Citation for published version:

DOI:
10.1123/jsep.2014-0203

Publication date:
2015

Document Version
Peer reviewed version

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Youth sport is a source of well-being for adolescents, yet experiences vary and attrition can be high. We sought to better understand the coach behaviors that foster positive experiences in youth sport by examining relationships between the motivational climate and athlete engagement (viz., confidence, dedication, enthusiasm, and vigor). We reasoned that a mastery climate (emphasis on effort and learning) would correspond with higher engagement, whereas a performance climate (emphasis on ability and outcome) was expected to correspond with lower engagement. Two-hundred sixty adolescent soccer players completed measures of engagement and perceived coach motivational climate. All dimensions of engagement were positively predicted by a mastery climate. Furthermore, cognitive aspects of engagement were positively predicted by a performance climate. Canonical correlation analysis indicated that a composite of engagement was positively associated with a mastery climate. Results suggest that a mastery climate offers a means of promoting higher levels of overall engagement.

Keywords: motivation, mastery, performance, achievement goal theory
than outcome, goals (van Beek, Hu, Schaufeli, Taris & Schreurs, 2012; Tuominen-Soini, Salmela-Aro & Niemivirta, 2012). Accordingly, perceptions of control are considered extremely important when seeking to develop a sense of engagement among athletes (Hodge et al., 2009). These perceptions of control are likely to be influenced by a range of social-motivational factors. Of particular relevance here are coach behaviors that encapsulate the motivational climate (Ames, 1992). The current study therefore builds on previous research by examining relationships between the coach-created motivational climate and athletes’ engagement in youth sport.

The Coach-Created Motivational Climate

The motivational climate created by the coach is important for the quality of motivation exhibited by athletes (Duda & Hall, 2001). According to achievement goal theory (Ames, 1992), the motivational climate encompasses either a mastery or performance focus. A mastery focus refers to a climate in which athletes perceive that effort, cooperation, learning and improvement are emphasized by the coach (Newton, Duda & Yin, 2000). Mastery climates value self-development and promote the notion that effort is synonymous with ability. A performance focus, on the other hand, refers to a climate in which intrateam competition, social comparison and interpersonal evaluation are emphasized by the coach (Newton et al., 2000). Performance climates value normative success and promote the notion that effort and ability are differentiated concepts.

Given their divergent properties, mastery and performance climates are expected to predict very different motivational outcomes for athletes. When coaches create a mastery climate they emphasize the processing of achievement information in a self-referenced fashion. This engenders in athletes a heightened perception of control over their actions and outcomes in sport (Duda & Hall, 2001). By contrast, when coaches create a performance climate they emphasize the processing of achievement information in a normative manner. Unlike a mastery climate, this actively diminishes athletes’ perceptions of control over their actions and outcomes in sport (Duda & Hall, 2001). Whether a coach promotes a mastery or performance climate, then, has significant motivational implications for athletes.

Numerous studies in sport and physical education support the differing outcomes of each climate. A mastery climate correlates positively with learning goals, competence, enjoyment, satisfaction and effort (Kavussanu & Roberts, 1996; Reinboth & Duda, 2006; van de Pol, Kavussanu & Ring, 2012). It also correlates with lower outcome goals, anxiety, worry and boredom (Pensgaard & Roberts, 2000; Smith, Smoll & Cumming, 2007; Walling, Duda & Chi, 1993). A performance climate correlates negatively with learning goals, enjoyment, satisfaction and effort (Carpenter & Morgan, 1999; Newton et al., 2000; Walling et al., 1993). It also correlates with higher outcome goals, anxiety, tension and distress (Pensgaard & Roberts, 2000; Smith et al., 2007; van de Pol et al., 2012). When statistically combined, irrespective of a performance climate, a mastery climate corresponds with adaptive outcomes (e.g., learning goals, enjoyment; Treasure, 1997). This is not the case for a performance climate, which yields maladaptive outcomes (e.g., outcome goals, anxiety) only when a mastery climate is low (Carpenter & Morgan, 1999).

