Citation for published version:

DOI:
10.1109/ICRAIE.2014.6909297

Publication date:
2014

Document Version
Peer reviewed version

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Optimal Sizing of PV-Battery for Loss Reduction and Intermittency Mitigation

Vaiju Kalkhambkar
Centre for Energy & Environment
MNIT Jaipur
Jaipur, India.
kvajnath@gmail.com

Rajesh Kumar, Senior Member, IEEE
Centre for Energy & Environment
MNIT Jaipur
Jaipur, India.
rkumar.ee@gmail.com

Rohit Bhakar, Member, IEEE
Dept. of Electronic & Electrical Engg.
University of Bath
Bath, UK.
r.bhakar@bath.ac.uk

Abstract—Over these years, dependency of electric generation on renewables is increasing steadily. The renewable energy sources are usually connected to the electric grid on the distribution networks. Energy supply from prominent renewable sources like wind and solar are restricted due to the high level of unpredictability and intermittency associated with them. This leads to the inefficient and less reliable output from these sources. Thus proper generation prediction, sizing and intermittency mitigation of renewable energy sources such as wind and solar photovoltaic (PV) is necessary while placing them on the feeder. As these sources are distributed energy sources, the loss minimization can be one of the opportunities in addition to their generation support. This paper deals with the optimal sizing of solar PV and battery combination in a grid connected system. Solar PV generation is seen as the future generation source and battery storage with its matured technology can support it to become more reliable source in a power system. Here an analytical method for sizing of solar PV and battery is proposed. The line losses and intermittency minimization is the prime consideration for the sizing and placement of the solar PV and battery. To tackle with the variability of the solar PV generation, it is predicted by probability density function and supported by battery energy storage. The battery energy storage is properly sized to satisfy the state of charge limitations. The location and sizing methodology is applied to a 13-bus test system using MATLAB. With the proposed optimal sizing methodology the losses can be reduced up to 83% during the solar PV generation period and a small amount of battery support can help to get constant power supply to the grid from the solar PV.

Keywords- Solar PV generation, beta probability density function, PV sizing, battery storage, State of charge, line loss reduction.

I. INTRODUCTION

Renewable energy sources have been identified as one of the key electric supply sources to meet the ever increasing demand. However, intermittency and unpredictability associated with the prominent sources of renewable energy, viz. wind and solar are offering challenges to the normal operation power systems. This intermittency can be mitigated by integrating energy storage to the system at appropriate locations. As the investment costs associated with energy storage are high and grid scale storage technologies are yet to mature, there is a need to evaluate the quantum of energy storage that can be integrated with the grid to mitigate supply intermittency [1, 2]. This economic feasibility and quantum can be evaluated considering the loss of power supply probability or to maximize cost benefits of storage in grid connected and islanded modes [3, 4, 5]. This would help the utilities to minimize the cost of supplying electricity, as well as the charges customer would have to pay [6]. Considering the high temporal intermittency associated with generation and limits on storage size, storage capacities are usually calculated for short term supplies only [7]. Optimal size and allocation of energy storage helps for operational planning of the system with large amount of renewables [8]. Inherent intermittency of solar power is the main challenge in maintaining the power quality and reliability and battery energy storage can provide a feasible solution [9, 10, 11].

Considering the high intermittency of solar PV and its planning issue related to sizing, this paper gives an analytical approach to obtain optimal sizing of solar PV generation and battery in a grid connected system. This optimal sizing methodology helps to reduce line losses and minimize intermittency of solar PV generation. The historical solar irradiance data is used to generate the beta probability density function and predicted solar PV generation is obtained from it. The varying generation is supported by battery energy storage. The proposed simple algorithm gives the optimal sizing of PV-battery combination.

