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ABSTRACT 26 

Purpose: To define the effect of glucose ingestion compared to sucrose 27 

ingestion on liver and muscle glycogen depletion during prolonged 28 

endurance-type exercise. Methods: Fourteen cyclists completed two 3-h 29 

bouts of cycling at 50% of peak power output while ingesting either glucose or 30 

sucrose at a rate of 1.7 g/min (102 g/h). Four cyclists performed an additional 31 

third test in which only water was consumed for reference. We employed 13C 32 

magnetic resonance spectroscopy to determine liver and muscle glycogen 33 

concentrations before and after exercise. Expired breath was sampled during 34 

exercise to estimate whole-body substrate use. Results: Following glucose 35 

and sucrose ingestion, liver glycogen levels did not show a significant decline 36 

following exercise (from 325±168 to 345±205 and 321±177 to 348±170 37 

mmol/L, respectively; P>0.05) with no differences between treatments. Muscle 38 

glycogen concentrations declined (from 101±49 to 60±34 and 114±48 to 39 

67±34 mmol/L, respectively; P<0.05), with no differences between treatments. 40 

Whole-body carbohydrate utilization was greater with sucrose (2.03±0.43 41 

g/min) vs glucose ingestion (1.66±0.36 g/min; P<0.05). Both liver (from 42 

454±33 to 283±82 mmol/L; P<0.05) and muscle (from 111±46 to 67±31 43 

mmol/L; P<0.01) glycogen concentrations declined during exercise when only 44 

water was ingested. Conclusion: Both glucose and sucrose ingestion prevent 45 

liver glycogen depletion during prolonged endurance-type exercise. Sucrose 46 

ingestion does not preserve liver glycogen concentrations more than glucose 47 

ingestion. However, sucrose ingestion does increase whole-body 48 

carbohydrate utilization compared to glucose ingestion. This trial was 49 
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registered at clinicaltrials.gov as NCT02110836. Keywords: glucose; hepatic; 50 

metabolism; nutrition; sucrose   51 
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Introduction 52 

Carbohydrate and fat are the main substrates oxidized during moderate-53 

intensity, endurance-type exercise (41). In the fasted state, muscle glycogen 54 

and plasma glucose are predominant sources of carbohydrate for oxidation 55 

(41), the latter continuously replenished by glycogenolysis and 56 

gluconeogenesis from the liver, with smaller contributions from the kidneys 57 

and intestine (30). Consequently, in the absence of carbohydrate 58 

consumption, liver and muscle glycogen concentrations decrease by 40-60% 59 

within 90 min of exercise at a workload of 70% of peak oxygen uptake 60 

( V̇O2 peak) (6, 37). Given the importance of liver glycogen for metabolic 61 

regulation (16), and the close relationship between liver glycogen content and 62 

exercise tolerance (6), it is important to understand the impact of 63 

carbohydrate ingestion on liver glycogen depletion during exercise. 64 

Carbohydrate feeding during prolonged (>2 h) moderate-to-high intensity, 65 

endurance-type exercise enhances endurance performance and capacity 66 

(42), attributed to the facilitation of high rates of carbohydrate oxidation, 67 

prevention of hypoglycaemia and (under certain conditions) sparing of muscle 68 

glycogen (7, 38). Though some support has been provided that carbohydrate 69 

ingestion can attenuate muscle glycogen depletion (36, 39, 40), others have 70 

failed to confirm these findings (8, 12, 15, 20). Furthermore, prevention of liver 71 

glycogen depletion has been suggested (3, 20, 21), but this has never been 72 

experimentally assessed. We speculate that carbohydrate ingestion during 73 

exercise attenuates the decline in both liver as well as skeletal muscle 74 

glycogen contents. 75 

 76 
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To maximize carbohydrate availability during exercise, carbohydrate digestion 77 

and absorption should be optimized. Previous work suggests that exogenous 78 

glucose uptake by the gastrointestinal tract during exercise is restricted to ~1 79 

g/min (5, 17, 19), attributed to saturation of the sodium-glucose luminal 80 

transporter-1 (SGLT-1). However, combined ingestion of glucose and fructose 81 

at ≥1.8 g/min has been shown to result in much higher exogenous 82 

carbohydrate oxidation rates (up to 1.75 g/min), compared to the ingestion of 83 

equal amount of glucose alone (17, 19). The greater uptake and oxidative 84 

capacity of glucose and fructose mixtures has been attributed to fructose 85 

being absorbed by the glucose transporter-5 (GLUT-5) in the intestine (11). 86 

As sucrose (commonly referred to as table sugar) combines glucose and 87 

fructose monomers, and sucrose hydrolysis is not rate limiting for intestinal 88 

absorption (14, 43), we hypothesize that sucrose ingestion at a rate 89 

exceeding 1 g/min will enhance exogenous carbohydrate availability when 90 

compared to the ingestion of an isoenergetic amount of glucose or glucose 91 

polymers. Moreover, since fructose appears to be preferentially directed to 92 

liver glycogen storage (relative to glucose) (32), sucrose may further prevent 93 