In light of the outcomes associated with the climates, it is likely that they will exhibit different relationships with athlete engagement. Specifically, higher athlete engagement should correspond with a higher mastery climate. This is because a mastery climate facilitates perceptions of control that are instrumental to athlete engagement. Indeed, higher self-regulation and learning goals characterize the motivational consequences of a mastery climate in sport (Ntoumanis & Biddle, 1999), as well as the dimensions of engagement (Hodge et al., 2009; Martin & Malone, 2013; Tuominen-Soini et al., 2012). Hence, a mastery climate and athlete engagement should be expected to share a positive relationship.

A performance climate and athlete engagement should, on the other hand, correspond negatively. This is because the consequences of a performance climate, such as outcome goals, anxiety and tension, are antagonistic to athlete engagement. Research is, again, supportive of this idea. Studies indicate that a belief in ability, preoccupation with social status and outcome goals encapsulate the motivational processes associated with a performance climate (Ntoumanis & Biddle, 1999). This ego-involvement, in turn, is likely to interfere with the perceptions of control that positively contribute to engagement (Hodge et al., 2009; Martin & Malone, 2013; Tuominen-Soini et al., 2012). Hence, a performance climate should be expected to share a negative relationship with athlete engagement.

The Present Study

The present study sought to examine relationships between the motivational climate and athlete engagement. We hypothesized that a mastery climate would positively correspond with athlete engagement. By contrast, it was hypothesized that a performance climate would negatively correspond with athlete engagement. It was expected that these relationships would emerge at the univariate (each dimension of the motivational climate correlating with each dimension of athlete engagement separately) and multivariate levels (both dimensions of the motivational climate correlating with dimensions of athlete engagement simultaneously).

Method

Participants and Procedure

Ethical approval was obtained from the relevant university ethics committee before participant recruitment. The participants were two-hundred and sixty youth recreational soccer players from the North of England (150 female; $M_{age} = 13.53$ years, $SD = 1.27$, range = 11–16)
for whom we had received parental consent to administer a multisection questionnaire. They reported that they had been playing soccer for an average of 5.59 (SD = 2.31) years, and had been attached to their clubs for an average of 3.47 (SD = 2.20) years.

Instruments

Coach-Created Motivational Climate. To assess perceptions of the coach motivational climate, the Perceived Motivational Climate in Sport Questionnaire-2 (PMCSQ-2; Newton et al., 2000) was used. This instrument measures perceptions of a mastery (17 items; e.g., “the coach wants us to try new things”) and performance (16 items; e.g., “the coach gets mad when a player makes a mistake”) climate created by coaches. Responses are given on a 5-point Likert scale that ranges from 1 (strongly disagree) to 5 (strongly agree). Confirmatory factor analysis revealed good model fit, \(\chi^2 (8) = 18.05, p < .05; \text{CFI} = .99; \text{RMSEA} = .07 (.03-.12); \text{SRMR} = .04, \) high intercorrelations (\(r = -.47 \)) and high composite reliabilities (mastery \(\rho = .86; \) performance \(\rho = .83) \) for the two-factor motivational climate model in this sample.

Athlete Engagement. Athlete engagement was measured with the Athlete Engagement Questionnaire (AEQ; Lonsdale et al., 2007a). This measure consists of 4 subscales, each with 4 items, that assess confidence (e.g., “I believe I am capable of accomplishing my goals in sport”), dedication (e.g., “I am determined to achieve my goals in sport”), enthusiasm (e.g., “I feel really excited about my sport”) and vigor (e.g., “I feel really alive when I participate in my sport”). Participants respond on a 5-point Likert scale ranging from 1 (almost never) to 5 (almost always). Confirmatory factor analysis revealed adequate model fit, \(\chi^2 (33) = 105.51, p < .01; \text{CFI} = .91; \text{RMSEA} = .08 (.07-.10); \text{SRMR} = .05, \) high intercorrelations (\(r = .76 \) to .93) and high composite reliabilities (\(\rho = .84 \) to .88) for the four-factor engagement model in this sample.