II. SOLAR PHOTOVOLTAIC GENERATION

Solar photovoltaic generation is intermittent in nature and it is a random function of solar irradiance. This behavior of randomness of solar irradiance can be expressed by \(\beta \)-probability density function (\(\beta \)-pdf) [12]. The expected solar PV output is calculated as below,

\[
f_\beta(s) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} s^{(\alpha-1)}(1-s)^{(\beta-1)} \quad 0 \leq s \leq 1, \alpha, \beta \geq 0
\]

\[
0 \quad \text{otherwise}
\]

(1)

where,

- \(\Gamma \) gamma function;
- \(s \) random variable of solar irradiance in kW/m\(^2\);
- \(f_\beta(s) \) Beta probability density function of \(s \);
- \(\alpha \) and \(\beta \) are the parameters of the Beta distribution function as given below,
\[
\beta = (1 - \mu) \left(\frac{\mu(1 - \mu)}{\sigma^2} - 1 \right)
\]

\[
\alpha = \frac{\mu \beta}{1 - \mu}
\]

where,
\(\mu, \sigma \) mean and standard deviation of \(s \) respectively;
The probability of solar irradiance for any specific hour can be calculated by integrating the probabilities of each state during that hour as given below,
\[
P_i(y) = \int_{y_l}^{y_2} f_\beta(s) \, ds
\]

where,
\(f_\beta(s) \) probability of solar irradiance in state \(y \);
\(y_l, y_2 \) solar irradiance limits of state \(y \);

Once the beta probability density function for the specific time period is calculated the output power of the solar module can be calculated using following equations [12],
\[
T_{oc} = T_a + s_{oc} \left(\frac{N_{OT} - 20}{0.8} \right)
\]
\[
I_y = s_{oc} \left[I_{sc} + K_i (T_c - 25) \right]
\]
\[
V_y = V_{oc} - K_v T_c
\]
\[
ff = \frac{V_{MPP} * I_{MPP}}{V_{oc} * I_{sc}}
\]
\[
P_o(s) = N * ff * V_y * I_y
\]

The active power is expressed as,
\[
P_L = \sum_{b=1}^{n} B^2 R
\]

This power loss can be expressed in terms of load power instead of load-current. Using a general relation between power, voltage, current and power factor the conversion for current is obtained. The active power is expressed as,
\[
P = \sqrt{3} V_L I_L \cos \phi
\]
Load current in ampere can be expressed as,

\[I_L = \frac{P}{\sqrt{3} V_L \cos \phi} \]

(13)

The calculations of the power loss can be obtained using BIBC matrix method. The branch current B is calculated with the help of bus injection to branch-current matrix (BIBC). The elements of BIBC matrix can be calculated as,

\[B = [BIBC][I] \]

(16)

\[B = \begin{bmatrix} B_1 \\ B_2 \\ B_3 \\ B_4 \\ B_5 \end{bmatrix} = \begin{bmatrix} I_2 + I_3 + I_4 + I_5 + I_6 \\ I_3 + I_4 + I_5 + I_6 \\ I_4 + I_5 \\ I_5 \\ I_6 \end{bmatrix} \]

(14)

\[B = \begin{bmatrix} B_1 \\ B_2 \\ B_3 \\ B_4 \\ B_5 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \end{bmatrix} \]

(15)

The branch resistance vector is,

\[[R] = \begin{bmatrix} R_1 \\ R_2 \\ R_3 \\ R_4 \\ R_5 \end{bmatrix} \]

(17)

\[P_{loss} = B_1^2 R_1 + B_2^2 R_2 + B_3^2 R_3 + B_4^2 R_4 + B_5^2 R_5 \]

(18)

The above equation (18) can be written in general form for n number of buses as,

\[P_L = \sum_{i=1}^{n} B_i^2 R_i \]

(19)

\[P_L = [R]^T [BIBC] [I]^T \]

(20)

The equation (20) can be used to calculate the losses of the system. The losses in the AC-DC conversion in the sizing methodology are neglected as they are less compared to the system losses.

V. SIZING AND LOCATION METHODOLOGY

The sizing and placement of the solar PV-battery very important considering the system losses. Distributed solar Generation should be properly sized and placed to reduce the system losses. In this methodology the varying solar PV generation is considered. The sizing of the solar PV generation and the battery is done to achieve intermittency reduction and maximum loss reduction for the grid connected system. The hourly solar PV generation data and load data is used to calculate the losses of the system. As the system is grid connected the load is supplied by the grid whenever there is no solar PV generation. The system is as shown in the Fig.2.

