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Abstract

The aim of this presentation is the development of a general approach for modelling the global
complex energy landscapes of phase transitions. For the sake of clarity and brevity the exposition
is restricted to martensitic phase transition (i.e., diffusionless phase transitions in crystalline solids).
The methods, however, are more broadly applicable. Explicit energy functions are derived for the
cubic-to-tetragonal phase transition, where data is fitted for InTl. Another example is given for the
cubic-to-monoclinic transition in CuZnAl. The resulting energies are defined globally, in a piecewise
manner. We use splines that are twice continuously differentiable to ensure sufficient smoothness.
The modular (piecewise) technique advocated here allows for modelling elastic moduli, energy
barriers and other characteristics independently of each other.

1 Introduction

The central concern of this article is the explicit construction of nonconvex energy functions, which
describe the complex energetic landscape of a material undergoing phase transitions. Ideas are laid
out for symmetry-breaking martensitic transformations occurring in active crystalline materials, such
as shape-memory alloys. The methods described are applicable to many other situations involving
symmetry breaking, and are effective both for first and second order transitions.

One manner of modelling martensitic phase transitions occurs in the framework of nonlinear ther-
moelasticity. Here, phase transitions can be described as changes in the Helmholtz free energy density.
This is a traditional method dating back to Landau [1967]. The Landau theory of phase transitions is
described in great detail by Tolédano and Tolédano [1987]. Typically, the energy function is assumed to
be analytic and therefore expanded into a power series. In practice, one often constructs energy func-
tions which are polynomial in the components of the strain. Precisely, this approach has been applied
to martensitic transformations in crystalline solids [Falk and Konopka, 1990; Fadda et al., 2002]. Using
polynomials is one common way of modelling multi-well energies; another is to use piecewise quadratic
functions. In the latter approach, one typically defines quadratic wells centred at the stable phases,
and defines the energy as the minimum of these quadratic expressions. The energy is then continuous,
while the stress tensors exhibits jumps.

Polynomials of the lowest feasible order often lead to unsatisfactory results, in particular, in several
space dimensions. Often, they do not provide enough freedom to fit all elastic moduli. For exam-
ple, Fadda et al. [2002] use this approach to derive an energy for Zirconia, which has a tetragonal-
orthorhombic (orthoI)-monoclinic (t-o-m) triple point. They show that it is impossible to fit all elastic
moduli of the tetragonal and the monoclinic phase accurately within this framework. Two elastic moduli
of the monoclinic phase, Cm

25 and Cm
35, are too high by an order of magnitude and by about 150% respec-

tively, both with regard to the closest available experimental and theoretical data. As demonstrated
by Dondl and Zimmer [2004], a lowest order polynomial can also result in an energy barrier that is
extremely shallow. In numerical investigations [Dondl and Zimmer, 2004], the lowest-order polynomial
energy fails to exhibit clearly distinguishable phases.
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To determine the energy barrier correctly, Gooding et al. [1991] use invariant polynomials of higher
order. Whilst neatly avoiding unrealistic estimates for the thermal activation energy, which are fre-
quently obtained with the minimal set of order parameters, their method is technically difficult and
results in steeply growing energy functions. Also, it then becomes more challenging to prove that the
energy function has no other minima than the prescribed ones.

For the cubic-to-tetragonal transformation in InTl, Ericksen [1986] and James [1988] derive a
temperature-dependent, rational energy function that interpolates the energy wells. Their ansatz is
remarkably well suited for fitting the elastic moduli and approximates most elastic moduli with high
precision. However, this energy function yields Ct

44 = Ct
55 = Ct

66, which results in a value for Ct
66 that

is too small by about 46%. See Section 4 for the interpolated data, where an energy is derived that
accurately interpolates all elastic moduli.

Zimmer [2004] describes an alternative approach to derive energy functions with a given symmetry.
The method is briefly sketched in Section 2. These ideas are used by Dondl and Zimmer [2004] to
derive a phenomenological isothermal energy density for Zirconia using piecewise functions. They
demonstrate that an accurate fitting of the energy to given values for the elastic moduli of the different
phases (tetragonal, orthorhombic, and monoclinic) becomes a relatively simple task. However, Dondl
and Zimmer [2004] acknowledge that the flexibility gained by adopting the piecewise approach comes
at a price. They use an energy function which is only C1 and excludes temperature effects. In addition,
their technique in principle carries a substantial number of degrees of freedom.

The aim of this paper is to demonstrate that, as conjectured by Dondl and Zimmer [2004], the use
of splines avoids the aforementioned problems. Indeed, the derivation of a phenomenologically correct
energy function then becomes rather straightforward. In order to guarantee a sufficiently smooth result
and still have enough flexibility to meet all constraints, our construction is based on piecewise cubic,
C2-continuous splines. We take additional care to avoid the arbitrary nature of choosing parameters by
selecting the spline spaces such that all parameters are uniquely determined by the constraints. For the
wealth of data obtainable from ab initio calculations, the methods presented in this paper are a natural
way of interpolating and deriving energy functions; invariant polynomials offer much less variety for
accommodating experimental or theoretical data.

The Landau-Ericksen theory [Landau, 1967; Ericksen, 1980] is commonly used for a local analysis
of the energy in the vicinity of bifurcation points only. Polynomials have proven to be an appropriate
choice. Here, we define the energy function with splines, a new proposal that seems to be a natural
extension of the original ideas put forward by Landau. Thus, we are able to reconstruct the global
energy picture.

Indeed, the assumption of analyticity often associated with Landau theory might be too restrictive
for far-from-equilibrium situations. Specifically, we wish to highlight recent work by Tröster et al.
[2005] on the φ4 model; by means of Wang-Landau simulations, these authors discover plateaus in the
energetic landscape far from equilibrium and motivate these findings. They point out the inadequacy
of a polynomial interpolation in this context. The ideas put forward here might be a natural approach
to derive explicit representations of energy landscapes obtained from simulations over a wide range
of parameters. It is plausible that the assumption of analyticity of the energy is too rigid to capture
the far-from-equilibrium situation correctly; evidence is collected by Tröster et al. [2005]. If indeed
analyticity cannot be assumed for certain parameter ranges, then the methods proposed here seem to
be a suitable extension of Landau’s original ideas.

The article is further organised as follows: in Section 2, methods from invariant theory are recalled
and applied to the bifurcations from a cubic high-symmetry phase. In Section 3, a suitable class of
splines is introduced that allows for a more flexible construction of energetic landscapes, as compared
with approaches using polynomials. Applications to the cubic-to-tetragonal transition in InTl and
the cubic-to-monoclinic transition in CuZnAl are given in Section 4. Explicit energies interpolating the
available data, such as elastic moduli, are presented and listed explicitly in Appendix A and Appendix B.
We close with a discussion in Section 5.
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2 Tools from Invariant Theory

It is expedient to present some background aspects here, so that this article may remain self-explanatory.
These aspects are also discussed in detail elsewhere [Zimmer, 2004].