liver glycogen depletion during exercise. 94 

 95 

The present study aimed to investigate the effect of high rates of glucose and 96 

sucrose ingestion on net changes in liver and muscle glycogen contents and 97 

intramyocellular lipid concentrations using magnetic resonance spectroscopy 98 

(MRS). We hypothesized that high-rates of carbohydrate ingestion would 99 

spare liver glycogen during prolonged exercise, and that sucrose ingestion 100 

would better maintain liver glycogen relative to glucose ingestion.   101 
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Methods 102 

 103 

Study design 104 

Participants completed preliminary testing prior to 2 main trials, during which 105 

subjects either ingested glucose (GLU) or sucrose (SUC) in a randomized, 106 

double-blind, crossover design separated by 7-14 d. Trials were conducted at 107 

the Newcastle Magnetic Resonance Centre (Newcastle-upon-Tyne, UK) in 108 

accordance with the Second Declaration of Helsinki, and following approval 109 

from the Northumbria University Faculty of Health and Life Sciences Ethics 110 

Committee. Randomization was performed using online statistical software 111 

(http://www.randomizer.org/). Blinding and preparation of the test-drinks was 112 

performed by an assistant who was not involved in the exercise tests.  113 

In addition to the two main trials, four participants completed an additional 114 

control trial (CON) as a reference to establish the change in liver glycogen 115 

concentration without carbohydrate ingestion. This was identical to the SUC 116 

and GLU trials, with the exception that only water was ingested during 117 

exercise (identical volume to GLU and SUC trials), and blood sampling was 118 

not performed. 119 

 120 

Participants 121 

Fifteen trained cyclists were recruited for the study. Inclusion criteria included 122 

healthy, endurance trained, male cyclists; V̇O2peak ≥50 mL/min/kg/. Exclusion 123 

criteria included the use of medication that could influence substrate 124 

metabolism, smokers and any known metabolic disorders. One participant 125 

was unable to complete the full 3 h cycling protocol due to nausea on the GLU 126 

http://www.randomizer.org/
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trial and was therefore excluded from the analysis. Consequently, 14 127 

participants completed the two main trials. 128 

 129 

Preliminary testing 130 

An incremental cycling test was performed on an electromagnetically braked 131 

cycle ergometer (Velotron, RacerMate Inc., Seattle, WA, USA) to determine 132 

peak power output (Wpeak) and peak oxygen uptake (V̇O2peak). Following a 5-133 

min warm-up at 100 W, the workload began at 150 W and was increased by 134 

50 W every 2.5 min to voluntary exhaustion (23). Expired gas was sampled 135 

continuously to determine oxygen uptake (Oxycon gas analyser, CareFusion 136 

corporation, San Diego, CA, USA). 137 

 138 

Main trials 139 

Participants arrived at Newcastle Magnetic Resonance Centre at 0700-0800 h 140 

following a 12 h fast. Strenuous exercise was prohibited for 24 h prior to trials, 141 

and participants were asked to record and replicate dietary intake for 24 h 142 

prior to trials. The final meal consumed on the evening before the main trials 143 

was provided by the investigators to participants to standardize the 144 

macronutrient intake across participants for this meal (25 g protein, 51 g 145 

carbohydrate and 32 g fat; 2479 kJ; 592 kcal). 146 

 147 

MRS was used to determine liver and muscle glycogen and intramyocellular 148 

lipid concentrations prior to and following 3 h of cycling. Following a 5 min 149 

warm-up at 100 W, power output was increased to 50% Wpeak for the 150 

remainder of the 3 h. Immediately prior to exercise, participants were provided 151 
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with 600 mL (86.4 g carbohydrate) of the test-drink, and then a further 150 mL 152 

(21.6 g carbohydrate) every 15 min during exercise. Four of the 14 cyclists did 153 

not manage to consume all of the carbohydrate on their first trial (which was a 154 

GLU trial for two participants, and a SUC trial for the other two participants) 155 

and therefore their carbohydrate intake was replicated for their second trial 156 

