The purpose of this paper is to establish if it is worthwhile to assume that current-fall is other than abrupt in RC-snubber design. The data generated to do this, also, serves to illustrate the danger of empirically sizing RC-snubbers, without testing under different operating condition extremes, or without performing follow-up worst-case analysis.
to limit peak diode-voltage, and significant overshoot was even produced on the parasitic clamping inductance (100nH), which subsequently resonates at 40MHz with diode junction-capacitance (Fig.6a).

The waveforms (Fig.6) show attainable values of current fall di/dt, after the controlled recovery di/dt period, albeit under artificial operating conditions. Because a voltage clamp is used, reverse current can only fall when reverse diode-voltage exceeds E\(_{DC}\). A faster voltage-rise is obtained which generally accelerates the final stages of reverse recovery and gives snapper current-fall. This effect is observable with RC-snubbers. As diode dv/dt is increased, by increasing snubber resistance, current-fall shape can change from being approximately exponential to linear [8].

It is evident, therefore, that diodes of similar ratings cannot be relied upon to give consistent reverse-recovery characteristics. However, diodes with soft-recovery characteristics will generally be more forgiving of RC-snubber inductance and facilitate the control of overshoot and ringing.

RC-SNUBBERS WITH NON-ABRUPT CURRENT FALL

To represent different current-fall shapes observed experimentally and in references [1-8], five simple functions are defined (Appendix A), which are plotted in Figure 7. Normalized current fall-time, \(t'_{wh} \) (time-constant for exponential) and a modified initial current factor, \(\lambda \), are required to take into account fall-time variability, and are specified by Equations 6 and 7, as in [12].

\[
\begin{align*}
\tau_w &= \frac{\tau}{\sqrt{L_0 C}} \quad (6) \\
\lambda &= \frac{\tau_{wh}}{L_0 / E_{DC} \tau} \quad (7)
\end{align*}
\]

The peak voltage-overshoot for three snubbers, designed to give 20, 60 and 100% overshoot with abrupt current-fall, is calculated for each of the current-fall shapes assuming no other operating conditions change, for a range of normalized fall time \(\tau_{wh} \), and is plotted in Figure 8. \(\chi \) for the abrupt snubbers is obtained from Equation 2. The \(\lambda \) axis represents a range of \(t'_{wh} \) since \(\lambda \) is held constant for each overshoot level, and Equation 8 is upheld for otherwise constant operating conditions. Peak overshoot is obtained by numerical solution of circuit state equations (Appendix B).

The peak voltage overshoot curves are as expected at the \(\lambda \) value extremes (Fig.8). At high \(\lambda \), \(t \) is small relative to \(V_{DC} \), i.e. \(L_0 \) is high and \(C \) is higher to control greater trapped-energy. Hence, current-fall appears abrupt relative to response natural-period (Fig.9). These waveforms are used here, simply to illustrate relative abruptness for exponential current-fall. They, actually, apply to the graphs of Figure 10. At low \(\lambda \) (Fig.9b), \(t \) significantly overlaps the snubber response period and most of the trapped energy at the peak of diode recovery (1/2L\(_0\)C\(_{J} \)) is dissipated in the diode. The effect is similar to operating the snubber at a lower current. Smaller capacity snubbers are required to raise overshoot to the design level. Peak overshoot is higher for mid-range \(\lambda \) values (Fig.8) because, during the peak of diode recovery, \(L_0 \) experiences a greater positive voltage/time integral, which increases the current and energy trapped in \(L_0 \) (Fig.9c). For this reason, current-fall shapes closer to an extended flat period of \(I_{WM} \), i.e. square and haversine (Fig.7), produce a greater increase in overshoot with 'abrupt' snubbers (Fig.8) than fall shapes which rapidly fall away from \(I_{WM} \). A root and linear (N.B. initial voltage overshoot due to resistor inductance is not considered here). Exponential current-fall is an exception because its extended fall period results in more trapped energy being diverted from the snubber when the diode voltage exceeds \(E_{DC} \).

