Youth sports are instrumental in adolescents' development. They contribute to enhanced motor competence, physical self-concept and self-esteem, as well as providing opportunities to learn better emotion regulation and develop peer relationships (Eime, Young, Harvey, Charity, & Payne, 2013). Yet youth sport experiences are not always positive and it is well documented that disinterest fosters high levels of attrition beyond adolescence (Boiché & Sarrazin, 2009; Duda, 2013; Petlichkoff, 1996). Anecdotal and empirical accounts point to coach behaviors as sources of variability in the youth sport experience (Brackenridge, Pitchford & Wilson, 2011; Curran, Hill & Niemiec, 2013). Hence, understanding how coach behaviors shape positive experiences in youth sport is important so that adolescents maintain their participation into adulthood.

Engagement in Sport

One way to conceptualize adolescents' positive experiences in sport is through the notion of engagement. Numerous approaches to engagement have been proposed (see Appleton, Christenson & Furlong, 2008). Borrowing from Schaufeli and colleagues' (Schaufeli, Salanova, Gonzalez-Roma & Bakker, 2002) work engagement model, a sport-specific conceptualization of athlete engagement is offered by Lonsdale and colleagues (Lonsdale, Hodge & Jackson, 2007a; Lonsdale, Hodge & Raedeke, 2007b). According to these authors, athlete engagement is an enduring and relatively stable experiential state, which refers to generalized positive cognitions and affect about one’s sport. On the basis of interview content and factor analyses using data from elite adult athletes, Lonsdale and colleagues characterize athlete engagement by four interrelated dimensions: vigor, dedication, confidence and enthusiasm.

Vigor reflects a state of mental and physical liveliness in sport. Dedication refers to a desire to invest effort and time toward personally meaningful goals in sport. Confidence reflects a belief in one's ability to accomplish things in sport. Enthusiasm refers to feelings of excitement and enjoyment in sport (Lonsdale et al., 2007a). Collectively, these dimensions are thought to converge to provide a fulfilling and positive experience that contributes, in part, to continued sports participation. In line with this idea, total athlete engagement is associated with a number of outcomes linked to persistence such as higher flow (Hodge, Lonsdale & Jackson, 2009) and self-regulation in elite college athletes (DeFreese & Smith, 2013).

Engagement is purported to emerge from high-quality motivation (Schaufeli et al., 2002). It is thought to arise when people perceive they govern their actions, as opposed to being coerced, and endorse learning, rather
than outcome, goals (van Beek, Hu, Schaufeli, Taris & Schreurs, 2012; Tuominen-Soini, Salmela-Aro & Niemivirta, 2012). Accordingly, perceptions of control are considered extremely important when seeking to develop a sense of engagement among athletes (Hodge et al., 2009). These perceptions of control are likely to be influenced by a range of social-motivational factors. Of particular relevance here are coach behaviors that encapsulate the motivational climate (Ames, 1992). The current study therefore builds on previous research by examining relationships between the coach-created motivational climate and athletes’ engagement in youth sport.

The Coach-Created Motivational Climate

The motivational climate created by the coach is important for the quality of motivation exhibited by athletes (Duda & Hall, 2001). According to achievement goal theory (Ames, 1992), the motivational climate encompasses either a mastery or performance focus. A mastery focus refers to a climate in which athletes perceive that effort, cooperation, learning and improvement are emphasized by the coach (Newton, Duda & Yin, 2000). Mastery climates value self-development and promote the notion that effort is synonymous with ability. A performance focus, on the other hand, refers to a climate in which intrateam competition, social comparison and interpersonal evaluation are emphasized by the coach (Newton et al., 2000). Performance climates value normative success and promote the notion that effort and ability are differentiated concepts.