(the carbohydrate intakes for these four cyclists therefore ranged from 238-157 

281 g, mean ± SD: 292 ± 101 g, compared to the 324 g prescribed). This lead 158 

to an average rate of carbohydrate intake for the entire group of 1.7 ± 0.2 159 

g/min and 1.7 ± 0.2 g/min (102 ± 12 g/h and 102 ± 12 g/h) during GLU and 160 

SUC trials, respectively (P > 0.05; Table 1). 161 

 162 

Carbohydrate drinks 163 

Carbohydrate drinks were prepared by mixing 108 g of carbohydrate with 750 164 

mL of water in an opaque bottle. This was replicated two more times to 165 

produce 3 bottles, each with 750 ml of a 7% carbohydrate solution; 324 g of 166 

carbohydrate in total. Both sources of carbohydrate were from plants that use 167 

C3 carbon fixation to minimize differences in the natural abundance of 13C 168 

(33). Accordingly, the glucose drink was produced with dextrose monohydrate 169 

obtained from wheat (Roquette, France) and the sucrose drink was produced 170 

with granulated sugar beet (AB Sugar, UK). 171 

 172 

Blood sampling and analysis 173 

Prior to exercise, an intravenous catheter was inserted into an antecubital 174 

vein for regular sampling. Blood samples were obtained prior to the exercise 175 

bout, and every 30 min during exercise. Briefly, 10 mL of blood was collected 176 
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in EDTA-vacutainers and immediately centrifuged at 2000 g for 10 min at 4°C. 177 

Plasma was then aliquoted and stored at -80°C for subsequent determination 178 

of insulin (IBL International, Hamburg, Germany) and non-esterified fatty acid 179 

(NEFA) concentrations (WAKO Diagnostics, Richmond, VA) in duplicate 180 

(intra- and inter-assay coefficients of variation all <10%). An additional 20 μL 181 

of whole blood was collected in a capillary tube and was used to determine 182 

glucose and lactate concentrations immediately (Biosen C_line, EKF 183 

Diagnostics, Magdeberg, Germany). 184 

 185 

Expired gas analysis 186 

Expired breath samples were taken every 30 min throughout exercise using 187 

the Douglas bag technique (9) accounting for variance in ambient oxygen and 188 

carbon dioxide concentrations (1). A mouthpiece connected to a two-way, 189 

non-rebreathing valve (model 2730, Hans Rudolph, Kansas City, Missouri), 190 

was used to collect gas samples (60 s sample after a 60 s stabilization 191 

phase), analysed for concentrations of oxygen and carbon dioxide using a 192 

paramagnetic and infrared transducers, respectively (Servomex 5200S, 193 

Crowborough, East Sussex, UK). Sensors were turned on 60 min prior to a 194 

two-point calibration (zero: 100% nitrogen; span: 20% oxygen and 8% carbon 195 

dioxide) using accuracy certified gas standards (BOC Industrial Gases, Linde 196 

AG, Munich, Germany). 197 

 198 

Ambient temperature, humidity and barometric pressure using a Fortin 199 

barometer (F.D. and company, Watford, UK) were recorded, and expired gas 200 

samples were corrected to standard temperature and pressure (dry). Volume 201 
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and temperature of expired gas samples were determined using a dry gas 202 

meter (Harvard Apparatus, Edenbridge, Kent, UK) and thermistor (model 810-203 

080, ETI, Worthing, UK), respectively, during gas evacuation. Calibration of 204 

the dry gas meter was performed regularly with a 3-L syringe (Series 5530, 205 

Hans-Rudolph Inc, Kansas City, Missouri, USA). 206 

 207 

Subjective ratings 208 

Ratings of gut discomfort were assessed every 30 min during exercise using a 209 

5-point scale, where 1 was anchored at “no discomfort’ and 5 at “maximum 210 

discomfort”. Ratings of perceived exertion (RPE) were assessed using the 211 

Borg scale (2). 212 

 213 

Measurement of muscle and liver glycogen 214 

Tissue glycogen concentration was determined from the magnitude of the 215 

natural abundance signal from the C-1 carbon of glycogen at a frequency of 216 

100.3 ppm. A Philips 3 Tesla Achieva scanner (Philips Healthcare, Best, The 217 

Netherlands) was used with a 6 cm diameter 13C surface coil with integral 1H 218 

decoupling surface coil (PulseTeq, Worton under Edge, UK) to measure 219 

muscle glycogen concentration and an in-house built 12 cm 13C/1H surface 220 

coil used to measure liver glycogen concentration.  221 

 222 

For muscle glycogen measurements, the surface coil was placed over the 223 

widest part of the Vastus lateralis and the leg was held in position with fabric 224 

straps to prevent movement. Pulse power was calibrated to a nominal value 225 

of 80° by observing the power dependent variation in signal from a fiducial 226 
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marker located in the coil housing, containing a sample exhibiting 13C signal 227 