The 'square' fall type gives a greater fall in overshoot when the voltage on \(L_0 \) changes from positive to negative during most of the current fall, at low \(\lambda \) values, because greater trapped energy is put into a 'square' fall than 'root' fall diode, i.e. it takes significantly more current and thus energy than the snubber during the period of overshoot and current-fall overlap.

Current-fall variation has a greater affect on the overshoot of light (100%) 'abrupt' snubbers because the energy controlled by the snubber (Eq.4) is lower and more easily disturbed by extra energy added to \(L_0 \), or diverted from the snubber to the diode, as previously described.

Variation in the overshoot obtained with 'abrupt' snubbers on non-abrupt current-fall devices will be of little consequence in most cases, especially with approximately exponential current fall, other than to introduce greater discrepancy between predicted and experimental overshoot. The danger of despairing of being able to design snubbers analytically and employing values virtually arrived at by trial and error is evident from Figure 8. Snubbers empirically optimised at \(\lambda \) between 0.1 and 10.0 have the potential to give significantly greater overshoot if current-fall time or shape variation occurs. This is quantified in the next section by optimizing RC-snubbers for each of the current-fall shapes and observing the variation in overshoot, produced by subjecting these to fall type and duration variation.

OPTIMIZING RC-SNUBBERS WITH NON-ABRUPT CURRENT FALL

Ray [12] produced basic design graphs for optimal RC-snubbers, for diodes with approximately exponential current fall, in a procedure which parallels McMurray's [13]. The graphs, similar to Figure 10, specify minimum snubber capacitance and corresponding resistance to set minimum overshoot for specified \(I_{WM} \), \(E_{DC} \), \(L_0 \) and \(t \), i.e. \(\lambda \) (Eq.7). This data is easier to use and can cover wider ranges of \(\lambda \) and \(t_{wh} \) values when sorted for specific overshoot levels as in Figure 11. Similarly, optimal RC-snubbers for other current-fall types can be derived. Graphs for 'linear' snubbers are given in Figure 12 and for all current fall types in Figure 13 for three levels of overshoot. Graphs are terminated when excessive computational difficulty is experienced searching for minimum values on very slowly changing curves or in regions of several minima.

Since snubber capacitance for 'abrupt' snubbers is defined by \(\chi \) (Eq.1), which is definable in terms of soft current-fall parameters, \(\tau_{wh} \) and \(t \) (Eq.8), the difference in snubber capacitance required by soft current-fall snubbers is represented by the separation of the graphs in Figure 13 from the lines of constant \(\chi \). For \(\tau_{wh} \) below constant \(\chi \) lines more capacitance is
required than for the equivalent 'abrupt' snubber. In the λ ranges shown, only 'exponential' snubbers are seen to require less capacitance, but graphs for other fall types should follow the 'exponential' graph at lower λ. A more complete examination of 'exponential' snubbers is conducted because an exponential current fall approximation is often used to model soft-recovery diodes.

SENSITIVITY OF NON-ABRUPT SNUBBERS TO CURRENT FALL VARIATION

Optimal 60% RC-snubbers for each current-fall type (Fig.13) are subjected to other current-fall types, including abrupt fall, and the resulting peak overshoot levels are plotted in Figure 14. Clearly snubbers optimized for exponential fall are least tolerant of other falls, especially 'abrupt' and 'root' types, which have regions of higher fall \(\frac{di}{dt} \) than the others. Response sensitivity to fall shape variation is generally determined by capacitor value, which is determined from \(t_p \) (Eq.6) or rather the \(t_p^\lambda \) product. Since higher \(t_p \) implies smaller capacitance, at \(\lambda=1 \), the 'exponential' snubber is least tolerant and the 'square' snubber the most tolerant of fall type variation. More so, in fact, than the 'abrupt' snubber represented by the constant \(\chi \) line.

Likewise, by varying current-fall time or time-constant by factors between 0 and 5 for optimal 60% snubbers in Figure 13, response sensitivity to fall duration can be assessed by plotting the resulting peak overshoot (Fig.15). Here, also, exponential snubbers remain the least tolerant to change, but the ordering of other fall types reverses, and 'square' and 'root' snubbers are seen to be, respectively, the least and more tolerant to fall duration variation. The reason is similar to that previously given to explain the rise in peak overshoot level above the 'abrupt' level in Figure 8. 'Square' and 'haversine' current profiles result in greater increase in trapped energy in \(L_c \), more of which is put into the snubber than dissipated in the diode. The effect becomes more pronounced with extended current-fall time.