Given their divergent properties, mastery and performance climates are expected to predict very different motivational outcomes for athletes. When coaches create a mastery climate they emphasize the processing of achievement information in a self-referenced fashion. This engenders in athletes a heightened perception of control over their actions and outcomes in sport (Duda & Hall, 2001). By contrast, when coaches create a performance climate they emphasize the processing of achievement information in a normative manner. Unlike a mastery climate, this actively diminishes athletes’ perceptions of control over their actions and outcomes in sport (Duda & Hall, 2001). Whether a coach promotes a mastery or performance climate, then, has significant motivational implications for athletes.

Numerous studies in sport and physical education support the differing outcomes of each climate. A mastery climate correlates positively with learning goals, competence, enjoyment, satisfaction and effort (Kavussanu & Roberts, 1996; Reinboth & Duda, 2006; van de Pol, Kavussanu & Ring, 2012). It also correlates with lower outcome goals, anxiety, worry and boredom (Pensgaard & Roberts, 2000; Smith, Smoll & Cummings, 2007; Walling, Duda & Chi, 1993). A performance climate correlates negatively with learning goals, enjoyment, satisfaction and effort (Carpenter & Morgan, 1999; Newton et al., 2000; Walling et al., 1993). It also correlates with higher outcome goals, anxiety, tension and distress (Pensgaard & Roberts, 2000; Smith et al., 2007; van de Pol et al., 2012). When statistically combined, irrespective of a performance climate, a mastery climate corresponds with adaptive outcomes (e.g., learning goals, enjoyment; Treasure, 1997). This is not the case for a performance climate, which yields maladaptive outcomes (e.g., outcome goals, anxiety) only when a mastery climate is low (Carpenter & Morgan, 1999).

In light of the outcomes associated with the climates, it is likely that they will exhibit different relationships with athlete engagement. Specifically, higher athlete engagement should correspond with a higher mastery climate. This is because a mastery climate facilitates perceptions of control that are instrumental to athlete engagement. Indeed, higher self-regulation and learning goals characterize the motivational consequences of a mastery climate in sport (Ntoumanis & Biddle, 1999), as well as the dimensions of engagement (Hodge et al., 2009; Martin & Malone, 2013; Tuominen-Soini et al., 2012). Hence, a mastery climate and athlete engagement should be expected to share a positive relationship.

A performance climate and athlete engagement should, on the other hand, correspond negatively. This is because the consequences of a performance climate, such as outcome goals, anxiety and tension, are antagonistic to athlete engagement. Research is, again, supportive of this idea. Studies indicate that a belief in ability, preoccupation with social status and outcome goals encapsulate the motivational processes associated with a performance climate (Ntoumanis & Biddle, 1999). This ego-involvement, in turn, is likely to interfere with the perceptions of control that positively contribute to engagement (Hodge et al., 2009; Martin & Malone, 2013; Tuominen-Soini et al., 2012). Hence, a performance climate should be expected to share a negative relationship with athlete engagement.

The Present Study

The present study sought to examine relationships between the motivational climate and athlete engagement. We hypothesized that a mastery climate would positively correspond with athlete engagement. By contrast, it was hypothesized that a performance climate would negatively correspond with athlete engagement. It was expected that these relationships would emerge at the univariate (each dimension of the motivational climate correlating with each dimension of athlete engagement separately) and multivariate levels (both dimensions of the motivational climate correlating with dimensions of athlete engagement simultaneously).

Method

Participants and Procedure

Ethical approval was obtained from the relevant university ethics committee before participant recruitment. The participants were two-hundred and sixty youth recreational soccer players from the North of England (150 female; \(M_{age} = 13.53 \) years, \(SD = 1.27 \), range = 11–16).
for whom we had received parental consent to administer a multisection questionnaire. They reported that they had been playing soccer for an average of 5.59 (SD = 2.31) years, and had been attached to their clubs for an average of 3.47 (SD = 2.20) years.

