and the eigenfunction V . The proof

that (6) implies (1) is straight forward and involves only differentiation with respect to

x; for the reversed statement one has to eliminate the constants of integration by the

decay condition V ∈ L2(R).

Using elementary analysis such as Hölder’s inequality we readily verify the estimates

‖AV ‖2 ≤ ‖V ‖2 , ‖AV ‖∞ ≤ ‖V ‖2 , ‖(AV )′‖2 ≤ 2 ‖V ‖2 , (7)

for any function V ∈ L2(R), and this implies that the potential energy

P(V ) :=

∫

R
Φ((AV )(x)) dx , (8)

is well defined as long as ‖V ‖2 < 1. Moreover, we get

‖Rδ‖∞ = Rδ(0) = 1− εδ ≤ ‖Vδ‖2 = 1− δ (9)

for the family from Assumption 1.

Lemma 3 (variant of the localization theorem). The estimates

‖Vδ − χ‖2 ≤ Cεδ, ‖Rδ − Aχ‖∞ ≤ Cεδ (10)

and

c εδ ≤ µδ ≤ C
√
εδ (11)

hold for some constants c, C independent of δ. Moreover, we have εδ → 0 as δ → 0.
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Proof. We start with the identities

Rδ(0) = 〈Vδ, χ〉 , ‖Vδ − χ‖22 = ‖Vδ‖22 + ‖χ‖22 − 2〈Vδ, χ〉 , (12)

where 〈·, ·〉 denotes the usual inner product in L2(R), and observe that (6) implies

σδ(1− δ)2 = 〈Φ′(Rδ), Rδ〉 . (13)

Since (9) yields δ ≤ εδ, we find

0 ≤ ‖Vδ − χ‖22 = (1− δ)2 + 1− 2(1− εδ) ≤ Cεδ

and hence (10)1, which in turn implies (10)2 thanks to Rδ − Aχ = A(Vδ − χ) and (7)2.

By (6) we also have

µ2
δ Vδ(0) = εm+2

δ

∫ + 1
2

− 1
2

Φ′(Rδ(x)) ≤ εm+2
δ Φ′(1− εδ) ≤ Cεδ ,

and this provides the upper bound in (11) since the unimodality of Vδ combined with

(10)1 guarantees that lim infδ→0 Vδ(0) > 0. To obtain the corresponding lower bound,

we notice that (1) ensures

‖R′′δ‖∞ ≤
4‖Φ′(Rδ)‖∞

σδ
≤ C

σδε
m+1
δ

and hence

Rδ(x) ≥ 1− Cεδ for all |x| <
√
σδε

m+2
δ = µδ

due to R′δ(0) = 0 and Rδ(0) = 1− εδ. Combining this with (13) we obtain

µ2
δ

εm+2
δ

(1− δ)2 ≥
∫ +µδ

−µδ
Φ′(Rδ(x))Rδ(x) dx ≥ c

µδ

εm+1
δ

,

and the proof of (11) is complete. Finally, the properties of Φ imply

pδ = P(Vδ) ≤ ε−mδ ‖Rδ‖22 ≤ Cε−mδ

so εδ → 0 is a consequence of pδ →∞.

1.4. Justification of Assumption 1

We briefly sketch how Assumption 1 can be justified using a constrained optimization

approach. All key arguments are presented in [6] for non-singular potentials Φ but can

easily be adapted to the potential (3). At the end of this section we also discuss the

results from [12] and [3].

The variational approach from [6] is based on the potential energy functional (8),

which is convex and Gâteaux differentiable on the open unit ball in L2(R); the derivative

of P is given by

∂VP(V ) = AΦ′(AV ) ,
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so the traveling wave equation (6) is equivalent to σV = ∂VP(V ). We further introduce

the cone C of all L2-functions that are even, unimodal and nonnegative, i.e. we set

C := {V ∈ L2(R) : 0 ≤ V (x) ≤ V (y) = V (−y) for almost all x ≤ y ≤ 0} .
The key observation is that solitary waves as in Assumption 1 can be constructed as

solutions to the constrained optimization problem

Maximize P under the norm constraint ‖V ‖2 = 1−δ and

the shape constraint V ∈ C.
(14)

In the existence proof one has to ensure that maximizers do in fact exist and that the

shape constraint does not contribute to the Euler-Lagrange equation for the maximizer.

With respect to the latter issue we introduce the improvement operator

Tδ(V ) := (1− δ) AΦ′(AV )

‖AΦ′(AV )‖2
.

We are now able to describe the key arguments in the variational existence proof for

solitary waves with profiles in C.
Lemma 4 (three ingredients).

(i) Since Φ is strictly super-quadratic, each maximizing sequence for (14) is strongly

compact.

(ii) The cone C is invariant under the actions of both the convolution operator A and

the superposition operator Φ′. In particular, V ∈ C implies R ∈ C and Tδ(V ) ∈ C.

(iii) We have P(Tδ(V )) ≥ P(V ), where the equality sign holds if an only if V is a fixed

point of Tδ.

Sketch of the proof. The main steps can be summarized as follows:

(i) The assertion follows by a variant of the Concentration Compactness Principle.

(ii) The invariance properties can be checked by straight forward calculations.

(iii) Since Φ is convex, we have

P(Tδ(V ))− P(V ) ≥ 〈∂VP(V ), Tδ(V )− V 〉
= σ(V )〈Tδ(V ), Tδ(V )− V 〉
= 1

2
σ(V )‖Tδ(V )− V ‖22 ,

where we used ‖Tδ(V )‖2 = ‖V ‖2 = 1− δ and that σ(V ) := ‖AΦ′(AV )‖2/(1− δ) is

well defined as long as P(V ) > 0.

The details can be found in [6].