with short T1 (213 mM [2-13C]-acetone and 25 mM GdCl3 in water). Automated 228 

shimming was carried out to ensure that the magnetic field within the scanner 229 

was uniform over the active volume of the 13C coil. The 13C spectra were 230 

acquired over 15 min using a non-localized 1H decoupled 13C pulse-acquire 231 

sequence (TR 120 ms, spectral width 8 kHz, 7000 averages, WALTZ 232 

decoupling). 1H decoupling was applied for 60% of the 13C signal acquisition 233 

to allow a relatively fast TR of 120 ms to be used within the Specific 234 

Absorption Rate safety limitations. 235 

 236 

For liver glycogen measurements the 13C/1H surface coil was placed over the 237 

right lobe of the liver. Spectra were acquired over 15 min using non-localized 238 

1H decoupled 13C pulse acquisition sequences (TR 300 ms, spectral width 8 239 

kHz, 2504 averages, WALTZ decoupling, nominal 13C tip angle of 80°). Scout 240 

images were obtained at the start of each study to confirm optimal coil 241 

position relative to the liver.  242 

 243 

Tissue glycogen concentrations were calculated from the amplitude of the C1-244 

glycogen 13C signal using Java Based Magnetic Resonance User Interface 245 

(jMRUI) version 3.0 and the AMARES algorithm [7] as described in detail 246 

previously (25, 26, 28, 37). 247 

  248 

Measurement of intramyocellular lipid 249 

Intramyocellular lipid content was determined routinely, as described in more 250 

detail previously (37). In short, a 12 cm 1H transmitter/receiver coil was used 251 
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to obtain 1H spectra to measure intramyocellular lipid (IMCL) content in the 252 

widest part of the gastrocnemius. The PRESS (Point Resolved Spectroscopy) 253 

(4) sequence was used to acquire 1H spectra from a 2×2×2 cm voxel, using 254 

an echo time of 25 ms, spectral resolution of 1 Hz and repetition time of 5000 255 

ms with 32 acquisitions. Spectra were analyzed with JMRUI version 3.0 using 256 

the least square fitting AMARES algorithm (4, 31). The inter-observer bias 257 

was 0.09 mmol/L with a 95% limit of agreement of 0.8 mmol/L (P > 0.05).  258 

 259 

Calculations and statistical analysis 260 

Due to the lack of data regarding exercise-induced changes in liver glycogen 261 

concentrations with carbohydrate feeding, a sample size estimation was 262 

based on data from exogenous carbohydrate oxidation rates (as a surrogate 263 

for carbohydrate availability). Sucrose increases exogenous carbohydrate 264 

oxidation during cycling by ~30% (18). Using this figure, along with the 7% 265 

intra-individual coefficient of variation of hepatic glycogen content measured 266 

by 13C MRS (34), the study was designed to provide statistical power above 267 

90% with an alpha level of 0.05 with a minimum sample size of n = 7 in a 268 

crossover design (10). 269 

 270 

Whole-body rates of carbohydrate and lipid utilization were estimated using 271 

the following equations assuming negligible protein oxidation (13, 22): 272 

 273 

Net lipid utilization (g/min) = (1.695 × V̇O2) - (1.701 × V̇CO2) 274 



Page 13 of 31 

Net carbohydrate utilization (g/min) = (4.210 × V̇CO2) - (2.962 × V̇O2) 275 

 276 

Units of V̇O2 and V̇CO2 are L/min 277 

 278 

Unless otherwise stated, all data were expressed in the text as the mean ± 279 

standard deviation (SD) of the mean and the error bars presented in figures 280 

are 95% confidence intervals (CI). Data were checked for normal distribution 281 

and log-transformed if appropriate prior to statistical analysis. 282 

 283 

Liver and muscle glycogen, and IMCL concentrations from the four 284 

participants who completed the CON trial were assessed by two-way (trial x 285 

time) repeated measures ANOVA with trial (GLU vs SUC vs CON) and time 286 

(pre- vs post-exercise) as within-subject factors. Rates of substrate utilization 287 

were assessed by a one-way repeated measures (GLU vs SUC vs CON) 288 

ANOVA. No further inferential statistics were performed on CON data since 289 

this was only a subgroup of the total sample and was only used as a 290 

reference for the change in liver glycogen concentration with 3 h of exercise in 291 

the absence of carbohydrate ingestion. Accordingly, all other comparisons 292 

were made between GLU and SUC only. 293 

 294 

Blood, plasma and respiratory variables and subjective ratings were assessed 295 

by two-way (trial x time) repeated measures ANOVA with trial (GLU vs SUC) 296 

and time (all time points during exercise) as within-subject factors. Liver and 297 

muscle glycogen and intramyocellular lipid concentrations were also assessed 298 

by two-way (trial x time) repeated measures ANOVA with trial (GLU vs SUC) 299 
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and time (pre- vs post-exercise) as within-subject factors. Mean exercise 300 

responses in GLU and SUC trials (carbohydrate intake, heart rate, fluid intake 301 

and power output) were assessed by paired t-tests. All P values are corrected 302 

for multiple comparisons (Holm-Sidak). A P value of ≤ 0.05 was used to 303 

determine statistical significance. All data were analyzed using Prism v5 304 

(GraphPad Software, San Diego, CA).  305 
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Results 306 