As usual, we study phase transformations in a continuum framework by invoking the Cauchy-Born
rule [Ericksen, 1984]. Let Ω ⊂ R3 denote the reference configuration. The deformation of the crystal is
given by y(x). The displacement is defined as u(x) := y(x)− x. The deformation gradient Fjk := ∂yj

∂xk

serves, according to the Cauchy-Born rule, as a measure of the deformation of the lattice. The axiom
of frame indifference and the polar decomposition imply that the energy function can be written as a
function of C := FTF . Equivalently, it can be expressed in terms of the Green-St. Venant strain tensor
E := 1

2 (FTF − Id) ∈ Sym(3,R). Here, Sym(3,R) is the space of symmetric real matrices in three space
dimensions. The Green-St. Venant tensor E will be written as

E =


e1

1
2e6

1
2e5

1
2e6 e2

1
2e4

1
2e5

1
2e4 e3


with ej ∈ R for j = 1, . . . , 6.

The energy has to be invariant under the action of the point group P of the high-symmetry phase.
For a cubic parent phase, P is the group of orientation-preserving mappings of the cube to itself. In
formulas, the action of P ∈ P on E ∈ Sym(3,R) reads

P × Sym(3,R) → Sym(3,R)

(P,E) 7→ PEP−1.

Note that PEP−1 is symmetric since P ∗ = P−1. Therefore, this defines an action of P on Sym(3,R).
The next step is to find invariant polynomials in e1, . . . , e6 under the action of the high symmetry

point group. The cornerstone for achieving this is the following theorem of Hilbert.

Theorem 1 (Hilbert). The ring of invariant polynomials of a finite matrix group P is finitely generated.
That is, there are finitely many invariant polynomials ρ1, . . . , ρk, such that every invariant polynomial
p can be written as p = Π(ρ1, . . . , ρk), where Π is a polynomial in k variables. In this case, {ρ1, . . . , ρk}
is a Hilbert basis or integrity basis.

A proof of this theorem can be found, e.g., in Sturmfels [1993, Theorem 2.1.3]. For the different crystal
classes, such a basis has been derived by Smith and Rivlin [1958]. An invariant basis can easily be
computed automatically, for example, with Singular [Greuel et al., 2001].

So far, we considered only polynomial invariants. More generally, a set of invariants {f1, . . . , fk} is a
functional basis if every invariant f can be expressed as a function of f1, . . . , fk. Every Hilbert basis is a
functional basis [Wineman and Pipkin, 1964, Sections 5 & 6]. In this article, splines defined as functions
of a Hilbert basis are constructed to serve as a phenomenological model of the energy landscape under
consideration. In principle, the same framework can be applied to a functional basis, which may not be
polynomial; this might result in an even simpler form of the energy. The choice of the basis influences
the ease of the construction. Even within the realm of polynomials, there are bases with a different
number of elements. The Hilbert basis chosen here has the advantage that a geometric interpretation
of the location of the phases can be given [Zimmer, 2004].

Zimmer [2004] computed the following basis for the cubic symmetry group. Note that here the
labelling is different. To transfer to the notation we use here, it is necessary to apply the permutation
(e4, e6, e5) to the invariants given by Zimmer [2004].
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Theorem 2 (Zimmer [2004]). The ring of invariant polynomials is generated by

ρ1 := e1 + e2 + e3,

ρ2 := e21 + e22 + e23,

ρ3 := e24 + e25 + e26,

ρ4 := e31 + e32 + e33,

ρ5 := e4e5e6,

ρ6 := e44 + e45 + e46,

ρ7 := 1,

ρ8 := e1e
2
6 + e2e

2
6 + e2e

2
4 + e3e

2
4 + e1e

2
5 + e3e

2
5,

ρ9 := e21e
2
6 + e22e

2
6 + e22e

2
4 + e23e

2
4 + e21e

2
5 + e23e

2
5,

ρ10 := e1e
4
6 + e2e

4
6 + e2e

4
4 + e3e

4
4 + e1e

4
5 + e3e

4
5,

ρ11 := e21e
4
6 + e22e

4
6 + e22e

4
4 + e23e

4
4 + e21e

4
5 + e23e

4
5,

ρ12 := e21e2e
4
6e

2
4 + e2e

2
3e

2
6e

4
4 + e1e

2
2e

4
6e

2
5 + e22e3e

4
4e

2
5 + e1e

2
3e

2
6e

4
5 + e21e3e

2
4e

4
5.

This basis enjoys an advantageous algebraic structure, since it is a Cohen-Macaulay basis. See [Zimmer,
2004] for more details.

The map ρ : R6 → R12, (e1, . . . , e6) 7→ (ρ1(e1, . . . , e6), . . . , ρ12(e1, . . . , e6)) is called the Hilbert map.
To estimate its relevance, one more definition is called for: the (P-)orbit of e ∈ R6 is the set Pe :=
{Pe | P ∈ P}. The set of all orbits is denoted as the orbit space. One can easily see that a bijection
between the image ρ(R6) and the orbit space exists [Rumberger, 1997; Zimmer, 2004, Lemma 1].

Every function W (e) := W̄ (ρ(e)) will automatically have the correct symmetries. One needs to
determine W̄ in such a way that it has minima for the stable phases and interpolates the available
experimental data. It is known that orbit spaces can be defined by a set of inequalities [Procesi and
Schwarz, 1985]. Zimmer [2004] gives a specialised version using projections to ρ1, . . . , ρ6.

Proposition 3 (Zimmer [2004]). For the action of P reduced to the off-diagonals e4, e5, e6, a Hilbert
basis is given by

ρo
1(e4, e5, e6) := ρ3(e4, e5, e6) = e24 + e25 + e26,

ρo
2(e4, e5, e6) := ρ5(e4, e5, e6) = e4e5e6,

ρo
3(e4, e5, e6) := ρ6(e4, e5, e6) = e44 + e45 + e46.

For this Hilbert map, the image of Sym(3,R)+, the set of symmetric matrices with positive determinant,
in the orbit space is characterised by the inequalities

ρo
1 ≥ 0,

ρo
3 ≤ ρo

1
2,

ρo
1
6 − 20ρo

1
3ρo

2
2 − 4ρo

1
4ρo

3 + 36ρo
1ρ

o
2
3ρo

3 + 5ρo
1
2ρo

3
2 + 108ρo

2
4 − 2ρo

3
3 ≤ 0.

A similar characterisation holds for the diagonal elements e1, e2, e3. However, it turns out to be conve-
nient to introduce a change of variables first. We follow Zimmer [2004] in defining

s(e1, e2, e3) := 1√
3
(e1 + e2 + e3),

t(e1, e2, e3) := 1√
2
(e1 − e2),

u(e1, e2, e3) :=
√

2
3

(
1
2e1 + 1

2e2 − e3
)
.
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Proposition 4 (Zimmer [2004]). For the action of P reduced to the diagonals s(e1, e2, e3), t(e1, e2, e3),
u(e1, e2, e3), a Hilbert basis is given by

ρ̃d
1(s, t, u) := s = 1√

3
(e1 + e2 + e3),

ρ̃d
2(s, t, u) := t2 + u2,

ρ̃d
3(s, t, u) := 3√

2
t2u− 1√

2
u3.