Corollary 5 (variational existence proof). For any 0 < δ < 1, there exists a solitary

wave with Vδ, Rδ ∈ C ∩ BC∞(R) and ‖Vδ‖ = 1 − δ. Moreover, we have P(Vδ) → ∞ as

δ → 0.
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Proof. The existence of a solution Vδ to (14) can be established by the Direct Method due

to the compactness result from Lemma 4 and since P is strongly continuous. Moreover,

any maximizer Vδ satisfies

P(Vδ) ≥ P(Tδ(Vδ)) , P(Vδ) ≥ P((1− δ)χ) .

The first estimate implies P(Vδ) = P(Tδ(Vδ)), so Vδ satisfies the traveling wave equation

(6) and is therefore smooth. We also compute

P((1− δ)χ) = 2

∫ 1

0

Φ((1− δ)(1− x)) dx
δ→0−−−−−−→ +∞

and the proof is complete.

The improvement operator Tδ can also be used to compute solitary waves

numerically. In fact, imposing homogeneous Dirichlet boundary conditions on a large

but bounded and fine grid, the integral operator A can easily be discretized by Riemann

sums. The resulting recursive scheme exhibits very good convergence properties; it has

been applied to a wide range of potentials, see for instance [1, 6], and also been used to

compute the numerical data displayed in Figures 1 and 2.

A different variational framework has been introduced in [5] and later been applied

to the high-energy limit in [3]. The key idea there is to minimize the kinetic energy

term 1
2
‖V ‖22 subject to a prescribed value of p = P(V ). The results from [3] imply

for the potential (3) that solitary waves converge as p → ∞ to the limit function

χ and satisfy Assumption 1 (though, strictly speaking, neither the unimodality nor

the evenness of the profile functions R and V have been shown). In this context we

emphasize again that uniqueness of Hamiltonian lattice waves is a notoriously difficult

and an almost completely open problem. It is commonly believed that all variational

and non-variational approaches provide – up to reparametrizations and for, say, convex

potentials – the same family of solitary wave but there seems to be no proof so far.

A non-variational existence proof for solitary waves with high energy has been given

in [12] using a carefully designed fixed-point argument for the (negative) distance profile

R in the space of exponentially decaying functions. In our notations, the smallness

parameter is ε and the waves are shown to satisfy ‖R− Aχ‖ = O(ε) in some suitably

chosen norm. We therefore expect that the waves constructed in [12] also satisfy

Assumption 1, although the justification of the unimodality might be an issue.

2. Main result on the tip scaling of Rδ

Our first goal is to describe the asymptotic behavior of the distance profile Rδ near

x = 0 by showing that it converges as δ → 0 under an appropriately defined rescaling to

some nontrivial limit function. In view of theorem 2 and the numerical simulations from

figure 2 we expect that both the variable x as well as the shifted amplitude variable

1 − Rδ(δ) must be scaled with certain powers of δ. A naive ansatz, however, does not
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S̃δ(x̃) S̃′
δ(x̃)

x̃

x̃

− 1
2µδ

+ 1
2µδ

O
(
µ−1
δ

)

O
(
ε−1
δ

)

O(µδε
−1
δ )

Figure 5. Cartoon of the tip scaling: The function S̃δ and its derivative for δ > 0

(gray, solid) and δ = 0 (black, dashed). The dotted vertical lines enclose the symmetric

interval Jδ which has length 1/µδ � 1. The convergence S̃δ → S̃0 as δ → 0 implies

µδ ∼ εδ, see Theorem 7 and Corollary 8.

work here because we lack a priori scaling relations between the small parameters δ, εδ,

and µδ. For instance, if we would start with the rescaling

Rδ(x) = 1− δγ1R̄δ(δ
γ2x) ,

we could not eliminate σδ in the leading order equation. To overcome this problem

we base our analysis on an implicit scaling, which magnifies the amplitude with εδ but

defines the rescaled space variable by

x̃ = µδ x .

In this way we obtain an explicit leading order equation that does not involve any

unknown parameter and can hence be solved. Moreover, the corresponding solution

finally allows us to identify the scaling relations between the different parameters; at

the end it turns out that δ, εδ and µδ are all proportional to each other, see Corollary

13.

2.1. Implicit rescaling of Rδ

In order to derive asymptotic formulas for Rδ near x = 0, we define the rescaled distance

profile

S̃δ(x̃) :=
Rδ(0)−Rδ(µδx̃)

εδ
=

1− εδ −Rδ(µδx̃)

εδ
(15)

and obtain an even function which satisfies

S̃δ(0) = S̃ ′δ(0) = 0 , S̃δ(x̃) = S̃δ(−x̃) , (16)

see Figure 5 for an illustration. We also introduce the auxiliary functions

F̃δ(x̃) := εm+1
δ Φ′

(
Rδ(µδx̃)

)
(17)

G̃δ(x̃) := εm+1
δ Φ′

(
Rδ(−1 + µδx̃)

)
, (18)

as well as the intervals

Iδ :=

[
0,

1

2µδ

]
, Jδ = (−Iδ) ∪ Iδ



Asymptotic formulas for solitary waves 11

and study the limit of S̃δ restricted to Jδ.