 307 

Participants 308 

Participants’ characteristics are provided in Table 2. No differences were 309 

observed for age, body mass, height, V̇O2 peak, Wpeak, body mass index, 310 

systolic or diastolic blood pressure between participants who completed the 311 

main trials (GLU and SUC) and the subgroup of participants who also 312 

completed the additional CON trial.  313 

 314 

Subjective ratings 315 

RPE increased during exercise (time effect, P < 0.001), but to less of an 316 

extent during SUC when compared to GLU (interaction effect, P < 0.05; 317 

Figure 1A), becoming significantly different between trials from 150 min 318 

onwards (P < 0.05). Similarly, ratings of gut discomfort increased throughout 319 

exercise (time effect, P < 0.001) but to less of an extent during SUC when 320 

compared to GLU (interaction effect, P < 0.01), becoming significantly 321 

different at 180 min (Figure 1B, P < 0.05). 322 

 323 

Respiratory data and whole-body substrate utilization 324 

V̇O2  and V̇CO2  remained stable during exercise (time effect, P > 0.05 for 325 

both) and were not different between GLU and SUC (both P > 0.05). 326 

Respiratory exchange ratio (RER) was higher with SUC vs GLU (trial effect, P 327 

< 05) for time points 90 min onwards (interaction effect, P < 0.05; Figure 2C). 328 

Whole-body carbohydrate utilization rates were higher during SUC (2.03 ± 329 

0.43 g/min) when compared with GLU (1.66 ± 0.36 g/min; P < 0.05), at the 330 
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expense of fat oxidation rates (SUC: 0.35 ± 0.15 vs GLU: 0.48 ± 0.12 g/min; P 331 

< 0.05), resulting in energy expenditure rates that did not differ between trials 332 

(SUC: 8.8 ± 1.2 vs GLU: 8.6 ± 0.9 MJ; P > 0.05; Figure 3A). In the subgroup 333 

who also completed the CON trial (n = 4), whole-body fat oxidation rates were 334 

lower during both GLU (0.42 ± 0.10 g/min) and SUC (0.33 ± 0.11 g/min), 335 

compared to CON (0.64 ± 0.19 g.min; P < 0.05), whilst carbohydrate oxidation 336 

rates (SUC: 2.04 ± 0.40 vs GLU: 1.79 ± 0.43 vs CON: 1.20 ± 0.44 MJ) did not 337 

significantly differ between trials (P > 0.05). Accordingly, energy expenditure 338 

(SUC: 8.7 ± 0.6 vs GLU: 8.6 ± 0.8 vs CON: 8.4 ± 0.4 MJ) also did not differ 339 

between trials (P > 0.05; Figure 3B). 340 

 341 

Circulating metabolite and insulin concentrations 342 

Blood glucose and plasma insulin concentrations were not significantly 343 

different between trials (trial effect, P > 0.05; interaction effect, P > 0.05 for 344 

both variables; Figure 4A). In contrast, blood lactate concentrations were 345 

higher with SUC vs GLU (trial effect, P < 0.01), rising at the onset of exercise 346 

(time effect, P < 0.001) to a greater extent in SUC vs GLU until 120 min 347 

(interaction effect, P < 0.01; Figure 4B). Plasma NEFA concentrations fell 348 

from ~0.5 mmol/L to ~0.2 mmol/L during the first hour of exercise before rising 349 

again (time effect, P < 0.001), the latter of which occurred to a greater degree 350 

in GLU compared to SUC (interaction effect, P < 0.01; Figure 4D). 351 

 352 

Muscle and liver glycogen concentration 353 

Muscle and liver glycogen concentrations are displayed in Figures 5A, 5B, 354 

5C and 5D. Pre-exercise, no differences were observed in liver and muscle 355 
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glycogen concentrations between trials P > 0.05 for both variables). The day-356 