Response sensitivity variation to both current-fall type and duration variation improves with heavier snubbing (Fig.16 and 17) as found with 'abrupt' snubbers (Fig.8). In Figure 16 three linear snubber designs are subjected to varying fall type and in Figure 17 three exponential snubber designs are subjected to varying duration.

To summarize this section, it is seen in Figure 13 that optimal 'exponential' snubbers under certain conditions require less capacitance than 'abrupt' snubbers e.g. \(A<0.75 \) for 60% exponential snubbers. However, response sensitivity to variation in current-fall shape and duration increases dramatically, especially if the current-fall has regions of high \(\frac{di}{dt} \) as with 'abrupt' or 'root' falls (Fig.14) or the fall duration reduces (Fig.15). With either type of fall variation, voltage response change will be greater with lighter snubbing, chosen to set higher nominal overshoot (Fig.16 and 17). Where 'abrupt' snubbers are used with soft-recovery diodes, an appreciation of the degree of error caused by non-abrupt current fall is obtainable from the graphs in Figure 8, using diode snappiness factor, \(S \), which is related to \(\lambda \) (Eq.9a).

\[\lambda = \frac{I_{RM}}{I_{DC}} = \frac{I_{RM}}{\frac{di}{dt}/t} = S \]

(9a)

The JEDEC snappiness factor, \(S \), must be multiplied by a fall-type dependent factor to compensate for the different fall-time definitions used for \(\lambda \) and \(S \).

ENERGY-LOSS ASSOCIATED WITH NON-ABRUPT SNUBBERS

The energy-loss associated with 'exponential' snubbers has previously been presented in a similar way to Figure 18 for the circuit conditions given in Figure 10. Energy-loss is normalised to a base of energy dissipated in the diode with no RC-snubber (Eq.9b).

\[W_S = E_D \cdot (1 + \frac{1}{2}) \left(\frac{I_{RM}}{I_{DC}} \right)^2 = \frac{E_D}{\left(1 + \frac{1}{2} \right)} \]

(9b)

To alleviate difficulty in gaining insight into energy-loss variation from Figure 19, and distribution between snubber and diode with changing current fall-time, it is better to plot energy-loss for specific overshoot levels (Fig.20). Also, to enable direct comparison of energy-loss graphs for different current-fall types and durations, energy-loss has to be normalised to a base of initial trapped energy, \(1/L \cdot T_{RM}^2 \) as in Figure 21 for exponential current-fall.

At high \(\lambda \) (>10), \(t \) is small relative to \(\chi C \) (Fig.9) and the total energy-loss curve is asymptotic to the normalised loss of an 'abrupt' RC-snubber during the voltage-rise (Eq.10), e.g. for 40% overshoot, \(\chi=0.85 \) from Figure 2 and \(W_{TN} \) = (1 + \(\chi^2 \)) (see 40% curve in Fig.21).

\[W_{TN} = \frac{W_T}{1/2 L \cdot T_{RM}^2} = (1 + \chi^2) \]

(10)

The variation in total energy-loss above the 'abrupt' snubber asymptote, results from the increased snubber capacitance required at lower \(\lambda \), since

\[C_2 = \left(\frac{t_1}{t_2} \right)^2 C_1 \]

(11)

and greater \(v-i \) crossover loss due to the lengthening exponential current-fall. Although RC-snubber loss reduces at low \(\lambda \), the increase in diode crossover loss (Fig.9c) with decreasing \(\lambda \) prevents the net energy-loss of an optimal 'exponential' snubber and soft-recovery diode, operating at constant current, ever being more efficient than a abrupt diode and snubber.