Employing the identity (1)1 as well as (4) we readily verify

S̃ ′′δ (x̃) =
µ2
δ

εδ

(
V ′δ
(
µδx̃− 1

2

)
− V ′δ

(
µδx̃+ 1

2

))

= σδε
m+1
δ

(
V ′δ
(
µδx̃− 1

2

)
− V ′δ

(
µδx̃+ 1

2

))

and by (1)2 we arrive at

S̃ ′′δ (x̃) = 2F̃δ(x̃)− G̃δ(x̃)− G̃δ(−x̃) , (19)

where we used that Rδ(1 + µδx̃) = Rδ(−1− µδx̃). The definition of G̃δ combined with

the unimodality of Rδ implies

0 ≤ G̃δ(x̃) ≤ G̃δ

(
1

2µδ

)
= εm+1

δ Φ′(Rδ

(
1
2

)
) ≤ Cεm+1

δ for all x̃ ∈ Jδ (20)

and from (17) we get

F̃δ(x̃) =
Ψ
(
εδ + εδS̃δ(x̃)

)

(
1 + S̃δ(x̃)

)m+1 , (21)

where the function Ψ : [0, 1]→ R+ with

Ψ(s) := Φ′(1− s)sm+1 for 0 < s ≤ 1 , Ψ(0) := lim
s↘0

Ψ(s) =
1

m+ 1

is smooth and positive. In particular, on the interval Jδ we find

S̃ ′′δ (x̃) ≈ 2F̃δ(x̃) ≈ 2

m+ 1
· 1
(

1 + S̃δ(x̃)
)m+1 ,

and conclude that S̃δ satisfies the initial value problem (5) from the introduction up to

small error terms.

Lemma 6 (solution of the limit problem). The initial value problem (5) has a unique

solution which is even, nonnegative, and convex. This solution S̃0 grows linearly for

x̃→ ±∞ as it satisfies
∣∣∣S̃ ′0(x̃)− µ sgn(x̃)

∣∣∣ ≤ C

(1 + x̃)m
(22)

and
∣∣∣x̃S̃ ′0(x̃)− S̃0(x̃)− κ

∣∣∣ ≤ C

(1 + x̃)m−1
(23)

for all x̃ ∈ R with

µ :=
2√

m(m+ 1)
, κ :=

∫ ∞

0

x̃ S̃ ′′0 (x̃) dx̃ , η :=

∫ ∞

0

S̃0(x̃) S̃ ′′0 (x̃) dx̃(24)

and some constant C which depends only on m.
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1 3 5

4.1

0

2.0

�, ✁, and ✂ versus m

Figure 6. Numerical values for the constants µ, κ, and η from (24), which provide

the leading and the next-to-leading order terms in the scaling relations between εδ, µδ,

and σδ, see Corollary (13).

Proof. The planar and autonomous Hamiltonian ODE (5)1 admits the conserved

quantity

Etot(x̃) := 1
2

(
S̃ ′0(x̃)

)2
+ Epot(x̃) , Epot(x̃) :=

1
2
µ2

(
1 + S̃0(x̃)

)m

with value Etot(x̃) = Etot(0) = 1
2
µ2 for all x̃. A simple phase plane analysis reveals that

S̃ is even and that both S̃0 and S̃ ′0 are strictly increasing for x̃ > 0, see Figure 4 for an

illustration. In particular, we have

S̃ ′0(x̃)
x̃→∞−−−−−−→

√
2Etot(0) = µ > 0

so the conservation law implies
∣∣∣S̃ ′0(x̃)−

√
2Etot(0)

∣∣∣ =

∣∣∣∣
√

2Etot(0)− 2Epot(x̃)−
√

2Etot(0)

∣∣∣∣

≤ C Epot(x̃) ≤ C

(1 + x̃)m
,

and hence (22). Moreover, the even function K̃0 with K̃0(x̃) := x̃S̃ ′0(x̃)− S̃0(x̃) satisfies

0 ≤ K̃ ′0(x̃) = x̃S̃ ′′0 (x̃) ≤ C

(1 + x̃)m
for all x̃ > 0 ,

so K̃ ′0 is integrable due to m > 1. The constant κ = limx̃→∞ K̃0(x̃) is therefore well-

defined and (23) follows immediately from the estimate for K̃ ′0(x̃). Finally, η is well-

defined since the integrand is continuous and decays as x̃−m for x̃→∞.

There seems to be no simple way to compute the constants κ and η as functions of

m but numerical values are presented in Figure 6.

2.2. Asymptotic formulas for S̃δ

We now able to formulate and prove our main asymptotic result.

Theorem 7 (asymptotics of S̃δ). Any function S̃δ is strictly increasing and convex on

Iδ. Moreover, the estimates

sup
x̃∈Jδ

∣∣∣S̃δ(x̃)− S̃0(x̃)
∣∣∣ ≤ Cεm−1δ (25)
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and

sup
x̃∈Jδ

∣∣∣S̃ ′δ(x̃)− S̃ ′0(x̃)
∣∣∣ ≤ Cεmδ , sup

x̃∈Jδ

∣∣∣S̃ ′′δ (x̃)− S̃ ′′0 (x̃)
∣∣∣ ≤ Cεm+1

δ (26)

hold for all 0 < δ < 1 and a constant C independent of δ.

Proof. Since S̃δ and S̃0 are even functions it suffices to consider x̃ ∈ Iδ.
Dynamics of S̃δ: By (21) and due to Ψ(0)−Ψ(s) = Csm+1 we have

∣∣∣∣∣∣∣
F̃δ(x̃)− Ψ(0)

(
1 + S̃δ(x̃)

)m+1

∣∣∣∣∣∣∣
≤ Cεm+1

δ ,

and in view of (21) and (20) we conclude that S̃δ satisfies on the interval Iδ the ODE

S̃ ′′δ (x̃) =
Ψ(0)

(
1 + S̃δ(x̃)

)m+1 + εm+1
δ hδ(x̃) with |hδ(x̃)| ≤ C . (27)

Standard ODE arguments now imply

sup
0≤x̃≤x̃∗

(∣∣∣S̃δ(x̃)− S̃0(x̃)
∣∣∣+
∣∣∣S̃ ′δ(x̃)− S̃ ′0(x̃)

∣∣∣
)
≤ Cεm+1

δ (28)

for any fixed x̃∗ > 0, where C depends on x̃∗.