For this Hilbert map, the image of Sym(3,R)+ in the orbit space is characterised by the inequalities

ρ̃d
2 ≥ 0,

|ρ̃d
3 | ≤

√
1
2 (ρ̃d

2)3.

3 Tools from Geometric Modelling

It is well known that polynomial interpolation can lead to unwanted oscillations, if the interpolation
points are not chosen properly. Therefore, piecewise polynomials have largely replaced the use of polyno-
mials in many applications. In particular, the theory of B-splines gives rise to a powerful representation
of piecewise polynomial functions that has become the de-facto standard of today’s Computer-Aided
Design (CAD) systems. We now give a brief overview of the definition and the properties of B-splines
and refer to Schumaker [1993], de Boor [2001], Farin [2001] and Dierckx [1993] for more details.

Given the knot vector t̄ = (ti)i∈Z with ti < ti+1, the normalised B-spline basis functions Nk
i = N t̄,k

i

of degree k over t̄ are defined by the following recursion:

N0
i (u) :=

{
1 if u ∈ [ti, ti+1[,

0 otherwise,

N j
i (u) :=

u− ti
ti+j − ti

N j−1
i (u) +

ti+j+1 − u

ti+j+1 − ti+1
N j−1

i+1 (u), j > 0.

The functions Nk
i are polynomial of degree k on each interval [ti, ti+1[ and have a number of interesting

properties:

1. Continuity: Nk
i is Ck−1-continuous,

2. Positivity: Nk
i (u) ≥ 0,

3. Local support: Nk
i (u) = 0, u /∈ [ti, ti+k+1[,

4. Partition of unity:
∑

i∈ZN
k
i (u) = 1,

5. Derivative: (Nk
i )′(u) = k

ti+k−ti
Nk−1

i (u)− k
ti+k+1−ti+1

Nk−1
i+1 (u).

Furthermore, the functions Nk
i with i = j, . . . ,m form a basis of all functions that are piecewise

polynomial of degree k over [tk+j , tm+1], and

f(u) =
m∑

i=j

ciN
k
i (u)

is a B-spline with control points (or de Boor points) ci. B-splines are called uniform if the knot vector
is equidistantly spaced, ti+1 − ti = h.
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In many applications, cubic B-splines (k = 3) are used because, on the one hand, they are suffi-
ciently often (twice) differentiable, but on the one hand they are relatively cheap to compute. Usually,
B-splines are evaluated with the de Boor algorithm, but for uniform knot vectors a more efficient
method can be applied. Namely, for a uniform knot vector t̄ = (. . . , t0 − h, t0, t0 + h, t0 + 2h, . . .)
the B-spline functions differ by translation only, N t̄,k

i+j(u) = N t̄,k
i (u − hj), and the evaluation of any

basis function can be reduced to evaluating the B-spline function Nk
0 defined on the integer knot vec-

tor, N t̄,k
j (u) = Nk

0 (u−t0
h − j). For uniform cubic B-splines it is therefore advisable to use the explicit

piecewise polynomial representation of N3
0 over the knot vector (0, 1, 2, 3, 4),

N3
0 (u) =



1
6u

3 if u ∈ [0, 1[,

− 1
2u

3 + 2u2 − 2u+ 2
3 if u ∈ [1, 2],

N3
0 (4− u) if u ∈ ]2, 4[,

0 otherwise,

(1)

and Horner’s method for evaluation. Note that first and second order derivatives of uniform cubic
B-splines can be computed efficiently in the same way.

4 Applications: Energies for InTl and CuZnAl

We apply the tools developed in the previous sections to two specific applications. First, an energy
density for the cubic-to-tetragonal transition in InTl is derived that interpolates all available elastic
moduli exactly. The second example is an energy density for the cubic-to-monoclinic transition in
CuZnAl.

4.1 Cubic-to-tetragonal transition in InTl

We wish to derive a temperature-dependent energy function for the cubic-to-tetragonal transformation
in InTl. A very prominent energy function for this transition is the Ericksen-James energy [Ericksen,
1986; James, 1988]; it fits all but one elastic moduli exactly. The modulus Ct

66 is underestimated by
about 46%. The construction of Ericksen and James is certainly ingenious. However, it is extremely
difficult to modify their energy, for example, to fit Ct

66. We wish to show that the framework presented
here makes the derivation of an energy matching all elastic moduli a relatively simple task. We are
fortunate to be able to use the experimental data for InTl collected by James [1988].

As usual, the austenitic (cubic) phase will be taken as the reference configuration. Consequently,
the cubic phase itself is characterised by e1 = · · · = e6 = 0. The tetragonal phase is e1 = e2 = −ε/2,
e3 = ε, e4 = e5 = e6 = 0. [Burkart and Read, 1953] give ε = 0.026.

We fit the elastic moduli of pure cubic Tl. The values in GPa are [Hellwege and Hellwege, 1979]:

Ĉc
11 Ĉc

44 Ĉc
12

40.8 11.0 34.0
(2)

Here, Love’s notation [Love, 1944, Note A] is used, for example Ĉ44 = C2323; recall that the remaining
moduli for the cubic phase are given by the symmetries Ĉc

11 = Ĉc
22 = Ĉc

33, Ĉc
12 = Ĉc

13 = Ĉc
23, and

Ĉc
44 = Ĉc

55 = Ĉc
66.

We follow James [1988] in fitting the elastic moduli for pure In. Hellwege and Hellwege [1979] give
the following values (in GPa):

Ĉt
11 Ĉt

33 Ĉt
44 Ĉt

66 Ĉt
12 Ĉt

13

45.2 44.9 6.52 12.0 40.0 41.2
(3)

and Ĉt
11 = Ĉt

22, Ĉt
13 = Ĉt

23, Ĉt
44 = Ĉt

55 due to the symmetries of a tetragonal phase.
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e3=4

e1¹

et¹ ¹ec

¹e2

¹ec et¹

e1¹

¹

Figure 1: Local behaviour of the energy Wd around the cubic and tetragonal phases.