Instruments

Coach-Created Motivational Climate. To assess perceptions of the coach motivational climate, the Perceived Motivational Climate in Sport Questionnaire-2 (PMCSQ-2; Newton et al., 2000) was used. This instrument measures perceptions of a mastery (17 items; e.g., “the coach wants us to try new things”) and performance (16 items; e.g., “the coach gets mad when a player makes a mistake”) climate created by coaches. Responses are given on a 5-point Likert scale that ranges from 1 (strongly disagree) to 5 (strongly agree). Confirmatory factor analysis revealed good model fit, χ² (8) = 18.05, p < .05; CFI = .99; RMSEA = .07 (.03–.12); SRMR = .04, high intercorrelations (r = -.47) and high composite reliabilities (mastery ρ = .86; performance ρ = .83) for the two-factor motivational climate model in this sample.

Athlete Engagement. Athlete engagement was measured with the Athlete Engagement Questionnaire (AEQ; Lonsdale et al., 2007a). This measure consists of 4 subscales, each with 4 items, that assess confidence (e.g., “I believe I am capable of accomplishing my goals in sport”), dedication (e.g., “I am determined to achieve my goals in sport”), enthusiasm (e.g., “I feel really excited about participating in my sport”) and vigor (e.g., “I feel really alive when I participate in my sport”). Participants respond on a 5-point Likert scale ranging from 1 (almost never) to 5 (almost always). Confirmatory factor analysis revealed adequate model fit, χ² (33) = 105.51, p < .01; CFI = .91; RMSEA = .08 (.07–.10); SRMR = .05, high intercorrelations (r = .76 to .93) and high composite reliabilities (ρ = .84 to .88) for the four-factor engagement model in this sample.

Results

Preliminary Analyses

Missing value analysis revealed that there were 173 complete cases and 87 incomplete cases. Participants whose percentage of item nonresponse exceeded 5% were removed (N = 6). Of the remaining sample, none of the participants had more than 3 items missing (M = 1.00, SD = 0.47, range = 1–3). Missing values were replaced with the mean of the nonmissing items in the respective subscale. Two significant univariate and 7 significant multivariate outliers were removed (p < .001). The remaining sample was 245 (146 female; M_{age} = 13.51 years; SD = 1.26; range = 11–16). The study measures exhibited adequate internal reliability (Cronbach’s α > .70). Furthermore, the zero-order correlations were largely in the expected directions (see Table 1).

Primary Analyses

Four hierarchical multiple regression analyses were employed to examine univariate relationships (Table 2). The first hierarchical regression indicated that dimensions of the coach motivational climate explained 23% of variance in confidence, F (2, 244) = 38.30, p < .01. A mastery climate positively predicted confidence (β = .53, p < .01). Likewise, a performance climate also positively predicted confidence (β = .17, p < .01). The second hierarchical regression indicated that the coach motivational climate explained 31% of variance in dedication, F (2, 244) = 15.63, p < .01. A mastery climate positively predicted dedication (β = .59, p < .01). Similarly, a performance climate also positively predicted dedication (β = .13, p < .05). The third hierarchical regression indicated that the dimensions of coach motivational climate explained 34% of variance in enthusiasm, F (2, 244) = 61.66, p < .01. Here, a mastery climate positively predicted enthusiasm (β = .61, p < .01). Finally, the fourth hierarchical regression indicated that the dimensions of coach motivational climate explained 34% of variance in vigor, F (2, 244) = 63.47, p < .01. Here, a mastery climate positively predicted vigor (β = .61, p < .01).

Next, a canonical correlation was employed to examine multivariate relationships. The first canonical variate was a linear composite of confidence, dedication, enthusiasm and vigor. The second canonical variate was a linear composite of mastery climate and performance climate. One canonical function emerged; R² = .65, R²ᶜ = .42, Wilks’s Λ = .57, p < .01. The canonical loadings for this function revealed that confidence (r₁ = −.75), dedication (r₃ =...
Table 2 The Predictive Ability of the Coach-Created Motivational Climate in Relation to the Dimensions of Athlete Engagement