Properties of S̃δ: The monotonicity of both S̃δ and S̃ ′δ on Iδ follows directly from

the unimodality of Rδ, Vδ and the definition (15). In particular, S̃δ is convex on Iδ. We

therefore have

S̃δ(x̃) ≥ S̃δ(x̃∗) + S̃δ(x̃∗)
′ (x̃− x̃∗) ,

and choosing x̃∗ > 0 sufficiently close to 0 we find a constant c such that

1 + S̃δ(x) ≥ c(1 + x̃) (29)

holds for all x̃ ∈ Iδ, where we used that limδ→0 S̃
′
δ(x̃∗) = S̃ ′0(x̃∗) > 0 is implied by (28).

Notice that (29) holds also for δ = 0.

Estimates for S̃δ: By (5) and (27) – and using both the Mean Value Theorem as

well as (29) – we obtain
∣∣∣S̃ ′′δ (x̃)− S̃ ′′0 (x̃)

∣∣∣ ≤ C

(1 + x̃)m+2

∣∣∣S̃δ(x̃)− S̃0(x̃)
∣∣∣+ Cεm+1

δ . (30)

Integration with respect to x̃ yields
∣∣∣S̃ ′δ(x̃)− S̃ ′0(x̃)

∣∣∣ ≤ Cεm+1
δ x̃+

∫ x̃

0

C

(1 + ỹ)m+2

∫ ỹ

0

∣∣∣S̃ ′δ(z̃)− S̃ ′0(z̃)
∣∣∣ dz̃ dỹ

since (16) ensures that

S̃δ(0) = S̃0(0) = 0 , S̃ ′δ(0) = S̃ ′0(0) = 0 ,

and a direct computation reveals
∣∣∣S̃ ′δ(x̃)− S̃ ′0(x̃)

∣∣∣ ≤ Cεm+1
δ x̃+

∫ x̃

0

C

(1 + z̃)m+1

∣∣∣S̃ ′δ(z̃)− S̃ ′0(z̃)
∣∣∣ dz̃ .
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Employing the Gronwall Lemma for x̃ ≥ 0 we obtain
∣∣∣S̃ ′δ(x̃)− S̃ ′0(x̃)

∣∣∣ ≤ Cεm+1
δ x̃ exp

(∫ x̃

0

C

(1 + z̃)m+1 dz̃

)
≤ Cεm+1

δ x̃ , (31)

and using x̃ ≤ 1/(2µ̃δ) as well as the lower bound for µδ from Lemma 3 we arrive at

(26)1. Moreover, integrating (31) with respect to x̃ gives
∣∣∣S̃δ(x̃)− S̃0(x̃)

∣∣∣ ≤ Cεm+1
δ x̃2

and hence (25). In combination with (30) we further get
∣∣∣S̃ ′′δ (x̃)− S̃ ′′0 (x̃)

∣∣∣ ≤ Cεm+1
δ

(
x̃2

(1 + x̃)m+2 + 1

)
,

which in turn provides (26)2.

A first consequence of Theorem 7 are leading order expressions for µδ and hence

for σδ; below we improve this result by specifying the next-to-leading order corrections

in Corollary 13.

Corollary 8 (convergence of µδ and σδ).

µδ
εδ

δ→0−−−−−−→ µ, σδε
m
δ

δ→0−−−−−−→ µ2 . (32)

Proof. By construction – see (15) – and Lemma 3 we have

εδ S̃δ

(
1

2µδ

)
= 1− εδ −Rδ

(
1
2

) δ→0−−−−−−→ 1
2
.

and in view of Theorem 7 we conclude that

2 εδ S̃0

(
1

2µδ

)
δ→0−−−−−−→ 1 .

On the other hand, the estimates (22) and (23) evaluated at x̃ = 1/(2µδ) imply

2µδ S̃0

(
1

2µδ

)
δ→0−−−−−−→ µ ,

so the claim for µδ follows immediately. The convergence result for σδ is a consequence

of (4).

3. Further asymptotic formulas

In this section we exploit the asymptotic results on the tip scaling and derive

approximation formulas for the foot and transition scaling, the tails of the profile

functions, and for the scaling relations between δ, εδ, and σδ. In this way we obtain

a complete set of asymptotic formulas which finally allows us to extract all relevant

information on the limit δ → 0 from the function S̃0 only. We also sketch a possible

application of these formulas, namely the study of the linearized eigenvalue problem.
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W̃δ(x̃) T̃δ(x̃)

x̃ x̃

− 1
2µδ

+ 1
2µδ O

(
µ−1
δ

)

O
(
ε−1
δ

)
O(µδε

−1
δ )

Figure 7. Cartoon of the tip and the foot scaling: The functions W̃δ and T̃δ for δ > 0

(gray, solid) and δ = 0 (black, dashed). The limits W̃0 and T̃0 can be computed from

S̃0, see (34) and (45).

3.1. Transition scaling of Vδ

To describe the jump-like behavior of Vδ near x = ±1
2

we introduce the rescaled profiles

W̃δ by

W̃δ(x̃) :=
µδ
εδ
Vδ
(
−1

2
+ µδx̃

)
(33)

and refer to Figure 7 for an illustration. The key observation for the asymptotics of W̃δ

is the approximation

W̃ ′
δ(x̃) ≈ F̃δ(x̃) ≈ 1

2
S̃ ′′δ (x̃) ,

and hence we are able to prove the convergence of W̃δ to

W̃0(x̃) := 1
2

(
S̃ ′0(x̃) + µ

)
, (34)

where S̃0 is the ODE solution from the tip scaling and defined in (5).

Theorem 9 (convergence under the transition scaling). We have

sup
x∈Jδ
|W̃δ(x̃)− W̃0(x̃)| ≤ Cεmδ , sup

x∈Jδ
|W̃ ′

δ(x̃)− W̃ ′
0(x̃)| ≤ Cεm+1

δ (35)

for some constant C independent of δ.