to-day coefficients of variation for pre-exercise liver and muscle glycogen 357 

concentrations were 12% and 20%, respectively. The between subject 358 

coefficient of variation for pre-exercise liver and muscle glycogen were 54% 359 

and 41%, respectively. In the subgroup who also completed the CON trial (n = 360 

4), liver glycogen concentrations declined during exercise in CON, but not 361 

when either glucose or sucrose were ingested (interaction effect, P < 0.05; 362 

Figure 5B). In contrast to the liver, muscle glycogen concentrations declined 363 

during exercise regardless of trial (trial effect, P > 0.05; time effect, P < 0.01; 364 

interaction effect, P > 0.05; Figure 5D).  365 

 366 

Post-exercise liver glycogen concentrations did not differ from pre-exercise 367 

values when either glucose or sucrose were ingested (time effect, P > 0.05; 368 

interaction effect, P > 0.05). The change in liver glycogen concentrations from 369 

pre- to post-exercise was positive with glucose (20 ± 55 mmol/L) and sucrose 370 

(27 ± 58 mmol/L; P > 0.05 GLU vs SUC) ingestion, but negative in the CON 371 

treatment (-171 ± 73 mmol/L).  372 

 373 

Muscle glycogen concentrations were reduced following exercise (time effect, 374 

P < 0.001). The changes in muscle glycogen concentrations did not differ 375 

between trials (trial effect, P > 0.05; interaction effect, P > 0.05; Figures 5C 376 

and 4D). The pre- to post-exercise changes in muscle glycogen concentration 377 

did not differ between GLU (-40 ± 37 mmol/L) and SUC (-47 ± 36; P > 0.05). 378 

 379 

Intramyocellular lipid concentration 380 
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No differences were observed in pre-exercise IMCL concentration (P > 0.05) 381 

between trials. The day-to-day coefficient of variation for pre-exercise IMCL 382 

concentration was 21%. The between-subject coefficient of variation for pre-383 

exercise IMCL concentration was 47%. In the full sample (n = 14) exercise 384 

decreased IMCL concentrations (time effect P < 0.01) to a similar extent in 385 

both trials (trial effect, P > 0.05; interaction effect, P > 0.05; Figure 5E). The 386 

pre- to post-exercise changes in IMCL concentration did not differ between 387 

GLU (-1.5 ± 6.0 μmol/g) and SUC (-1.6 ± 6.4 μmol/g; P > 0.05). 388 

 389 

In the subgroup who completed the CON trial (n = 4), post-exercise IMCL 390 

concentrations were not significantly different to pre-exercise values (time 391 

effect, P > 0.05), and the responses were not significantly different between 392 

trials (trial effect, P > 0.05; interaction effect, P > 0.05; Figure 5F).  393 
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Discussion 394 

In the present study we provide novel data demonstrating that carbohydrate 395 

ingestion during endurance type exercise can prevent liver glycogen 396 

depletion, and that this effect is independent of the type of carbohydrate 397 

(glucose or sucrose) ingested. In contrast, neither glucose nor sucrose 398 

ingestion at 1.7 g/min (102 g/h) could attenuate the decline in muscle 399 

glycogen following exercise. Sucrose ingestion increased whole-body 400 

carbohydrate utilization when compared with glucose ingestion. 401 

 402 

Muscle glycogen and plasma glucose are the main fuel sources during 403 

prolonged, moderate-intensity endurance type exercise (41). Plasma glucose 404 

is maintained during exercise by glycogenolysis and gluconeogenesis, 405 

primarily from the liver. Accordingly, continuous exercise lasting more than 60 406 

min substantially depletes liver glycogen concentrations (37). Given that liver 407 

glycogen strongly associates with endurance capacity (6), maintaining liver 408 

glycogen concentrations is likely to benefit endurance performance. Previous 409 

research using glucose tracers has indicated that high rates of glucose 410 

ingestion can suppress endogenous glucose appearance (21), implying that 411 

carbohydrate ingestion during exercise may attenuate exercise induced liver 412 

glycogen depletion. Here we present the first quantitative evidence of liver 413 

glycogen maintenance following carbohydrate ingestion during exercise. We 414 

found that 3 h of cycling, in the absence of carbohydrate ingestion reduces 415 

liver glycogen concentrations by ~49%, which is consistent with previous 416 

findings (37). When ingesting ~1.7 g/min (~102 g/h) glucose or sucrose, liver 417 
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glycogen concentrations are not lowered during prolonged exercise (Figures 418 

5A and 5B). 419 

 420 

Liver glycogen concentrations displayed a relatively high variability between 421 

subjects (coefficient of variation: 54%), compared to the day-to-day variability 422 

within subjects (coefficient of variation: 12%). This provides an explanation for 423 

the relatively higher baseline liver glycogen concentrations in the subgroup 424 

that completed the CON trial (n = 4; Figure 5B) compared to the entire sample 425 