For most of the presentation, we will split the energy in two parts,

W (e1, . . . , e6) := Wd(e1, e2, e3) +Wo(e1, e2, e3, e4, e5, e6),

and start by constructing Wd. Given that Wd is defined on the orbit space, it will automatically have
the correct symmetry. We fit the elastic moduli for the cubic phase ec := (0, 0, 0) and tetragonal phase
et := (−ε/2,−ε/2, ε) exactly by imposing the conditions

grad(Wd)(ec) = 0, Hess(Wd)(ec) = Ĉc :=

40.8 34 34
40.8 34

40.8

 (4)

and

grad(Wd)(et) = 0, Hess(Wd)(et) = Ĉt :=

45.2 40 41.2
45.2 41.2

44.9

 . (5)

Figure 1 may help to get a better intuition of the energy’s local behaviour around the cubic and
tetragonal phase by plotting for each phase the isolines of a local quadratic fit. Note that we used the
coordinate system ē = Me for this visualisation, where M is the orthogonal matrix

M :=
1√
6

−1 −1 2√
3 −

√
3 0√

2
√

2
√

2

 . (6)

In this coordinate frame, all phases lie in the ē1-ē2-plane and the transformed elastic moduli are

C̄c := M−T ĈcM−1=

6.8 0 0
6.8 0

108.8

 (7)

and

C̄t := M−T ĈtM−1=

3.4 0 0.3
√

2
5.2 0

126.7

 . (8)
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We continue to construct Wd by composing the Hilbert map ρ̃d given in Proposition 4 with the
parameter transformation

ψ : (ρ̃d
1 , ρ̃

d
2 , ρ̃

d
3) 7→

(
ρ̃d
1 , ρ̃

d
2 , ρ̃

d
3 − ρ̃d

2

√
ρ̃d
2/2

)
.

The transformation ψ shifts the orbit space in ρ̃d
3-direction and maps the upper limit surface (compare

Fig. 4 in Zimmer [2004]), which contains the tetragonal phase ρ̃d(et), to the ρ̃d
1-ρ̃d

2-plane.
As mentioned in Section 2, the task now is to determine an appropriate function Wτ defined on the

transformed orbit space τ := ψ ◦ ρ̃d(R3), so that Wd := Wτ ◦ τ behaves as expected at the cubic and
tetragonal phases. The positions of the minima in the transformed orbit space are τ c := τ(ec) = (0, 0, 0)
and τ t := τ(et) = (0, 1.5 ε2, 0). By the chain rule and the product rule, we have

grad(Wd) = grad(Wτ ) · Jτ (9)

and
Hess(Wd) = Jτ

T ·Hess(Wτ ) · Jτ + grad(Wτ ) ·Hτ

where Jτ =
(

∂τi

∂ej

)
ij

is the Jacobian and Hτ = (Hess(τi))i is the Hessian of τ . A routine calculation
shows that (4) and (5) hold if and only if Wτ meets the following constraints (entries ∗ have no influence
and will be set to zero for the sake of simplicity):

grad(Wτ )(τ c) = (0, 3.4, ∗), Hess(Wτ )(τ c) =

108.8 ∗ ∗
∗ ∗

∗

 (10)

and

grad(Wτ )(τ t) = (0, 0,−26δ), Hess(Wτ )(τ t) =

126.7 6.75 δ ∗
860.625 δ2 ∗

∗

 (11)

with δ := 2
√

3
135ε ≈ 0.9869.

Our ansatz is further to simplify the fitting process by reducing it to the construction of two uni-
variate functions: a path α that deforms the τ2-axis and a profile β along this path. We then define Wτ

as
Wτ (τ1, τ2, τ3) :=

(
τ1 − α(τ2)

)2
(
ω1 + (ω2 − ω1)

τ2
τ∗

)
+ β(τ2)− 26δτ3 (12)

with τ∗ := τ2(et) = 1.5 ε2 and constants ω1, ω2.
To understand the idea behind this construction, let us assume α ≡ 0 for a moment. Then, the

first factor of the product in Wτ simply defines a parabola in τ1 with its minimum at τ1 = 0. The
second factor results in a linear variation of the width of this parabola along the τ2-axis; the energy
value at its minimum follows the profile curve β. The last term defines a linear increase in the negative
τ3-direction. Altogether, this construction is sufficient to fit all the constraints on Wτ except for the
off-diagonal element in Hess(Wτ )(τ t).

Letting the minimum of the parabola follow a general path α(τ2) gives an additional degree of
freedom while maintaining the simple structure of Wτ ; the energy still is a composition of univariate
functions. If we now construct α and β such that

α(0) = α′(0) = α′′(0) = α(τ∗) = α′′(τ∗) = 0, β(0) = β(τ∗) = β′(τ∗) = 0,

then it is easy to verify that (10) is fulfilled if we impose

ω1 = 54.4, β′(0) = 3.4.

Similarly, (11) holds if

ω2 = T11/2, α′(τ∗) = T12/T11, β′′(τ∗) = T22 − (T12)
2
/T11,

where the Tjk are the (non-zero) entries of Hess(Wτ )(τ t) in Equation (11).
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Figure 2: Path α (left) and profile β (right).

Another advantage of this approach that decomposes Wτ into a path and a profile is that we can
easily add constraints to specify position and height of the energy saddle between the different phases.
For example,

α(τ∗) = α′(τ∗) = α′′(τ∗) = 0, β(τ∗) = µ, β′(τ∗) = 0, β′′(τ∗) < 0

with τ∗ := τ2( ec+et

2 ) = τ∗/4 are sufficient conditions for W to have a saddle of height µ halfway between
the cubic and the tetragonal phases.

Although it is possible to model both α and β as polynomials, we decided to resort to cubic B-splines
in order to avoid oscillations and in particular unwanted minima for β. We keep the setting as simple
as possible by using the uniform knot vector t̄ = (ti)i∈Z with ti = iτ∗, so that all conditions on the
splines

α(u) :=
3∑

i=−3

aiN
3
i (u) and β(u) :=

4∑
i=−3

biN
3
i (u)

fall on a knot and involve only three basis functions. The coefficients ai and bi are uniquely determined
by these conditions and can be found by solving the corresponding systems of linear equations. Note
that we added one additional degree of freedom to β to obtain β′′(t5) = 0, so that we can extend β(u)
linearly and with C2-continuity for u > t5.

A further analysis shows that β does not have other local minima than the one at τ∗ as long as µ is
between 2.873 · 10−4 and 5.8357 · 10−4. We decided to set µ := 3.5 · 10−4. Figure 2 plots the resulting
functions α and β.

This construction defines the energy Wτ from Equation (12) in orbit space such that the energy
Wd = Wτ ◦ τ has the correct minima in E-space. In order to ensure that Wd has no local minima
other than the prescribed ones, let us inspect the gradient of Wd. Note that grad(Wd) = (0, 0, 0) is not
equivalent to grad(Wτ ) = (0, 0, 0) as the matrix Jτ in Equation (9) does not necessarily have full rank;
more precisely, it is singular at all points that lie on the boundary of the orbit space. And in fact, it
is easy to see that the gradient of Wτ never vanishes in orbit space, because ∂Wτ

∂τ3
= −26δ. However, a

careful analysis reveals that the necessary condition for a vanishing gradient in E-space is

grad(Wτ ) = (0, ∗, ∗) for τ2 = 0, τ3 = 0 (τ1-axis),
grad(Wτ ) = (0, 0, ∗) for τ2 > 0, τ3 = 0 (upper limit surface),

grad(Wτ ) = λ (0, 3
√
τ2/2, 1) for τ2 > 0, τ3 = −

√
2(τ2)3 (lower limit surface),

with some arbitrary scaling factor λ in the last case.