Proof. Uniform estimates for the derivative: By (33), the traveling wave equation (1),

and the definition of µδ in (4) we have

W̃ ′
δ(x̃) =

µ2
δ

εδ
V ′δ
(
−1

2
+ µδx̃

)

= σδε
m+1
δ V ′δ

(
−1

2
+ µδx̃

)

= εm+1
δ

(
Φ′(Rδ(µδx̃))− Φ′(Rδ(−1 + µδx̃))

)
,

and from (17), (18) as well as (19) we infer that

W̃ ′
δ(x̃) = F̃δ(x̃)− G̃δ(x̃) = 1

2

(
S̃ ′′δ (x̃)− G̃δ(x̃) + G̃δ(−x̃)

)
.

The estimate (35)2 is now a direct consequence of (20) and Theorem 7.
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Pointwise estimate at x̃ = 1/(2µδ): Using (33), the traveling wave equation (6),

and the unimodality of Rδ we obtain

εδ
µδ
W̃δ

(
1

2µδ

)
= Vδ(0) =

∫ +
1
2

−1
2

Φ′(Rδ(x))

σδ
dx

=
2

σδ ε
m+1
δ

∫ +
1
2

0

εm+1
δ Φ′(Rδ(x)) dx .

Thanks to (4), (17), and (19) we thus conclude

W̃δ

(
1

2µδ

)
=

µ2
δ

σδ ε
m+2
δ

∫

Iδ

2 F̃δ(x̃) dx̃ =

∫

Iδ

2 F̃δ(x̃) dx̃

=

∫

Iδ

S̃ ′′δ (x̃)− G̃δ(x̃)− G̃δ(−x̃) dx̃

and since
∫
Iδ
G̃δ(±x̃) dx̃=O(εmδ ) holds according to (20) and Corollary 8, we obtain

W̃δ

(
1

2µδ

)
= S ′δ

(
1

2µδ

)
+O(εmδ ) ,

Lemma 6 combined with Theorem 7 and (32) finally provides

W̃δ

(
1

2µδ

)
= µ+O(εmδ ) = W̃0

(
1

2µδ

)
+O(εmδ ) ,

so (35)1 follows from (35)2.

3.2. Tail estimates

We complement our previous results by estimates for the tails of the profiles Vδ and

Rδ. The derivation of those exploits the exponential decay with respect to x, which we

establish by adapting an idea from [7].

Theorem 10 (tail estimates for Vδ and Rδ). The estimates

sup
|x|≥1

Vδ(x) +

∫

|x|≥1
Vδ(x) dx ≤ Cεmδ

and

sup
|x|≥3

2

Rδ(x) +

∫

|x|≥3
2

Rδ(x) dx ≤ Cεmδ

hold for some constant C independent of δ.

Proof. Since Vδ is unimodal and nonnegative by Assumption 1, we have

0 ≤ Vδ(x) ≤ Vδ(−1) for all x ≤ −1. (36)

Moreover, the properties of the convolution operator A combined with (6) imply

Rδ(x) ≤ Vδ
(
x+ 1

2

)
, Vδ(x) ≤

Φ′
(
Rδ

(
x+ 1

2

))

σδ
for all x < −1 (37)
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and we infer that

Vδ(x) ≤ Φ′(Vδ(x+ 1))

σδ
≤ Cεδ

mVδ(x+ 1) for all x < −2 (38)

where we used Corollary 8, the properties of Φ′, and that the unimodality of Vδ
guarantees

2Vδ(−1)2 ≤ ‖Vδ‖22 = (1− δ)2 and hence Vδ(−1) ≤ 1/
√

2 < 1 .

By iteration of (38) we obtain

Vδ(x− n) ≤ (Cεmδ )nVδ(x) for all x < −1 , n ∈ N

and conclude that Vδ decays exponentially with rate

λδ ≥ m |ln εδ| (1 + o(1))

and satisfies
−1∫

−∞

Vδ(x) dx ≤ CVδ(−1) . (39)

Finally, (33) and Theorem 9 ensure that

Vδ(−1) =
εδ
µδ
W̃δ

(
− 1

2µδ

)

=
εδ
µδ



µ+ S̃ ′0

(
− 1

2µδ

)

2
+O(εmδ )


 = O(εmδ )

(40)

where the last identity stems from (22) and (32). The desired estimates for Vδ are

now direct consequences of (36), (39), and (40), and imply the claim for Rδ thanks to

(37)1.

Notice that the exponential decay rate in the proof of Theorem 10 is asymptotically

optimal for small δ. In fact, after linearization of Φ′ in 0 we find the tail identity

σδVδ ≈ A2Vδ ,

and the usual exponential ansatz predicts that the exact decay rate λδ is the positive

solution to the transcendental equation

sinh (λδ/2)

λδ/2
=
√
σδ = µε

−m/2
δ

(
1 +O(εδ)

)
.

In particular, λδ is large for small δ and satisfies λδ = m |ln εδ|+O(ln |ln εδ|).
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3.3. Relations between the parameters δ, εδ, and µδ

In this section we identify the scaling relations between the small quantities

δ, εδ , µδ

and start with two auxiliary results.

Lemma 11 (scaling relation between µδ and εδ). The formula

µδ =
µ εδ

1 + εδ(κ− 1)
+O

(
εm+1
δ

)

holds for all 0 < δ < 1.