Where RC-snubber loss is small total energy-loss approximates to diode loss (Eq.12).

\[W_D = E_D \cdot T_{RM} = 1/2 L \cdot T_{RM}^2 = (2/\lambda + 1) 1/2 L \cdot T_{RM}^2 \]

(12)

Normalising this to abrupt snubber loss, \(W_{TR} \) (Eq.10):

\[W_{TN} = \frac{2/\lambda + 1}{(1 + \chi^2)} \]

(13)

Equation 13, in conjunction with Figure 21, confirms that, for very small \(\lambda \), total loss will never fall below that of the abrupt diode and snubber. Absolute diode and RC-snubber loss is given by Equation 12, and confirms energy-loss values for low \(\lambda \) (Fig.21).

Energy-loss curves for current-fall types other than the exponential, also, lie further above the 'abrupt' snubber energy-loss level as \(\lambda \) is reduced (Fig.22). Diode energy loss is significantly lower because of the reduced voltage rise time as seen in Figure 13a.

So far, constant forward-current diode operation has been assumed, and total energy-loss is higher for soft-recovery diodes with reduced snubbers than abrupt diodes and snubbers. However, where power-
device forward current is modulated, RC-snubbers may be under utilised because Im varies with IF, particularly if recovery di/dt is high, and may be less than the design value, Im(max), for significant periods. Total snubber energy-loss for turn-on and off is then given by Equation 14.

\[W_s = L_s \left(\frac{I_{RM}^2}{2} + \frac{1}{2} \frac{I_{RM}^2}{I_{RM(max)}^2} \right) \]

(14)

The Im term is modulated by If variation, whereas the Im(max) term represents a high constant energy-loss term. Also, using snubbers on series-connected power-devices in bridge-legs, doubles the high constant energy term of Equation 14, because two snubbers are continually active which are not mutually assisting during power-device reverse-recovery. To determine if a net energy-loss benefit results with reduced snubbing, average diode and snubber energy-loss must be considered.

The potential for energy-loss reduction is greatest at high overshoot levels. The graphs in Figure 5, for exponential snubbers giving high overshoot, crossover the 'abrupt' snubber constant \(\lambda \) lines at higher \(\lambda \) values, and there is an increased likelihood that the design \(\lambda \) lies below the intersection and requires less capacitance than the equivalent 'abrupt' snubber. For example, for a \(\lambda \) value of 1.14, the corresponding abrupt and exponential If values for 100% snubbers are 1.5 and 3.00, respectively. Equation 11 is used to show that the optimal 'exponential' snubber uses a quarter of the capacitance of the optimal 'abrupt' snubber, under these conditions. With higher overshoot or lower \(\lambda \), i.e. higher current-fall time-constant, an even greater reduction is possible. In contrast, at \(\lambda = 1.14 \) both 100% and 60% optimal 'exponential' snubbers require about 6 and 1.5 times the capacitance of the abrupt designs.

Despite the factor of four reduction in the 100% snubber capacitance, Figure 21 shows that the normalized total energy-loss for the optimal 'exponential' snubber and soft-recovery diode is 2.84, giving 68.5% lower overall loss than an optimal abrupt snubber diode combination, at 1.69, assuming fixed current operation in both cases. For an appreciation of the magnitude of reduction in average energy-loss sinusoidal diode current modulation is assumed to give sinusoidal Im modulation. Exponential snubber and soft-recovery diode energy-loss for a complete switching cycle is given by Equation 15.

\[W_e = \frac{L_s I_{RM}}{2} \left[1 + \frac{1}{2} \frac{I_{RM}}{I_{RM(max)}} \right] \]

(15a)

\[W_s = \frac{I_{RM}^2}{2} \left[1 + \frac{1}{2} \frac{I_{RM}}{I_{RM(max)}} \right] \]

(15b)

The accuracy of Equation 15 can be confirmed using Figure 13 and 21, bearing in mind that snubber capacitor discharge energy is included in Equation 15 but not in Figure 21. For sinusoidal current modulation Equation 16 gives normalized average energy-loss per switching cycle (Appendix C).

\[\bar{W}_N = \left[\frac{1}{2} + \frac{1}{4} + \frac{(C_2/C_1)}{2} \left(\frac{1}{2} \right)^2 \right] \]

(16)

Using previous data for 100% snubber design at \(\lambda = 1.14 \), the normalized average loss for 'abrupt' and 'exponential' snubbers are 0.95 and 0.86, respectively, from Equation 16 and 17.