9



Along the τ1-axis, this condition holds only at the cubic phase τ c and on the upper limit surface
at the tetragonal phase τ t and the saddle (0, τ∗, 0) only, as expected. On the lower limit surface, the
condition is fulfilled if and only if

τ1 = α(τ2) and β′(τ2) = −78δ
√
τ2/2,

which does not happen in our construction as long as the saddle height µ is set to a value smaller than
4.1314 · 10−4. Otherwise, the energy Wd would have other stationary points than the expected ones,
but they turn out to be saddle points, rather than local minima.

To fit the remaining moduli for the off-diagonal elements we use the ansatz

Wo := λ1 · (ρ2ρ3 − ρ9) + λ2(ρ2) · ρ3, (13)

where λ1 is a constant, λ2 : R→ R is a profile curve similar to β in the construction of Wρ, and ρ2, ρ3,
ρ9 are the invariant polynomials given in Theorem 2. It is then easy to verify that the desired properties

grad(Wo)(ec) = 0, Hess(Wo)(ec) = diag(0, 0, 0, 11, 11, 11)

and

grad(Wo)(et) = 0, Hess(Wo)(et) = diag(0, 0, 0, 6.52, 6.52, 12)

are fulfilled if and only if

λ1 =
274
75 ε2

= 5548.5 δ2

and

λ2(0) = λ2(ρ2(ec)) =
11
2
,

λ2(1.5 ε2) = λ2(ρ2(et)) =
176
75

.

We can achieve this, for example, by letting λ2 be the quadratic function

λ2(u) :=
946

675 ε4
(
u− 1.5 ε2

)2
+

176
75

which further attains its minimum at the tetragonal phase. By this construction, the energy Wo
from (13) is non-negative everywhere and equal to zero if and only if e4 = e5 = e6 = 0. As it can also
be shown that the gradient of Wo vanishes if and only if e4 = e5 = e6 = 0, we can safely add it to the
energy Wd, resulting in the overall energy W = Wd + Wo, without introducing additional stationary
points.

We also need to take into account the effect of stress on the transformation temperature. For the
moment, we denote W̃ when regarding the energy as a function of the deformation gradient F and
the temperature θ to distinguish it from the energy W regarded as a function of C = FTF and the
temperature θ. We consider the Clausius-Clapeyron equation

−dT
dθ

(F2(θ)− F1(θ)) =
∂W̃

∂θ
(F1(θ), θ)−

∂W̃

∂θ
(F2(θ), θ) . (14)

This is an approximation, as the Clausius-Clapeyron equation is expected to describe the global mini-
mum of the energy only. Here, the material exhibits hysteretic effects, corresponding to a wiggly energy
landscape. It is thus not clear whether the available experimental data describes the ground state or
a local minimum. The hysteresis loop in the temperature-stress diagram is reasonably small (e.g., for
tensile loading in Indium-Thallium about 5◦C at a transformation temperature at around 73◦C). Of
course, it would be straightforward to fit experimental data guaranteed to describe the ground state.

10
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Figure 3: Profile β(u, θ) (left) and energy in E-space, restricted to the ē1-axis (right). Both plots show
the behaviour for different temperatures θc + k

2 θ∗. The plot for k = 2 corresponds to the temperature
at which the tetragonal minimum vanishes (≈ 45.34◦C).

James [1988] examines a dead loading device for a shear experiment with

T (θ) =

0 0 0
0 0 0
0 0 σ(θ)

 .

For this experiment, we evaluate the Clausius-Clapeyron equation (14) at θ = θc = 25◦C, the stable
equilibrium configurations F1(θc) = Id for the cubic phase and F2(θc) = diag(

√
1− ε,

√
1− ε,

√
1 + 2ε)

for the tetragonal phase. With the approximation
√

1 + 2ε ≈ 1 + ε, Equation (14) becomes

−σ′(θc)ε =
∂W

∂θ
(C1(θ), θ)−

∂W

∂θ
(C2(θ), θ) . (15)

We still follow the discussion in James [1988] in assuming

σ′(θc) = 323
g

cm2 ◦C
≈ 3.17 · 104 Pa

◦C
. (16)

Since W (C1) = 0, Equations (15)–(16) tell us the rate at which the martensitic well vanishes at higher
temperatures.

This behaviour can be modelled by replacing the path β(u) with a temperature-dependent path
β(u, θ) that reproduces β(u) for θ = θc and fulfils

∂

∂θ
β(ρ∗, θc) = σ′(θc). (17)

To keep everything as simple as possible, we decided to define β(u, θ) as a linear blend between β(u)
and the linear function β̃(u) = β′(0)u, so as smoothly to blend out the minimum of the tetragonal
phase. Thus,

β(u, θ) :=
θ∗ − θ

θ∗ − θc
β(u) +

θ − θc

θ∗ − θc
β̃(u)

with θ∗ := β′(0)ρ∗/σ′(θc) + θc so that Equation (17) holds. Note that β̃(u) can be considered a cubic
spline with coefficients b̃i := ti+2β

′(0) and therefore also β(u, θ) is a cubic spline, with linearly varying
coefficients

bi(θ) :=
θ∗ − θ

θ∗ − θc
bi +

θ − θc

θ∗ − θc
b̃i.

11
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different temperatures θc + k

2 θ∗; compare Figure 3. Note that we plot the negative energy to obtain a
better view of the minima. For k = 0 the plot shows the energy between 0 and 2µ, for all other k the
energy ranges from 0 to 4µ with µ = 3.5 · 10−4.

12



ec

e1

et¹

16

12

8

4

¹

¹

WEJ ¢ 10
¡4

WEJ

ē1
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Figures 3 and 4 show the path as well as the resulting energy for different values of θ. Analysing
the quadratic spline ∂

∂uβ(u, θ), we find it to be positive (and thus β to be monotone) for θ− θc ≥ θ∗ ≈
20.34◦C. The minimum vanishes at u ≈ 0.523ρ∗ which translates to approximately 0.723et in E-space.
Of course, this is not the only way to construct a temperature-dependent energy, but the idea itself can
easily be extended if more data is available. A recapitulating summary of our construction is given in
Appendix A.

We conclude this subsection by comparing the energy derived here with the well-known Ericksen-
James energy [Ericksen, 1986; James, 1988]. This energy, as a function of C = FTF , is defined as

WEJ(C) := bJ + cK + dJ2 + eL+ f(tr(C)− 3)2, (18)

where

J := 1
6

(
(F − 1)2 + (G− 1)2 + (H − 1)2

)
,

K := 1
2 (F − 1)(G− 1)(H − 1),

L := C12
2 + C23

2 + C13
2,

and
F :=

3C11

tr(C)
, G :=

3C22

tr(C)
, H :=

3C33

tr(C)
,

with
tr(C) := C11 + C22 + C33.