Proof. Our starting point is the identity

1− εδ = Rδ(0) = 2

∫ 0

−1/2
Vδ(x) dx

= 2µδ

∫ 1/(2µδ)

0

Vδ

(
−1

2
+ µ̃x̃

)
dx̃ = 2 εδ

∫ 1/(2µδ)

0

W̃δ(x̃) dx̃

which follows from (6), Assumption 1, and (33). Theorem 9 now yields

1− εδ = 2 εδ

∫ 1/(2µδ)

0

W̃0(x̃) dx+O(εmδ )

=
εδ
µδ

(
µ

2
+ µδS̃0

(
1

2µδ

))
+O(εmδ ) ,

while (23) and (32) provide

S̃0

(
1

2µδ

)
=

1

2µδ
S̃ ′0

(
1

2µδ

)
− κ+O

(
µm−1δ

)
=

µ

2µδ
− κ+O

(
εm−1δ

)
.

The combination of the latter two formulas yields

1− εδ =
εδ
µδ

(
µ− µδκ

)
+O(εmδ ) ,

and rearranging terms we find the desired result.

Lemma 12 (scaling relation between εδ and δ). We have

δ = 1−
√(

1 + εδ(κ− 1)
)(

1− εδ
(

1 +
η

µ

))
+O(εmδ ) ,

where the right hand side is real-valued and positive for all sufficiently small δ > 0.

Proof. From Assumption 1 and the tail estimates in Theorem 10 we derive

(1− δ)2 =

∫

R
Vδ(x)2 dx = 2

∫ 0

−1
Vδ(x)2 dx+O(εmδ ) ,

and (33) gives
∫ 0

−1
Vδ(x)2 dx = µδ

∫

Jδ

Vδ

(
−1

2
+ µδx̃

)2

dx̃ =
ε2δ
µδ

∫

Jδ

W̃δ(x̃)2 dx̃ .
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Therefore – and thanks to Theorem 9 – we get

(1− δ)2 = 2
ε2δ
µδ

∫

Jδ

W̃0(x̃)2 dx̃+O(εmδ )

=
µ2ε2δ
2µ2

δ

+
ε2δ
µδ

∫

Iδ

S̃ ′0(x̃)2 dx̃+O(εmδ )

(41)

where we used that S̃ ′0 is an odd function, and integration by parts yields
∫

Iδ

(S̃ ′0(x̃))
2

dx̃ = S̃0

(
1

2µδ

)
S̃ ′0

(
1

2µδ

)
−
∫

Iδ

S̃0(x̃) S̃ ′′0 (x̃) dx̃

=

(
1

2µδ
S̃ ′0

(
1

2µδ

)
− κ
)
S̃ ′0

(
1

2µδ

)
− η +O

(
µm−1δ

)

=

(
µ

2µδ
− κ
)
µ− η +O

(
µm−1δ

)

thanks to the estimates and decay results from Lemma 6. In summary we find

(1− δ)2 =
µ2ε2δ
µ2
δ

− ε2δ
µδ

(κµ+ η) +O(εmδ )

and eliminating µδ by Lemma 11 yields via

(1− δ)2 =
(

1 + εδ(κ− 1)
)2
− εδ

(
1 + εδ(κ− 1)

)(
κ+

η

µ

)
+O(εmδ ) (42)

the assertion.

Lemma 11 and Lemma 12 provide explicit formulas for

µδ ∼ εδ and δ ∼ εδ

in terms of εδ but there is a slight mismatch between both results since the error bounds

in the formula for µδ are of higher order than those in the scaling law for δ. It is not

clear, at least to the authors, whether this mismatch concerns the real error terms or

just means that the bounds in Lemma 12 are less optimal than those in Lemma 11.

Our main result concerning the scaling relations between the different parameters

can now be formulated as follows.

Corollary 13 (leading order scaling laws). The relation between µδ and εδ can be

computed up to error terms of order O
(
εm+1
δ

)
, while the scaling law between δ and

εδ is determined up to order O(εmδ ) only. In particular, we have

µδ = µ εδ + µ (1− κ) ε2δ + o
(
ε2δ
)
,

σδ = µ2ε−mδ + 2µ2 (1− κ) ε−m+1
δ + o

(
ε−m+1
δ

)

for all m > 1, as well as

δ =
2µ− µκ− η

2µ
εδ +

µ2 κ2 + η2 + 2µκ η

8µ2 ε2δ + o
(
ε2δ
)

provided that m > 2.

Proof. All assertions are provided by Lemma 11, Lemma 12, and formula (4).
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3.4. Foot scaling of Rδ

We study now the asymptotic behavior of Rδ near x = ±1. To this end we define

T̃δ(x̃) :=
Rδ(−1 + µδx̃)

εδ
(43)

and find by direct calculations the identity

T̃ ′′δ (x̃) = F̃δ(x̃) + H̃δ(x̃)− 2G̃δ(x̃) ≈ 1
2
S̃ ′′δ (x̃) (44)

because both G̃δ and

H̃δ(x̃) := Φ′(Rδ(−2 + µδx̃))

can be neglected on the interval Iδ. We further define

T̃0(x̃) := 1
2

(
S̃0(x̃) + µ x̃+ κ

)
(45)

and show that T̃δ converges as δ → 0 to T̃0, see Figure 7.

Lemma 14 (asymptotics of Rδ at x = ±1
2

and for Vδ at x = 0). The terms R′δ
(
−1

2

)
,

2Rδ

(
1
2

)
, and Vδ(0) are identical to leading order in δ. More precisely, we have

R′δ
(
1
2

)
=
εδ µ

µδ
+O(εmδ ) = (1 + εδ(κ− 1)) +O(εmδ ) ,

and

|2Rδ

(
1
2

)
−R′δ

(
−1

2

)
| = O(εmδ ) , |Vδ(0)−R′δ

(
-1
2

)
| = O(εmδ )

for all 0 < δ < 1.