![Fig. 2. Grid connected PV-battery system](image)

A. Location of Solar PV-battery

The distributed generation such as solar PV has advantages when connected to distribution system provide the power and voltage support and minimize the power losses in the system. The commonly used and simple location methodology of DG placement can be applied for the location of solar PV-battery. When the system is a simple radial network then 2/3 rule [15] can be easily applied and when the system is not a simple radial network the loss sensitivity factor method [19] can be used. The 2/3 rule is primarily used in capacitor placements in distribution systems. For a feeder with uniform kVAR load the 2/3 rule is as, ‘the best capacitor size is 2/3 of the kVAR load, located 2/3 of the distance out the feeder’. This 2/3 rule is well applied to the placement of the distributed generation. Here the hourly load is considered to be uniformly distributed along the feeder and hence the 2/3 rule can be applied.

B. Sizing of Solar PV-battery

A simple sizing methodology can be applied for the solar PV generation and the battery. The sizing methodology is as given below:

1. With the help of 2/3 rule or loss sensitivity factor fix the optimal location of the solar PV generation.
2. Calculate the average load of system as,

\[L_{av} = \frac{L_{h1} + L_{h2} + \ldots + L_{h24}}{24} \]

3. Select a size of the solar photovoltaic generation (P_{phv}) as X % of total load and calculate the actual hourly out put of the PV generation (P_{phv}) for the selected size of solar PV, as given in equation (1-9).
4. For each hour, calculate the battery power support \(P_{bh} \) required for the solar PV generation to reduce the variation in the solar PV output such as,

\[
P_{dgpv} = P_{pvh} + P_{bh}
\]

5. Using the battery watt-hour rating, total ampere hour rating of battery is calculated as,

\[
B_{th} = \sum_{h=1}^{H} I_b
\]

Here \(H = 10 \) hours.

Slightly change this rating if required so as it will not violate the SOC limits \(0.20 \leq SOC \) during discharging for any hour as well as the whole discharging period.

6. Once the solar PV size and battery size is calculated, the losses can be calculated for the hourly combination of solar PV and battery.

7. Repeat the steps from (3) to (6) for different sizes of solar PV generation and battery and calculate the losses.

8. Select the solar PV rating and related battery rating which gives minimum losses. This will give the optimum size of solar PV generation and battery.

The flowchart for the location and sizing methodology is as shown in Fig. 3. Here the reduction in losses are calculated for the hours during which the solar PV and battery are in operation and the placement and sizing is done accordingly. The battery is considered to be have only one charge and discharge cycle. The battery is fully charged during off-peak period, preferably during night and then supports the solar PV generation for intermittency mitigation and loss minimization

VI. LOCATION AND SIZING SIMULATION

The above methodology is applied to a 13-bus test system [16], as system is shown in Fig.4.

![13-bus system](image)

The hourly load data of Shahpura, Jaipur is considered here for the month of November [17], which is the load data for the 13- bus test system.

One year solar irradiance data for Jaipur is used to calculate the beta probability density function. The sufficient solar generation is available from 7 am to 6 pm. The expected solar generation is calculated for a typical day of the winter season. The mean and standard deviation values are shown in the Table I. The beta probability density functions are calculated for each hour.