We use the value b := 0.38 + 1.22 · 10−3 · (θ − 25◦C) for the temperature-dependent term and the
constants

c := −29.23, d := 562.13, e := 3.26, f := 5.25

(temperature in ◦C, moduli in GPa). The value for f differs from the one found in the literature, but
it yields a better approximation of the elastic moduli, which are now found to be

Ĉc
11 Ĉc

44 Ĉc
12

42.34 6.52 41.83

13



at the cubic phase and

Ĉt
11 Ĉt

33 Ĉt
44 Ĉt

66 Ĉt
12 Ĉt

13

44.37 42.32 6.52 6.52 39.81 41.83

at the tetragonal phase (compare with the values in (2) and (3) on page 6). This simple ansatz fits
most moduli remarkably well, but fails to incorporate the symmetry breaking for Ĉt

44 and Ĉt
66 in the

tetragonal phase.
To compare the Ericksen-James energy with the energy derived here, we include in Figure 5 two

plots of sections of the Ericksen-James energy. The energy wells are relatively shallow. This difference
becomes even more obvious if we analyse the energy’s local behaviour around the cubic and tetragonal
phase in the coordinate system ē. Transforming the elastic moduli of the Ericksen-James energy with
the matrix M from Equation (6) gives0.507 0 0

0.507 0
126

 and

0.507 0 −0.019
4.56 0

126


for M−T ĈcM−1 and M−T ĈtM−1 respectively.

A comparison with the expected values in Equations (7) and (8) shows that the cubic energy well is
shallower by an order of magnitude in the ē1-ē2-plane, and so is the tetragonal minimum along ē1. This
is reflected in the simulations shown in Figure 6. In a two-dimensional setting, the dynamic equations
of elasticity with capillarity and viscosity are approximated numerically, as described by Dondl and
Zimmer [2004]. It is noticeable that the pattern formation is much more pronounced with the energy
density derived here.

4.2 Cubic-to-monoclinic transition in CuZnAl

We wish to present an energy density for the cubic-to-monoclinic transition in CuZnAl for two reasons.
Firstly, we are not aware of an explicit form for such an energy density in the literature, despite
its importance for a numerical investigation of this phase transition. In itself, it is relevant for many
applications. Falk and Konopka [1990] use a polynomial expansion to fit data for the cubic-to-monoclinic
transition in CuAlNi. They show that this approach overestimates some elastic moduli in absolute
value by more than an order of magnitude. Secondly, Zimmer [2004] observes that it is more difficult
to describe the cubic-to-monoclinic transition than the cubic-to-tetragonal one using the orbit space
approach. We present a way of deriving a phenomenological energy density that matches the elastic
moduli of both phases. We start by a polynomial construction, in the vein of what is often called
classical Landau theory. The simple polynomial expression we choose is not sufficient to fit all elastic
moduli, and we thus augment the construction by splines defined on the orbit space.

4.2.1 Derivation of the phase coordinates

The cubic phase will again be considered as the reference configuration. Consequently, the coordinates
of the cubic phase are again e1 = · · · = e6 = 0. The elastic moduli are measured by Guenin et al. [1977].
We use their average value for Ĉc

11 and Ĉc
44 and the average value for 1

2

(
Ĉ11 + Ĉ12 + 2Ĉ44

)
. The values

in GPa are:

Ĉc
11 Ĉc

44 Ĉc
12

130 86 104

By cubic symmetry, we further have Ĉc
11 = Ĉc

22 = Ĉc
33, Ĉc

12 = Ĉc
13 = Ĉc

23, and Ĉc
44 = Ĉc

55 = Ĉc
66; all

other moduli vanish.
The location of the monoclinic phase in the strain space is more difficult to locate, so we briefly

sketch our derivation. The lattice constants of the monoclinic phase of Cu68Zn15Al17 are well known;
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Figure 6: Results of two-dimensional finite-element simulations with two energy-densities for InTl.
Top panel: Left: Values for C11 for the initial data. Middle: Snapshot after 100 time steps with
a two-dimensional restriction of WEJ(C) as given in (18). Right: Corresponding snapshot using the
analogous two-dimensional restriction of the energy derived here. Note that the scale employed for
WEJ(C) ranges between 0.986939 and 0.986947, while the scale on the right varies between 0.980 and
0.994. For the relatively simple simulation employed here, pattern formation on the right (using the
energy derived here) is obvious. There is no clear evidence for pattern formation usingWEJ(C) (middle);
more sophisticated numerical procedures would be necessary to obtain a relaxation for WEJ(C). Middle
panel: Values for C22 analogously to the top panel. Note that the relaxation for the energy derived here
exhibits oscillations in C22 which differ from those in C11 by a shift of about half a period (right). No
such synchronization between C11 and C22 is evident for WEJ(C) (middle). Bottom panel: Evolution
of C12, using the energy derived here. Left: start of the simulation, middle: after 10 time steps, right:
after 100 time steps.
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see Chakravorty and Wayman [1977]; Hane [1999]. We choose the values used by Rodriguez et al. [1993]
for consistency, since the elastic moduli will also be taken from Rodriguez et al. [1993]. Thus, we use
(data in Å) a0 = 5.996 for the cubic parent phase, a = 4.405, b = 5.34 and c = 38.2 as lattice constants
for the monoclinic cell, and δ = 88.4◦ as monoclinic angle.

Since there is an ambiguity in the choice of the martensitic unit cell, different descriptions of the
cubic-to-monoclinic transformation in Cu68Zn15Al17 exist. We follow the interpretation of Hane [1999].
See Bhattacharya [2003, Section 4.1 & Appendix] for another description. In practice, the differences
between different theories are small.

Hane [1999] describes the cubic-to-monoclinic transition in Cu68Zn15Al17 as a transition DO3 →
18R. The lattice correspondence between the two bases is

[100]18R = [100]DO3 , [010]18R = [011]DO3 , [001]18R = [011]DO3 .

Thus, the correspondence matrix DO3 → 18R is given by

∆ =

1 0 0
0 1 1
0 −1 1

 .

We decompose the cubic-to-monoclinic transformation into a cubic-to-tetragonal and a tetragonal-to-
monoclinic one. Let us consider a cubic phase with lattice constant a0, and a tetragonal phase with
lattice constants a, b, c. Then the cubic-to-tetragonal Bain strain, expressed in 18R coordinates, is
given by B = diag(β, α, γ), with α =

√
2 a

a0
, β = b

a0
, γ =

√
2 c

9a0
. This is the usual cubic-to-tetragonal

Bain strain; compare, for example, Wayman [1964, Chapters 9 and 10]. The factor 9 takes the ration of
the unit cells into account. A shear transforms the tetragonal phase into a monoclinic one; it is given
by

S =

1 0 0
0 1 cos δ
0 0 sin δ

 .

The monoclinic phase, in 18R coordinates, is thus defined as F18R = SB; in cubic (DO3) coordinates, it
becomes F = ∆−1F∆. Evaluating for the lattice parameters given above we obtain for E = 1

2 (FTF−Id)

em1 ≈ −0.10342, em2 ≈ 0.00665, em3 ≈ 0.03574, em4 ≈ 0.03706, em5 = em6 = 0.