The order of magnitude of average switching loss is comparable. However, with practical diodes Im varies more slowly than assumed, increasing the first two and first terms in Equation 16 and 17, respectively. For the extreme case, where Im is constant during diode If modulation \(\bar{W}_N \) is twice \(\bar{W}_N' \) (3.45 and 1.7 respectively). Therefore, in practice, \(\bar{W}_N \) is more likely to exceed \(\bar{W}_N' \), and despite the significant reduction in snubber capacitance in the optimal 'exponential' snubber, little energy-loss advantage can be expected.

CONCLUSIONS

Finely tuning RC-snubber components, to take into account non-abrupt current fall, allows reduced snubber capacitance to be used under certain operating conditions. However, voltage-responses become more sensitive to current-fall shape, diode switching-loss is increased by several orders of magnitude, and there appears to be no significant energy-loss advantage with sinusoidally modulated current. Nevertheless, the results prove useful in understanding discrepancies between predicted and practical transient response characteristics for RC-snubbers, and the dangers of empirically sizing snubbers without considering variation in reverse-recovery characteristics between devices and with operating conditions.

REFERENCES

APPENDICES

Appendix A: Normalized current fall equations

Exponential

\[i_{DN} = e^{-t_N / T_R} \]

Root

\[i_{DN} = (1 - \sqrt{T_R / T_N}) \]

Linear

\[i_{DN} = (1 - t_N / T_R) \]

Square

\[i_{DN} = (1 - (T_R / T_N)^2) \]

Haversine

\[i_{DN} = (1 + \cos(T_R / T_N)) / 2 \]

Appendix B: State equations for abrupt current fall.

\[
\begin{bmatrix}
V_{CN} \\
i_{LN}
\end{bmatrix} =
\begin{bmatrix}
0 & T_N & 0 \\
-1/T_N & -2\zeta & 1/T_N + 1/\zeta
\end{bmatrix}
\begin{bmatrix}
V_{CN} \\
i_{DN}
\end{bmatrix}
\]

State equations for non-abrupt current fall:

\[
\begin{bmatrix}
V_{CN} \\
i_{LN}
\end{bmatrix} =
\begin{bmatrix}
0 & T_N & 0 \\
-1/T_N & -2\zeta & 1/T_N + 1/\zeta
\end{bmatrix}
\begin{bmatrix}
V_{CN} \\
i_{DN}
\end{bmatrix}
\]

where \(i_{DN} \) is specified in Appendix A.

Appendix C: If switching loss can be put in the form,

\[W_{SW} = A i + B i^2 \]

it can be shown that average switching loss for sinusoidal current modulation is as follows [14]:

\[W_{SW} = A I_{RM} + B I_{RM}^2 / 4 \]

If it is assumed that \(I_{RM} \) varies linearly with forward diode current, total average abrupt energy-loss is

\[\bar{W}_A = (1 / 4 + 2 / \chi^2) / 12 L_s I_M^2 \]

With an 'exponential' snubber and soft recovery diode total average energy-loss includes diode and snubber loss terms and for insight can be approximated as follows:

\[\bar{W}_E = (1/2 \lambda + 1/4 (C_2/C_1)^2/\chi^2) / 12 L_s I_M^2 \]

where \(C_2 \) is the 'exponential' snubber capacitor and \(C_1 \) the 'abrupt' snubber capacitor.
FIG. 4 EFFECT OF INCREASING PARASITIC RESISTOR INDUCTANCE (NORMALIZED TO Ls DEFINED IN FIGURE 1), ABRUPT DIODE-RECOVERY AND A SMALL VALUE OR DIODE JUNCTION CAPACITANCE ASSUMED. RCD-SNUBBER USING SAME CAPACITANCE VALUE PERFORMS BETTER UNDER OVERLOAD.

FIG. 5 MEASURED PARASITIC INDUCTANCE OF CERAMIC-BODIED POWER WIREWOUND RESISTORS OF SEVERAL POWER RATINGS 0 10kHz. UNSMOOTHED DATA ADEQUATE TO COVER TYPICAL VALUES AND TREND. RESULTS FOR METAL CLAD TYPES OFFSET.