<table>
<thead>
<tr>
<th>Time</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0.367415</td>
<td>0.154400</td>
</tr>
<tr>
<td>9</td>
<td>0.538639</td>
<td>0.210628</td>
</tr>
<tr>
<td>10</td>
<td>0.560916</td>
<td>0.250715</td>
</tr>
<tr>
<td>11</td>
<td>0.609231</td>
<td>0.267280</td>
</tr>
<tr>
<td>12</td>
<td>0.628313</td>
<td>0.244981</td>
</tr>
<tr>
<td>13</td>
<td>0.637026</td>
<td>0.235276</td>
</tr>
<tr>
<td>14</td>
<td>0.609721</td>
<td>0.242538</td>
</tr>
<tr>
<td>15</td>
<td>0.550883</td>
<td>0.234876</td>
</tr>
<tr>
<td>16</td>
<td>0.458968</td>
<td>0.218465</td>
</tr>
<tr>
<td>17</td>
<td>0.313689</td>
<td>0.179889</td>
</tr>
</tbody>
</table>

![Beta PDF for a typical hour](image)

The beta probability density function for a typical hour is as shown in Fig.5.
The solar output is not considered during the extreme two intervals (6 am to 7 am. and 6 pm to 7 pm.) due to very low output. The solar panel considered is the KYOCERA-KD220GX-LPU panel [18]. The specification is given in Table II. The solar photovoltaic generation is calculated according to these specifications. The generation for the 10 hours for various sizes of PV is shown in Fig. 6.

<table>
<thead>
<tr>
<th>TABLE II</th>
<th>ELECTRICAL SPECIFICATION: KYOCERA-KD220GX-LPU PANEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>STC (V)</td>
<td>26.6</td>
</tr>
<tr>
<td>Imp(A)</td>
<td>8.28</td>
</tr>
<tr>
<td>Voc(V)</td>
<td>33.2</td>
</tr>
<tr>
<td>Inc(A)</td>
<td>8.98</td>
</tr>
</tbody>
</table>

Fig. 6. Solar PV generation for various sizes

The base case losses of the system are calculated considering only the active power losses. Using the above location and sizing methodology, the location for the solar photovoltaic generation is at bus number 9. The losses of the system are calculated when the solar irradiation is available (7 am. to 6 pm.) during the 10 hours and the corresponding battery sizing is also done. The required current that should be supplied to compensate for the varying output of the photovoltaic generation is shown in Fig.7. The hourly losses for the various sizes of the solar photovoltaic generation & battery are shown in Fig.8.

55% size of solar PV-battery are minimum. This will give the optimal size of Solar PV and battery. The losses at optimal size are shown in Fig.10. With the optimal size the loss reduction is found to be 83 % for the hours during which the PV and battery is connected. The battery support helps to mitigate the intermittency the solar generation as shown in Fig.11. The state of charge (SOC) of the battery for the optimal size and location is given in Fig. 12. The battery rating satisfies the condition of discharge with SOC ≥ 0.2. The results for optimal size and location of solar PV and battery are given in Table III.

<table>
<thead>
<tr>
<th>TABLE III</th>
<th>RESULTS FOR OPTIMAL SIZING AND LOCATION</th>
</tr>
</thead>
</table>

Fig. 7. Battery current for different solar PV sizes

Fig. 8. Hourly losses with solar PV and battery

Fig. 9. Total losses with different sizes of PV and battery

Fig. 10. Loss reduction with optimal size and location of PV-battery

The total system losses for different sizes of solar PV-battery combination are shown in Fig.9. It is seen that the losses at
The optimal location, solar PV rating (MW), and battery rating (Ah) are shown in the table below:

<table>
<thead>
<tr>
<th>Optimal Location</th>
<th>Solar PV Rating (MW)</th>
<th>Battery rating (Ah)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus 9</td>
<td>14</td>
<td>995</td>
</tr>
</tbody>
</table>

Fig. 11. Battery support for intermittency mitigation

Fig. 12. SOC at optimal battery size

VII. CONCLUSION

The solar photovoltaic generation is variable in nature. The expected output of such a solar PV generation can be calculated by the beta probability density function. The sizing of solar PV with variable output can be done with a simple methodology and the intermittency is minimized by battery energy storage. The placement can fix by the 2/3 rule. The optimal battery sizing considering the SOC can help to minimize power losses and reduce intermittency. The proposed sizing method can be used for the planning of solar PV generation with battery energy storage. The optimal sizing and placement with multiple solar PV generation can be done as a future work.

REFERENCES

[18] Available online: http://www.kyocerasolar.com