Results

Primary Analyses

Four hierarchical multiple regression analyses were employed to examine univariate relationships (Table 2). The first hierarchical regression indicated that dimensions of the coach motivational climate explained 23% of variance in confidence, \(F (2, 244) = 38.30, p < .01. \) A mastery climate positively predicted confidence (\(\beta = .53, p < .01). \) Likewise, a performance climate also positively predicted confidence (\(\beta = .17, p < .01). \) The second hierarchical regression indicated that the coach motivational climate explained 31% of variance in dedication, \(F (2, 244) = 15.63, p < .01. \) A mastery climate positively predicted dedication (\(\beta = .59, p < .01). \) Similarly, a performance climate also positively predicted dedication (\(\beta = .13, p < .05). \) The third hierarchical regression indicated that the dimensions of coach motivational climate explained 34% of variance in enthusiasm, \(F (2, 244) = 61.66, p < .01. \) Here, a mastery climate positively predicted enthusiasm (\(\beta = .61, p < .01). \) Finally, the fourth hierarchical regression indicated that the dimensions of coach motivational climate explained 34% of variance in vigor, \(F (2, 244) = 63.47, p < .01. \) Here, a mastery climate positively predicted vigor (\(\beta = .61, p < .01). \)

Next, a canonical correlation was employed to examine multivariate relationships. The first canonical variate was a linear composite of confidence, dedication, enthusiasm and vigor. The second canonical variate was a linear composite of mastery climate and performance climate. One canonical function emerged; \(R^2_c = .65, R^2_p = .42, \) Wilks’s \(\Lambda = .57, p < .01. \) The canonical loadings for this function revealed that confidence \((r_c = -.75), \) dedication \((r_d\)
Table 2 The Predictive Ability of the Coach-Created Motivational Climate in Relation to the Dimensions of Athlete Engagement

<table>
<thead>
<tr>
<th>Variable</th>
<th>(b) 95% BCa CI</th>
<th>(\hat{\beta})</th>
<th>(r_{y,x1(x2)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confidence, (F(2, 244) = 38.30, p < .01; R = .49; R^2 = .24; R^2_{adj} = .23)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mastery climate</td>
<td>.69 [.56, .84]</td>
<td>.53**</td>
<td>.24</td>
</tr>
<tr>
<td>Performance climate</td>
<td>.18 [.06, .29]</td>
<td>.17**</td>
<td>.02</td>
</tr>
<tr>
<td>Dedication, (F(2, 244) = 15.63, p < .01; R = .56; R^2 = .31; R^2_{adj} = .30)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mastery climate</td>
<td>.69 [.57, .82]</td>
<td>.59**</td>
<td>.29</td>
</tr>
<tr>
<td>Performance climate</td>
<td>.12 [.01, .22]</td>
<td>.13*</td>
<td>.01</td>
</tr>
<tr>
<td>Enthusiasm, (F(2, 244) = 61.66, p < .01; R = .58; R^2 = .34; R^2_{adj} = .33)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mastery climate</td>
<td>.64 [.52, .77]</td>
<td>.61**</td>
<td>.32</td>
</tr>
<tr>
<td>Performance climate</td>
<td>.08 [-.01, .17]</td>
<td>.09</td>
<td>.01</td>
</tr>
<tr>
<td>Vigor, (F(2, 244) = 63.47, p < .01; R = .59; R^2 = .34; R^2_{adj} = .34)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mastery climate</td>
<td>.75 [.63, .89]</td>
<td>.61**</td>
<td>.31</td>
</tr>
<tr>
<td>Performance climate</td>
<td>.07 [-.04, .19]</td>
<td>.07</td>
<td>.04</td>
</tr>
</tbody>
</table>

Note. \(R\), multiple regression coefficient; \(b\), beta coefficient; \(\hat{\beta}\), standardized beta coefficient; \(r_{y,x1(x2)}\), estimate of unique variance explained per predictor variable in the regression model, where values represent the square of the part-correlation coefficients for each predictor.