(n = 14; Figure 5A). 426 

 427 

Carbohydrate ingestion during exercise increases exogenous carbohydrate 428 

oxidation and has been shown to spare net muscle glycogen utilization under 429 

some conditions (36), although not typically during the latter stages of more 430 

prolonged (> 1 h), cycling exercise. These responses are thought to contribute 431 

to the performance benefits of carbohydrate ingestion during prolonged 432 

exercise (7). The present data demonstrate that neither the ingestion of 433 

glucose nor sucrose are able to attenuate net muscle glycogen utilization 434 

during prolonged moderate-intensity cycling, even when large quantities of 435 

multiple transportable carbohydrate (~1.7 g/min; 102 g/h) are ingested that 436 

augment exogenous carbohydrate availability. In contrast, whole body 437 

carbohydrate utilization rates were higher with sucrose vs glucose ingestion, 438 

with a concomitant reduction in fat use. Data from the subgroup also 439 

demonstrate that both glucose and sucrose ingestion suppress fat utilization 440 

relative to CON, although the numerical differences in carbohydrate utilization 441 

rates did not reach statistical significance with the subgroup (n = 4; P = 0.07). 442 
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At rest, fructose is preferentially stored as liver glycogen rather than muscle 443 

glycogen. This has led some to speculate that sucrose, when compared with 444 

glucose ingestion may be particularly effective at maintaining or increasing 445 

liver glycogen during exercise. In the present study, sucrose ingestion did not 446 

preserve liver glycogen concentrations to any greater extent than glucose 447 

ingestion. In line with previous observations of substantial declines in 448 

endogenous glucose production during exercise when glucose was ingested 449 

(21), our data seem to suggest that liver glycogen contents are maintained 450 

during exercise when ingesting large amounts (~1.7 g/min; ~102 g/h) of 451 

glucose or sucrose. The surplus carbohydrates are shunted towards oxidation 452 

rather than storage, at the expense of lipid oxidation. 453 

  454 

The increase in whole-body carbohydrate utilization following sucrose vs 455 

glucose ingestion seems to confirm that sucrose ingestion increases 456 

exogenous carbohydrate availability and carbohydrate flux. This shift in 457 

metabolism is likely due to a number of coordinated factors, including the 458 

higher lactate concentrations observed following sucrose ingestion. Higher 459 

circulating lactate concentrations are very likely due to the fructose 460 

component of sucrose, the majority of which is converted to lactate and 461 

glucose upon bypassing the liver. Glucose-fructose co-ingestion during 462 

exercise has been shown to increase plasma lactate and glucose turnover 463 

and oxidation (24), with a minimal amount of fructose being directly oxidized 464 

(24). The greater whole-body carbohydrate utilization rate following sucrose 465 

ingestion is therefore likely attributed to a combination of (greater) plasma 466 

lactate, glucose and (to a lesser extent) fructose oxidation rates. Lactate also 467 



Page 22 of 31 

inhibits adipocyte lipolysis via the G-protein coupled receptor GPR81 (27). 468 

This is likely one of the factors responsible for the lower plasma NEFA 469 

concentrations following sucrose versus glucose ingestion in the presence of 470 

similar insulinemia. As there were no differences in muscle lipid content 471 

changes between treatments, the greater fat use in the glucose compared 472 

with the sucrose trial is likely entirely attributed to greater uptake and 473 

oxidation of plasma derived NEFA.  474 

 475 

Lactate formation is associated with hydrogen ion production, which may 476 

displace CO2 from bicarbonate stores with consequent implications for 477 

estimates of V̇CO2 , RER and substrate utilization (13). The ~0.5 mmol/L 478 

increase in lactate concentration following SUC vs GLU however, would have 479 

a negligible (<0.07 mL/min) effect on CO2 displacement (13). Therefore, 480 

values obtained from expiratory gas samples are likely to be a valid 481 

representation of net substrate utilization. 482 

 483 

We observed a lower RPE towards the end of exercise following sucrose 484 

compared with glucose ingestion. This is in spite of the higher lactate 485 

concentrations following ingestion of sucrose compared to glucose, offering 486 

additional evidence of the disassociation between lactate concentrations and 487 

RPE (29). Exogenous carbohydrate oxidation rates have been shown to 488 

correlate with exercise performance during prolonged, moderate-to-high 489 

intensity exercise (35). Therefore, the lower RPE following sucrose versus 490 

glucose ingestion may be attributed to the greater exogenous carbohydrate 491 

uptake and subsequent oxidation rates when co-ingesting fructose (17, 19). 492 
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The lower RPE may of course also be directly attributed to the lesser 493 

occurrence of gastrointestinal discomfort when ingesting large amounts of 494 

multiple transportable carbohydrates versus glucose only (Figure 1).  495 

 496 

In conclusion, ingestion of large amounts [~1.7 g/min (~102 g/h), relative to 497 

the ~1.5 g/min (90 g/h) recommended for exercise lasting >2.5 h] of glucose 498 

or sucrose during prolonged endurance type exercise prevent the exercise-499 

induced decline in liver glycogen content without modulating muscle glycogen 500 

depletion.  501 
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FIGURE LEGENDS 650 