<table>
<thead>
<tr>
<th>Variable</th>
<th>b</th>
<th>95% BCa CI</th>
<th>β</th>
<th>r_{y,x1(x2)}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confidence, F(2, 244) = 38.30, p < .01; R = .49; R^2 = .24; R^2_{adj} = .23</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mastery climate</td>
<td>.69</td>
<td>[56, .84]</td>
<td>.53**</td>
<td>.24</td>
</tr>
<tr>
<td>Performance climate</td>
<td>.18</td>
<td>[.06, .29]</td>
<td>.17**</td>
<td>.02</td>
</tr>
<tr>
<td>Dedication, F(2, 244) = 15.63, p < .01; R = .56; R^2 = .31; R^2_{adj} = .30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mastery climate</td>
<td>.69</td>
<td>[.57, .82]</td>
<td>.59**</td>
<td>.29</td>
</tr>
<tr>
<td>Performance climate</td>
<td>.12</td>
<td>[.01, .22]</td>
<td>.13*</td>
<td>.01</td>
</tr>
<tr>
<td>Enthusiasm, F(2, 244) = 61.66, p < .01; R = .58; R^2 = .34; R^2_{adj} = .33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mastery climate</td>
<td>.64</td>
<td>[.52, .77]</td>
<td>.61**</td>
<td>.32</td>
</tr>
<tr>
<td>Performance climate</td>
<td>.08</td>
<td>[−.01, .17]</td>
<td>.09</td>
<td>.01</td>
</tr>
<tr>
<td>Vigor, F(2, 244) = 63.47, p < .01; R = .59; R^2 = .34; R^2_{adj} = .30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mastery climate</td>
<td>.75</td>
<td>[.63, .89]</td>
<td>.61**</td>
<td>.31</td>
</tr>
<tr>
<td>Performance climate</td>
<td>.07</td>
<td>[−.04, .19]</td>
<td>.07</td>
<td>.04</td>
</tr>
</tbody>
</table>

Note. R, multiple regression coefficient; b, beta coefficient; \(\beta \), standardized beta coefficient; \(r_{y,x1(x2)} \), estimate of unique variance explained per predictor variable in the regression model, where values represent the square of the part-correlation coefficients for each predictor.

*p < .05; **p < .01.

...Thus, the results suggest that a focus on performance climate can promote behavioral intentions following success (Standage, Duda & Ntoumanis, 2003). It is notable, however, that the variances explained by a performance climate were small and it did not correlate with more affective engagement (enthusiasm and vigor). Moreover, no relationship was evident at a multivariate level. As such, whether a performance climate is likely to promote engagement in the long term is unclear. Research suggests otherwise, particularly if achievement difficulties arise (Duda & Hall, 2001).

The results must be interpreted in context of the study’s limitations. Notably, as the study is cross-sectional, no casual inference can be made and it remains unclear whether the motivational climate precedes athlete engagement in time. Future research will need to include a temporal element to test causal precedence. Furthermore,
this study tested only direct relationships between the motivational climate and athlete engagement. Yet the relationship is likely to operate through mediators (e.g., dispositional achievement goals) and subsequent studies should examine potential process models. Lastly the homogeneity of our sample (young soccer participants) limits the generalizability of the findings, and we did not control for potential gender bias. Research indicates that the climates can be perceived differently as a function of gender (Ntoumanis & Biddle, 1999) and studies are needed to test whether the climate-engagement relationship is invariant across males and females.

Conclusion

While perceptions of both mastery and performance climate are associated with athlete engagement, only a mastery climate is associated with the full array of positive cognitions and affect.

Acknowledgments

This research was supported by the European Commission under the Framework 7 Program (Health; 2236000) as part of the PAPA Project (www.projectpapa.org).

References

Schaufeli, W.B., Salanova, M., González-Romá, V., & Bakker, A.B. (2002). The measurement of engagement and burnout: A two sample confirmatory factor analytic

Manuscript submitted: August 8, 2014

Revision accepted: January 17, 2015