FIG. 6 DIODE REVERSE-RECOVERY WAVEFORMS FOR SEVERAL 30A DIODES UNDER DIFFERENT OPERATING CONDITIONS. VARIABILITY IN CURRENT-FALL SHAPE SHOWN.

FIG. 7 CURRENT-FALL SHAPES USED TO EXAMINE IMMUNITY OF RCD-SNUBBERS TO SHAPE VARIATION. TAU EITHER DENOTES END OF FALL OR TIME-CONSTANT.
FIG. 8 VARIATION IN OVERSHOOT ON SNUBBERS SET TO GIVE ABOUT 20, 60 AND 100% OVERSHOOT. λ IS INVERSELY PROPORTIONAL TO CURRENT-FALL TIME.

FIG. 9 CALCULATED WAVEFORMS FOR λ, T_H AND ζ VALUES GIVING 20% OVERSHOOT.

FIG. 10 OVERSHOOT V_{OSN} AND DAMPING FACTOR, ζ, FOR OPTIMAL EXPONENTIAL SNUBBER FOR SEVERAL INITIAL CURRENT FACTORS, X.

FIG. 11 SET OF DESIGN CURVES FOR RC-SNUBBERS GIVING 10-100% OVERSHOOT WITH EXPONENTIAL CURRENT-FALL. TAU IS THE NORMALISED FALL TIME T_H.

FIG. 12 SET OF DESIGN CURVES FOR RC-SNUBBERS GIVING 10-100% OVERSHOOT WITH LINEAR DIODE CURRENT-FALL.

FIG. 13a CALCULATED WAVEFORMS AT INTERSECTION POINTS OF 20% CURVES AND $\lambda=0.7$ LINE IN FIG. 13.
OVERSHOOT PFAK VOLTAGE RELATIVE TO E_{dc} REF.

TAU

1.0

0.1

0.01

0.001

0.0001

INITIAL CURRENT FACTOR

FIG. 13 DESIGN CURVES AS FIG. 11 BUT FOR ALL CURRENT-FALL TYPES.

INITIAL CURRENT FACTOR

FIG. 14 OVERSHOOT ON RC-SNUBBER SET TO GIVE 60% OVERSHOOT WITH LISTED CURRENT-FALL TYPES WHEN SUBJECTED TO ALL OTHER CURRENT-FALL SHAPES.

INITIAL CURRENT FACTOR

FIG. 15 PEAK OVERSHOOT VARIATION ON 20, 60 AND 100% LINEAR SNUBBERS WHEN USED WITH ALL CURRENT-FALL TYPES.

INITIAL CURRENT FACTOR

FIG. 16 PEAK OVERSHOOT VARIATION ON 20, 60 AND 100% EXPONENTIAL SNUBBERS WITH VARYING DIODE CURRENT-FALL DURATION.

INITIAL CURRENT FACTOR

FIG. 17 PEAK OVERSHOOT VARIATION ON 20, 60 AND 100% EXPONENTIAL SNUBBERS WITH VARYING DIODE CURRENT-FALL DURATION.

INITIAL CURRENT FACTOR

FIG. 18 NORMALISED ENERGY-LOSS ASSOCIATED WITH EXPONENTIAL SNUBBERS. W_b (EQ. 9b) NORMALISATION BASE.
FIG. 19 NORMALISED ENERGY-LOSS FOR SNUBBERS GIVING SPECIFIC OVERSHOOT LEVELS. \(\frac{1}{2} L_i I_m^2 \) USED AS NORMALISATION BASE.

FIG. 20 NORMALISED ENERGY-LOSS FOR SNUBBERS GIVING SPECIFIC OVERSHOOT LEVELS. \(\frac{1}{2} L_i I_m^2 \) USED AS NORMALISATION BASE.

FIG. 21 NORMALISED ENERGY-LOSS FOR SNUBBERS GIVING SPECIFIC OVERSHOOT LEVELS. \(\frac{1}{2} L_i I_m^2 \) USED AS NORMALISATION BASE.

FIG. 22 NORMALISED ENERGY-LOSS AS IN FIG. 21 FOR ALL CURRENT-FALL TYPES.