The elastic data for the monoclinic phase are fitted to data of Rodriguez et al. [1993]. We again take
the average values of their measurements. Specifically, the values, in GPa, are as follows.

Ĉm
11 Ĉm

22 Ĉm
33 Ĉm

44 Ĉm
55 Ĉm

66 Ĉm
12 Ĉm

13 Ĉm
15 Ĉm

23 Ĉm
25 Ĉm

35 Ĉm
46

175 156 235 54 28 48 118 40 10 150 0 0 −10

The coordinate system needs to be changed to agree with the one used here. Thus, we consider the
energy

W :=
1
2

∫
Ω

6∑
α,β=1

εαCα,βεβ dx, (19)

where with the usual identification εα = εjk with j, k ∈ {1, 2, 3},

εjk =
1
2

(
∂uj

∂xk
+
∂uk

∂xj

)
for j 6= k and εjj =

∂uj

∂xj

The Lagrangian for Equation (19) gives the equations of motion,

ρüi = Cijkl
∂2uk

∂xj∂xl
,
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which is the set of equations used to determine the elastic constants Cijkl by Rodriguez et al. [1993].
Finally, the coordinates used by Rodriguez et al. [1993], here denoted with a subscript R, and those
used by Hane [1999, Figure 3], are related as follows:

[100]R = [011]DO3 = [010]18R,

[010]R = [100]DO3 = [100]18R,

[001]R = [011]DO3 = [001]18R.

Thus, we transform the coordinates of the position and the deformation with the orthogonal matrix
0 1 0
√

2
2 0 −

√
2

2
√

2
2 0

√
2

2


into the DO3-coordinates used here. The values, in GPa, turn out to be

Ĉm
11 Ĉm

22 Ĉm
33 Ĉm

44 Ĉm
55 Ĉm

66 Ĉm
12 Ĉm

13 Ĉm
14 Ĉm

23 Ĉm
24 Ĉm

34 Ĉm
56

156 117 122 370 46 56 67 67 −16 105.5 −32.5 −27.5 −3

4.2.2 Fitting the energy

As in Section 4.1, we split the energy in two parts,

W (e) := Wd(e) +Wo(e),

where Wd will be defined in the orbit spaces of the diagonal and the off-diagonal elements. As it turns
out to be impossible to fit the difference between the moduli Ĉm

55 and Ĉm
66 with Wd and difficult to fit

Ĉm
66, we match them with an appropriate energy Wo. To this end, we let

ρ̄1 := ρ1ρ3 − ρ8 = e1e4
2 + e2e5

2 + e3e6
2,

ρ̄2 := ρ2ρ3 − ρ9 = e1
2e4

2 + e2
2e5

2 + e3
2e6

2,

ρ̄3 := (ρ3
2 − ρ6)/2 = e5

2e6
2 + e4

2e6
2 + e4

2e5
2,

ρ̄4 := ρ3ρ8 − ρ10 − ρ1ρ̄3 = e1e5
2e6

2 + e2e4
2e6

2 + e3e4
2e5

2,

ρ̄5 := ρ3ρ9 − ρ11 − ρ2ρ̄3 = e1
2e5

2e6
2 + e2

2e4
2e6

2 + e3
2e4

2e5
2

and make the ansatz

Wo := λ1 (ρ3λ4
2 + 2ρ̄1λ4 + ρ̄2) +

λ2 (ρ̄3λ4
2 + 2ρ̄4λ4 + ρ̄5) +

λ3 ( 3λ4
2 + 2ρ1λ4 + ρ2) ρ5

with indeterminate coefficients λ1, . . . , λ4. Using

µ1 = λ1 − µ2, µ2 =
λ3

2

4λ2
, µ3 = −2

λ2

λ3
, µ4 = λ4,

the energy Wo can also be written as

Wo = (e1 + µ4)2
(
µ1e4

2 + µ2(e4 − µ3e5e6)
2) +

(e2 + µ4)2
(
µ1e5

2 + µ2(e5 − µ3e4e6)
2) + (20)

(e3 + µ4)2
(
µ1e6

2 + µ2(e6 − µ3e4e5)
2)
,
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Figure 7: Energy in E-space, restricted to the planar cross-sections that contain the cubic phase ec in the
centre, the monoclinic phase em and either (em

2 , e
m
1 , e

m
3 , e

m
5 , e

m
4 , e

m
6 ) (left) or (em

1 , e
m
2 , e

m
3 ,−em

4 , e
m
5 , e

m
6 )

(right). Note that we plot the negative energy to obtain a better view of the minima. The plots show
the energy between 0 and 0.15.

which is obviously non-negative as long as µ1 ≥ 0 and µ2 ≥ 0. Moreover, Wo is zero at the cubic phase
ec and zero at the monoclinic phase em if we set

µ4 := −em1 ≈ 0.10342. (21)

A straightforward calculation then reveals that by choosing

µ1 := 1149.96, µ2 := 4.8804, µ3 := 263.44, (22)

the energy Wo fits the moduli Ĉm
55, Ĉm

66, and Ĉm
56.

We can now fit the remaining moduli conditions by constructing a function Wτ in the 4-dimensional
orbit space τ that is spanned by the invariant polynomials

τ1 := ρ̃d
1 , τ2 := ρ̃d

2 , τ3 := ρ̃d
3 , τ4 := ρ̃o

1

from Proposition 4 and Proposition 3, and finally setting Wd := Wτ ◦ τ . The ansatz

Wτ (τ1, τ2, τ3, τ4) :=
(
τ̂ − α̂(τ2)

)T
M

(
τ̂ − α̂(τ2)

)
· ω(τ2) + β2(τ2) + β4(τ4) (23)

with τ̂ := (τ1, τ3, τ4)
T , α̂ : R → R3, and M ∈ R3×3 then gives sufficient degrees of freedom to match

all conditions. Similarly to the approach in Section 4.1, the energy Wτ is composed of a 3-dimensional
hyperparaboloid in τ̂ with varying opening factor ω(τ2) whose minimum slides along the 3-dimensional
path α̂ = (α1, α3, α4)

T and two profiles β2 and β4. We also need to keep in mind that the path must
not leave the orbit space, in other words,

|α3(τ2)| ≤
√

1
2 |τ2|

3 and α4(τ2) ≥ 0,

and construct α̂ accordingly. Again, we resorted to cubic B-splines for modelling the path, the profiles,
and also the opening factor ω, as they provide sufficient flexibility for matching all conditions; see
Appendix B for a detailed description. The resulting energy W is illustrated in Figure 7.