Figure 1 Ratings of perceived exertion (A) and gut discomfort (B) during 3 h 651 

of cycling with ingestion of glucose or sucrose in trained cyclists (n = 14). Data 652 

are expressed as means ± 95% CI. * P < 0.05, significantly different between 653 

GLU and SUC. GLU, glucose; SUC, sucrose. 654 

 655 
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Figure 2 VO2 (A), VCO2 (B) and respiratory exchange ratio (C) during 3 h of 656 

cycling with ingestion of glucose or sucrose in trained cyclists (n = 14). Data 657 

are expressed as means ± 95% CI. * P < 0.05, significantly different between 658 

GLU and SUC. GLU, glucose; SUC, sucrose; VCO2, rate of carbon dioxide 659 

production; VO2, rate of oxygen consumption. 660 

   661 
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Figure 3 Substrate utilization during 3 h of cycling with ingestion of glucose or 662 

sucrose in trained cyclists (A; n = 14) and in the subgroup of trained cyclists 663 

(B; n = 4). Data are expressed as means ± 95% CI. * P < 0.05, significantly 664 

different from CON. CHO, carbohydrate; GLU, glucose; SUC, sucrose; CON, 665 

water control. 666 

 667 

  668 
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Figure 4 Blood glucose (A) and lactate (B), and plasma insulin (C) and NEFA 669 

(D) concentrations during 3 h of cycling with ingestion of glucose or sucrose in 670 

trained cyclists (n = 14). Data are expressed as means ± 95% CI. * P < 0.05, 671 

significantly different between GLU and SUC. GLU, glucose; NEFA, non-672 

esterified fatty acid; SUC, sucrose. 673 

 674 

  675 
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Figure 5 Liver glycogen (A), muscle glycogen (C) and intramyocellular lipid 676 

(E) concentrations prior to (Pre) and immediately following (Post) 3 h of 677 

cycling with ingestion of glucose or sucrose in the full sample of trained 678 

cyclists (n = 14), and in the subgroup of trained cyclists (B, D and F; n = 4). 679 

Data are expressed as means ± 95% CI. * P < 0.05, significantly different 680 

when compared with pre-exercise values. GLU, glucose; SUC, sucrose; CON, 681 

water control.682 

  683 



Page 33 of 31 

Table 1 Carbohydrate intake and physiological variables of trained cyclists 684 

during 3 h of cycling with ingestion of glucose, sucrose or water.  685 

 GLU  

(n = 14) 

SUC 

(n = 14) 

CON 

(n = 4) 

Carbohydrate intake (g/min) 1.7 ± 0.2 1.7 ± 0.2 0 ± 0 

Fluid intake (L) 2.1 ± 0.2 2.2 ± 0.2 2.3 ± 0.0 

Power output (W) 165 ± 17 165 ± 17 158 ± 7 

Mean heart rate (beats/min) 145 ± 14 146 ± 12 122 ± 8 

Data are expressed as means ± SEM. GLU, glucose; SUC, sucrose; CON, 686 

water control. 687 

 688 

 689 

 690 

 691 

 692 

  693 
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Table 2 Characteristics of trained cyclists who completed GLU, SUC and 694 

CON trials. 695 

 696 

 697 

 698 

 699 

 700 

 701 

 702 

 703 

 704 

 705 

 706 

 707 

 708 

Data are expressed as means ± SD. GLU, glucose; SUC, sucrose; V̇O2peak, 709 

peak oxygen uptake; CON, water control; Wpeak, peak power output. 710 

 711 

 GLU and SUC 

(n = 14) 

CON 

(n = 4) 

Age (y) 25 ± 5 26 ± 6 

Body mass (kg) 73.1 ± 9.3 75.3 ± 10.7 

Height (m) 1.78 ± 0.08 1.75 ± 0.09 

V̇O2peak (mL/min/kg) 58 ± 5 60± 7 

Wpeak (W) 330 ± 35 316 ± 27 

BMI (kg/m2) 23.0 ± 1.9 24.5 ± 1.8 

Systolic blood pressure 

(mmHg) 

133 ± 11 129 ± 6 

Diastolic blood pressure 

(mmHg) 

74 ± 8 71 ± 8 