Proof. From (15), Lemma 6, Theorem 7, and (32) we infer

R′δ
(
−1

2

)
= −R′δ

(
1
2

)
=
εδ
µδ
S̃ ′δ

(
1

2µδ

)

=
εδ
µδ
S̃ ′0

(
1

2µδ

)
+O(µmδ ) =

εδ µ

µδ
+O(εmδ )

and similarly

Rδ

(
1
2

)
= 1− εδ − εδS̃δ

(
1

2µδ

)
= 1− εδ − εδS̃0

(
1

2µδ

)
+O(µmδ )

= 1− εδ − εδ
(

1

2µδ
S̃ ′0

(
1

2µδ

)
− κ
)

+O(εmδ )

= 1 + εδ(κ− 1)− εδ µ

2µδ
+O(εmδ ) .

Thanks to (33) and Theorem 9 we also find

Vδ(0) =
εδ
µδ
W̃0

(
1

2µδ

)
+O(εmδ ) =

εδ µ

µδ
+O(εmδ ) ,

and the result follows from Lemma 11.
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Theorem 15 (convergence under the foot scaling). The estimate

sup
x̃∈Jδ

(
ε2 |T̃δ(x̃)− T̃0(x̃)|+ ε |T̃ ′δ(x̃)− T̃ ′0(x̃)|+ |T̃ ′′δ (x̃)− T̃ ′′0 (x̃)|

)
≤ Cεm+1

holds with some constant C independent of δ. In particular, we have

Rδ(±1) = 1
2
κ εδ +O(εmδ ) .

Proof. The unimodality of Rδ, the monotonicity of Φ′, and (20) imply

0 ≤ H̃δ(x̃) ≤ G̃δ(x̃) ≤ Cεm+1
δ

for all x̃ ∈ Jδ. Combining this with (44) and Theorem 7 we arrive at the desired

estimates for the second derivatives. We also notice that Lemma 6 along with Lemma

14 imply

T̃ ′0

(
1

2µδ

)
= 1

2
S̃ ′0

(
1

2µδ

)
+ 1

2
µ = µ+O(εmδ )

=
µδ
εδ
R′δ
(
1
2

)
+O(εmδ ) = T̃ ′δ

(
1

2µδ

)
+O(εmδ ) ,

where the last identity stems from (43), and by similar arguments we justify

T̃0

(
1

2µδ

)
=

1

2
S̃0

(
1

2µδ

)
+

1

4

µ

µδ
+

1

2
κ

=
1

2

(
µ

2µδ
− κ
)

+
1

4

µ

µδ
+

1

2
κ+O

(
εm−1δ

)

=
µ

2µδ
+O

(
εm−1δ

)

=
Rδ

(
±1

2

)

εδ
+O

(
εm−1δ

)
= T̃δ

(
1

2µδ

)
+O

(
εm−1δ

)
.

The assertions for the first and zeroth derivatives can thus be derived from the estimates

for the second derivatives by integration with respect to x̃.

3.5. Summary on the asymptotic analysis

We finally combine all partial results as follows.

Theorem 16 (global approximation in the high-energy limit). The formulas

R̂ε(x) :=





1− ε− ε S̃0

( |x|
µ̂ε

)
for 0 ≤ |x| < 1

2

ε T̃0

(
1− |x|
µ̂ε

)
for 1

2
≤ |x| < 3

2

0 else

and

V̂ε(x) :=
ε

µ̂ε





W̃0

( 1
2
− |x|
µ̂ε

)
for 0 ≤ |x| < 1

0 else
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with

µ̂ε :=
µ ε

1 + ε (κ− 1)
σ̂ε := ε−m−2 µ̂2

ε

approximate the solitary waves from Assumption 1 in the sense of

‖Rδ − R̂εδ‖q + ‖Vδ − V̂εδ‖q + εmδ |σδ − σ̂εδ | = O(εmδ ) = O(δm)

for any q ∈ [1, ∞]. Here, S̃0 solves the ODE initial value problem (5), the constants µ,

κ are given in (24), and the functions W̃0, T̃0 are defined in (34), (45).

Proof. Notice that O(δ) = O(εδ) is ensured by Lemma 12 and that it suffices to consider

the case q =∞ because the functions R̂ε and V̂ε are compactly supported. Theorems 7,

9, and 15 – which concern the convergence under the different rescalings — as well as

the tail estimates from Theorem 10 provide a variant of the desired estimates in which

µ̂εδ is replaced by µδ. Thanks to Lemma 11 we also have µδ ∼ δ as well as

µδ = µ̂εδ +O
(
δm+1

)
and hence

1

µδ
=

1

µ̂εδ
+O

(
δm−1

)
. (46)

Since S̃ ′0 is bounded, the intermediate value theorem implies

εδ

∣∣∣∣S̃0

( |x|
µδ

)
− S̃0

( |x|
µ̂εδ

)∣∣∣∣ = εδ

∣∣∣‖S̃ ′0‖∞ |x| O
(
δm−1

)∣∣∣ = O(δm) ,

and by similar arguments we derive the corresponding estimate for T̃0. For the

approximation of the velocity profile, the crucial estimate is
∣∣∣∣W̃0

( 1
2
− |x|
µδ

)
− W̃0

( 1
2
− |x|
µ̂εδ

)∣∣∣∣ =
∣∣∣W̃ ′

0(ξ)
(
1
2
− |x|

)
O
(
δm−1

)∣∣∣ = O(δm),

where ξ denotes an intermediate value and where we used that the function x̃ 7→ x̃W̃ ′
0(x̃)

is bounded. Finally, the estimates for σδ − σ̂εδ follow from (4) and (46).

For practical purposes it might be more convenient to regard ε as the independent

parameter and δ as the derived quantity. In this case we can employ the following result,

which is, however, weaker than Theorem 16 since the guaranteed error bounds are of

lower order.

Corollary 17 (variant of the global approximation result). We have

‖R̂ε −Rδ̂ε
‖q + ‖V̂ε − Vδ̂ε‖q + εm−1|σ̂ε − σδ̂ε| = O

(
εm−1

)

for any q ∈ [1, ∞], where δ̂ε := 1− ‖V̂ε‖2 ∼ ε.