*\(p < .05; **p < .01.\)

= –.85), enthusiasm \((r_e = –.90)\) and vigor \((r_v = –.90)\) made primary contributions to the first canonical variate. Mastery climate was the only primary contributor to the second canonical variate \((r_m = –.99)\). The corresponding negative loadings of confidence, dedication, vigor and enthusiasm on the first canonical variate and of mastery climate on the second canonical variate indicate athlete engagement is positively associated with a mastery climate.

Discussion

This study examined relationships between the coach-created motivational climate and athlete engagement. A mastery climate was expected to positively correspond with the dimensions of athlete engagement. A performance climate was expected to negatively correspond with the dimensions of athlete engagement. At the univariate level, all dimensions of engagement were positively correlated with a mastery climate. Unexpectedly, confidence and dedication were also positively correlated with a performance climate (no other relationships emerged). In the multivariate analysis, a positive relationship emerged whereby lower levels of athlete engagement corresponded with lower levels of a mastery climate.

The findings support the notion that a focus on coach behavior can help understand the motivational correlates of athlete engagement. That is, a coach-created mastery climate positively corresponded with confidence, dedication, enthusiasm and vigor. This was evident at a univariate level and at a multivariate level. Previous research has found that the motivational properties of athlete engagement include higher self-regulation, efficacy, volition and social connectedness (Hodge et al., 2009; Martin & Malone, 2013). As illustrated here, a mastery focused motivational climate can be added to these potential antecedents and warrants consideration when seeking to increase athlete engagement. More broadly, the findings add to a substantial amount of research illustrating that a focus on effort and learning offers the best means of promoting positive experiences in youth sport and hence this philosophy should be central to future coach interventions (see Duda, 2013).

As for a performance climate, univariate analyses provided some unexpected findings. A performance climate positively corresponded with confidence and dedication, and was unrelated to enthusiasm and vigor. These relationships reflect covariance with the dimension of engagement, having controlled for a mastery climate, and suggests that something akin to a “pure” (viz., residual) performance focus has the potential to promote more cognitive elements of engagement. This is similar to other research which has found that a performance climate can promote behavioral intentions following success (Standage, Duda & Ntoumanis, 2003). It is notable, however, that the variances explained by a performance climate were small and it did not correlate with more affective engagement (enthusiasm and vigor). Moreover, no relationship was evident at a multivariate level. As such, whether a performance climate is likely to promote engagement in the long term is unclear. Research suggests otherwise, particularly if achievement difficulties arise (Duda & Hall, 2001).

The results must be interpreted in context of the study’s limitations. Notably, as the study is cross-sectional, no casual inference can be made and it remains unclear whether the motivational climate precedes athlete engagement in time. Future research will need to include a temporal element to test causal precedence. Furthermore,
this study tested only direct relationships between the motivational climate and athlete engagement. Yet the relationship is likely to operate through mediators (e.g., dispositional achievement goals) and subsequent studies should examine potential process models. Lastly the homogeneity of our sample (young soccer participants) limits the generalizability of the findings, and we did not control for potential gender bias. Research indicates that the climates can be perceived differently as a function of gender (Ntoumanis & Biddle, 1999) and studies are needed to test whether the climate-engagement relationship is invariant across males and females.

Conclusion

While perceptions of both mastery and performance climate are associated with athlete engagement, only a mastery climate is associated with the full array of positive cognitions and affect.

Acknowledgments

This research was supported by the European Commission under the Framework 7 Program (Health: 2236000) as part of the PAPA Project (www.projectpapa.org).

References

Schaufeli, W.B., Salanova, M., González-Romá, V., & Bakker, A.B. (2002). The measurement of engagement and burnout: A two sample confirmatory factor analytic

Manuscript submitted: August 8, 2014
Revision accepted: January 17, 2015