Analysing the stationary points of W is more difficult than for the energy in the previous section,
because the gradients of Wo and Wd may cancel each other. In general, it does not suffice to examine
them separately. The special case of e4 = e5 = e6 = 0 can be analysed rather easily, as it is easy to see
that grad(Wo) then vanishes. Moreover, as τ4 and grad(τ4) are both zero in this situation, it follows
that

grad(Wτ )(τ1, τ2, τ3, 0) = (0, 0, 0, ∗)
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is sufficient for grad(Wd) to vanish. This condition is equivalent to

det(M̂)β′2 = −det(M)α4(2ωα′4 + ω′α4), (24)

where M̂ is the upper left 2×2 submatrix of M . We can thus avoid spurious local minima by modelling
ω, α4, and β2 such that Equation (24) never holds, which is not difficult to achieve by adjusting the
control points of the corresponding B-splines.

In order to further verify the absence of other local minima, we implemented Newton’s method,
utilising the fact that we can derive both grad(W ) and Hess(W ) analytically for the above construction.
We tested more than one million random initial positions. In each case the algorithm converged to the
cubic phase, one of the monoclinic phases, or stopped at a saddle point.

5 Discussion

This paper is part of a sequence of papers, starting with [Zimmer, 2004]. The latter article provides the
algebraic background (recalled here in Section 2 and derives the structure of the orbit space. Zimmer
[2004], however, does not give any tools to fit energy functions to prescribed values. This matter is
the topic of the present investigation. We decided to discuss the cubic-to-tetragonal transition and
the cubic-to-monoclinic one. These examples have been chosen for their relevance in materials science.
The cubic-to-tetragonal transition is discussed for InTl. The cubic-to-monoclinic example proves more
challenging, and different ideas are used. To derive a specific energy, data is fitted for CuZnAl.

A key observation, already made by [Dondl and Zimmer, 2004], is that polynomials as global objects
are not necessarily suitable to describe phase transitions: for lowest order invariant polynomials, the
energy barrier is determined by elastic moduli even in the simplest case a(ε2 − 1)2 describing two
stable wells at ±ε. Higher order invariant polynomials result in steeply growing energies. Polynomials
are proven to describe the local bifurcation picture correctly; in this sense, the framework developed
in Section 3, describing the energy landscape by splines (piecewise polynomials) seems to be rather
natural. We are not aware of any other systematic work in this direction (one may speculate that a
possible reason could be that Landau developed his original idea of describing phase transformations
by nonconvex energies before splines were invented).

We remark that these ideas not only apply to multiphase crystals, but also to much more complicated
situations, for example, energetic landscapes arising in molecular dynamics. Applications of our ideas
presented in that context will be an area of future research. Indeed, a very interesting recent finding
by Tröster et al. [2005] is that the energy landscape for the φ4 model exhibits, far from equilibrium,
plateaus. Tröster et al. [2005] obtain these results by Wang-Landau simulations, and point out the
deficiencies of polynomial interpolations in these regimes. If analyticity cannot be assumed in these
regions, then the methods proposed here seem to be a suitable extension of Landau’s original ideas.
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A The energy for InTl

To simplify the reproduction of our results, we shall give a more detailed description of the energy that
we construct in Section 4.1 to model the cubic-to-tetragonal transition in InTl. The overall temperature-
dependent energy is given as

W (e, θ) = Wo(e) +Wτ (τ(e), θ),

where the first term is

Wo = 5.5ρ3 − 815.253ρ3ρ2 + 3066860ρ3ρ2
2 − 5404.34ρ9

with the invariant polynomials ρ2, ρ3, ρ9 from Theorem 2. The second term is composed of the
transformation

τ = (τ1, τ2, τ2) =
(
ρ̃d
1 , ρ̃

d
2 , ρ̃

d
3 − ρ̃d

2

√
ρ̃d
2/2

)
with ρ̃d

1 , ρ̃d
2 , ρ̃d

3 from Proposition 4 and the energy

Wτ (τ, θ) = (8826.43τ2 + 54.4)
(
τ1 − α(τ2)

)2 + β(τ2, θ)− 25.6600τ3.

The path α is defined as

α(u) = 10−5 ·
3∑

i=1

aiN
3
0 (3944.77u− i)

with N3
0 from Equation (1) and coefficients

a1 = 1.33287, a2 = 0, a3 = −1.33287.

Finally, the temperature-dependent profile β is given by

β(u, θ) = 10−5 ·


4∑

i=−3

bi(θ)N3
0 (3944.77u− i) if u < 0.0012675,

3028.58uθ + 10620.6u+ 0.107273θ − 11.6667 otherwise,

with linearly varying coefficients

b−3(θ) = 0.41303θ − 131.11, b1(θ) = 2.36100θ + 1.79487,
b−2(θ) = −0.20652θ + 22.46, b2(θ) = 3.17825θ − 0.89744,
b−1(θ) = 0.41303θ + 41.27, b3(θ) = 3.94600θ + 1.79487,
b0(θ) = 1.37848θ + 22.46, b4(θ) = 4.71374θ + 4.48719.

B The energy for CuZnAl

The energy that we introduced in Section 4.2 for the cubic-to-monoclinic transition in CuZnAl is given
as the sum of two energies,

W (e) = Wo(e) +Wτ (τ(e)).

As Wo is already described at full length by Equations (20)–(22), we are only concerned with the details
of Wτ from Equation (23) here. The sliding hyperparaboloid is essentially a quadratic form, built from
the positive definite symmetric matrix

M =

290.276 117.852 −591.994
98461.3 6003.91

67349.0

 ,
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multiplied by the opening factor

ω(u) = 0.0822047(1− 92.8013u)2 + 0.5.

The 3-dimensional path α̂ is composed of the three univariate functions

αj(u) = 10−5 ·


3∑

i=0

aj,iN
3
0 (371.205u− i) if u < 0.0107757,

Aj,1u+Aj,0 otherwise,

for j ∈ {1, 3, 4} with coefficients

a1,0 = 0, a3,0 = 0, a4,0 = 33.9803,
a1,1 = −3508.62, a3,1 = −54.0341, a4,1 = 135.921,
a1,2 = −3523.57, a3,2 = −65.3509, a4,2 = 137.344,
a1,3 = −3538.51, a3,3 = −76.6676, a4,3 = 138.767,

A1,0 = −3463.79, A3,0 = −20.0839, A4,0 = 131.652,
A1,1 = −5547.24, A3,1 = −4200.83, A4,1 = 528.266.

Finally, the path β2 is given by

β2(u) = 10−3 ·


4∑

i=−3

b2,iN
3
0 (371.205u− i) if u < 0.0134696,

2337.81u− 27.2909 otherwise,

with coefficients

b2,−3 = −55.7158, b2,−2 = 10.3474, b2,−1 = 14.3263, b2,0 = 10.3474,
b2,1 = 4.19860, b2,2 = −2.09930, b2,3 = 4.19860, b2,4 = 10.4965,

and the path β4 by

β4(u) = 10−3
0∑

i=−3

b4,iN
3
0 (2912.39u− i)

with coefficients

b−3 = −10.5234, b−2 = 0, b−1 = 10.5234, b0 = 10.5234.
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