Proof. Let ε∗ be fixed, where the subscript ∗ has been introduced for the sake of clarity

only, and write δ∗ := δ̂ε∗ as well as µ∗ := µ̂ε∗ for the quantities that can be computed

directly and explicitly from ε∗. Lemma 12 provides

(1− δ∗)2 = ‖Vδ∗‖22 =
(

1 + εδ∗(κ− 1)
)(

1− εδ∗
(

1 +
η

µ

))
+O

(
εmδ∗
)
,
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where εδ∗ and µδ∗ are defined by the exact wave data (Rδ∗ , Vδ∗ , σδ∗) and must not be

confused with ε∗ and µ∗. On the other hand, a direct calculation – we just repeat all

arguments between (41) and (42) with (ε∗, µ∗) instead of (εδ∗ , µδ∗) – reveals

(1− δ∗)2 = ‖V̂ε∗‖22 = 2
ε2∗
µ∗

+1/(2µ∗)∫

−1/(2µ∗)

W̃0(x̃)2 dx̃

=
(

1 + ε∗(κ− 1)
)(

1− ε∗
(

1 +
η

µ

))
+O(εm∗ ) .

Equating the right hand sides in both identities we then conclude

εδ∗ = ε∗ +O(εm∗ ) , µδ∗ = µ∗ +O(εm∗ ) ,

where the last identity holds due to the ε∗-dependence of µ∗ and Lemma 11, which

provides an approximation of µδ∗ in terms of εδ∗ . Finally, exploiting the properties of

S̃0, W̃0, and T̃0 as in the proof of Theorem 16 we arrive at

‖R̂ε∗ − R̂εδ∗
‖∞ + ‖V̂ε∗ − V̂εδ∗‖∞ = O

( |ε∗ − εδ∗ |
ε∗

)
= O

(
εm−1∗

)
,

and obtain analogous estimates for the q-norms due to the compactness of the supports.

The assertion is now provided by Theorem 16.

3.6. On the asymptotic eigenvalue problem

Of particular interest in the analysis of solitary waves is the spectrum of the linearized

equation. The problem consists of finding eigenpairs (λ, U) ∈ R× L2(R) such that

λU = LδU , LδU := AQδAU , Qδ(x) :=
Φ′′(Rδ(x))

σδ
, (47)

where the function Qδ becomes singular in the limit δ → 0, see Figure 8. Due to the

shift symmetry of the traveling wave equation (6), there is always the solution

λ = 1 , U = V ′δ ,

and a natural question is whether this eigenspace is simple or not. In fact, simplicity

would immediately imply some local uniqueness for solitary waves and is also an

important ingredient for both linearized and orbital stability.

Unfortunately, very little is known about the solution set of (47) due to the

nonlocality of the operator A. In the small-energy limit of FPU-type chains, the

corresponding problem has been solved in [4] by showing that the spectral properties of

the analogue to Lδ are governed by an asymptotic ODE problem which stems from the

KdV equation and admits explicit solutions. The hope is that the asymptotic formulas

derived in this paper provide spectral control in the high-energy limit. A detailed

study of the singular perturbation problem (47) is beyond the scope of this paper but

preliminary investigations indicate that the spectrum of Lδ depends in the limit δ → 0

– and at least for sufficiently large m – crucially on the coefficients c±1 that are derived

in the following result.
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Qδ(x)

xO(µm
δ )

O(µ−2
δ )

O(µδ)

Figure 8. Cartoon of the coefficient function Qδ in the linear eigenproblem (47).

Theorem 18 (weak?-expansion of Qδ). For any sufficiently regular test function ϕ we

have ∫

R
Qδ(x)ϕ(x) dx = c−1µ

−1
δ ϕ(0) + c+1µ

+1
δ ϕ′′(0) +O

(
µ
min {m−2,3}
δ

)

with

c−1 :=

∫

R

1
(

1 + S̃0(x̃)
)m+2 dx̃ , c+1 := 1

2

∫

R

x̃2
(

1 + S̃0(x̃)
)m+2 dx̃ ,

where the error terms depend on ϕ.

Proof. Due to Φ′′(r) = (1− r)−m−2 and the scaling relations (32) we find
∫

R\[−1/2,+1/2]

Qδ(x)ϕ(x) dx = O
(
σ−1δ
)

= O(µmδ ) ,

and (15) along with (4) implies
∫

[−1/2,+1/2]

Qδ(x)ϕ(x) dx =
µδ
σδ

∫

Jδ

Φ′′(Rδ(µδx̃))ϕ(µδx̃) dx̃

=
1

µδ

∫

Jδ

ϕ(µδx̃)
(

1 + S̃δ(x̃)
)m+2 dx̃ .

Theorem 7 as well as the linear growth of S̃0 – see Lemma 6 – ensure
∫

Jδ

ϕ(µδx̃)
(

1 + S̃δ(x̃)
)m+2 dx̃ =

∫

Jδ

ϕ(µδx̃)
(

1 + S̃0(x̃)
)m+2 dx̃+O

(
µm−1δ

)

=

∫

R

ϕ(µδx̃)
(

1 + S̃0(x̃)
)m+2 dx̃+O

(
µm−1δ

) (48)

and by smoothness of ϕ and evenness of S̃0 we can approximate
∫

R

ϕ(µδx̃)
(

1 + S̃0(x̃)
)m+2 dx̃ = c−1ϕ(0) + c+1µ

2
δϕ
′′(0) +O

(
µ4
δ

)
.

The claim now follows by combining all partial estimates from above.

For completeness we mention that the estimate (48) is not optimal for moderate

values of m and might be improved for the prize of more technical effort.
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