
        

Citation for published version:
Ramallo Gonzalez, A & Coley, D 2014, 'Using self-adaptive optimisation methods to perform sequential
optimisation for low-energy building design', Energy and Buildings, vol. 81, pp. 18-29.
https://doi.org/10.1016/j.enbuild.2014.05.037

DOI:
10.1016/j.enbuild.2014.05.037

Publication date:
2014

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND
The published version is available via: http://dx.doi.org/10.1016/j.enbuild.2014.05.037

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 29. Apr. 2025

https://doi.org/10.1016/j.enbuild.2014.05.037
https://doi.org/10.1016/j.enbuild.2014.05.037
https://researchportal.bath.ac.uk/en/publications/563e1d69-fb33-4572-8473-413cabbafbef


Using self-adaptive optimisation methods to perform sequential 
optimisation for low-energy building design 

A. P. Ramallo González 
a, 1

, D. A. Coley 
b
 

 

a
College of Enginnering, Mathematics and Physical Sciences, University of Exeter, UK

 

b
Department of Architecture and Civil Engineering, University of Bath, UK 

 

 

Abstract 

The use of software tools to aid building design, or to show compliance, is now commonplace. This has 

motivated investigations into the potential of optimisation algorithms, used in such software, to automatically 

optimise designs, or to generate a variety of near-optimal designs. Optimisation always requires the evaluation 

of a large number of possibilities, before a final selection is made. When using a building simulator to assess the 

quality of designs, all possible solutions in the early stages of optimisation (when there is a high volume of 

choices) are evaluated using the same tool, so that the computational time for the assessment of each of the 

possibilities is the same as the time required for the final, refined choice of solutions.  This paper suggests using 

a method of evaluation which changes as the algorithm evolves: whereas accuracy is initially compromised to 

improve the speed of the algorithm, the process is subsequently altered to produce a more accurate, evaluation 

process. This is a case of dynamic optimisation that requires an algorithm able to cope with changes in the 

objective landscape. A self-adaptive evolutionary strategy has been chosen, for its ability to “learn” about 

changes, and the influence of the different decision variables, in the objective function as they arise. The results 

show that this method can reach the same optimal design, with substantially lower computational time.  

Keywords: Optimisation, ES, dynamic optimisation, sequential optimisation, energy, building           

 

1 Introduction 

The new measures to reduce carbon emissions in the building sector have increased the interest 

on producing low-energy designs, being these, buildings that need a fraction of the energy needed for 

a traditional building to create the same levels of comfort. Several software packages have been 

developed to aid building professionals in the design of low-energy buildings. These software 

packages (getting more and more complex with time) are able to evaluate the building physics and its 

energy systems in a very comprehensive manner [1]. Among the phenomena that can be modelled 

with this kind of software one can found radiation, phase changing, humidity transfer, pollutant 

emissions, air movement, and many others. Although computers have become more powerful with 

time, this improvement does not overcome the growth on complexity of the building simulators, and 

the time needed to run a building annual simulation in a personal workstation is still substantial. 



Those simulation times can be of the order of hours, making the process of investigating several 

designs slow and tedious.  

The fact that current dynamic simulators can assess the quality of buildings in term of energy 

efficiency, has motivated some building scientists to use optimisation algorithms coupled with these 

software tools to find low-energy designs [2-4], but the long computational times needed to run these 

optimisations can make the process unfeasible. 

Other authors had used simplified building models to be able to run the optimisation in 

relatively short times [5, 6]. Although the results of these research works are enlightening, one could 

argue that due to the use of a basic simulator, only approximated optimisation for the early stage can 

be performed, and a more complex simulator should be used for refining the design. 

Another options, is to create Response Surface approximation models of the real objective 

function, and optimise that model (such as the work of [7]. This method allows using complex 

simulators; however, Magnier and Hagnier pointed out that the ANN may produce results with errors 

up to 3.9 %, therefore implying a drawback in the method. Apart from that, ANNs suffer of the curse 

of dimensions (explained bellow) as the number of points needed to train the ANNs grows 

exponentially with the number of decision variables of the optimisation problem. 

The two cases above are examples of two ways of tackling problems that present unviable 

computational times: One, using a simple dynamic model to reduce the time of evaluating the 

objective function; or two, developing a surrogate model that will mimic the objective function and 

can be evaluated with short computational times.  

In the one hand, the idea of creating a surrogate model for the whole decision space looks not 

ideal; in the other hand, using a basic building simulator may not provide with the accuracy needed 

for a given problem.  In this thesis, a different method is suggested.  

The methodology that is presented here uses an evolutionary algorithm as a core of the 

optimisation; as the algorithm evolves, the solutions are assessed with different assessment tools that 

require different computational times.  

This way of evaluating the objective function, can make some decision variables to have no 

effect on the objective function when the simple assessment tools may not consider those decision 

variables (e.g. thermal mass of partitions in a steady-state calculation methodology). For this reason, 

the algorithm needs to be able to “catch up” on those decision variables when the assessment method 

becomes complex enough to interpret them. The algorithm should also maintain the values of the 

decision variables that were optimised in previous “cheaper” stages of the optimisation if the values 

are correct for further assessment tools.  

The application of the methodology to a building design problem follows in Section 5, and the 

results are presented and described in 6, followed by conclusions and references in Section 7 and 8.  



2 Previous work 

The use of complex assessment tools for the evaluation of potential solutions can render 

optimisation unfeasible. There is a standard procedure in engineering to tackled this problem 

developed by Barthelemy and Haftka [8]: 

1. Create a surrogate model of the objective function by: 

a. implementing a simpler model to assess the solutions, based on the physics of 

the problem 

b. creating an approximation of the objective function after evaluating a number 

of points within the objective function (meta-modelling) 

2. Optimise the surrogate model 

3. Verify the optimality of the solution of the surrogate model with the objective function 

 

The creation of a surrogate model based on physical principles is normally challenging. A 

quantitative change has to be done in the way that the system is modelled to obtain a model that 

requires less computation. This can not be done in many cases due to the complexity of the system to 

be analysed or the nature of the problem (for example, search of natural modes of vibration). 

Several works can be found in the literature where meta-modelling is used to create surrogate 

models for the optimisation, examples of these are [9-15] in mechanical engineering, and [7] in 

building design.  

The work of Jin et al. summarised the strengths and weaknesses of four of the most popular 

meta-modelling techniques, namely polynomial regression, multivariate adaptive regression splines, 

radial basis functions and kriging [16].  

One of the weaknesses of meta-models is that they suffer from the curse of dimensions [15]. 

This effect can be explained as follows: the number of points that are needed to create a realistic 

surrogate model of the decision space grows exponentially with the number of dimension of the 

objective function. As an example, if one wants to have 3 points per dimension in a decision space 

with 20 decision variables, one would need 3
20 

= 3486784401 points, if the problem had 3 decision 

variables, one would need 3
3
 = 27 points. To create the surrogate model of the decision space the 

points need to be evaluated with the real objective function, and eventually be used to generate the 

surrogate model, having a large number of decision variables has therefore a clear impact on the 

computational time needed to create the meta-models: the computational time to create a meta-model 

grows exponentially with the number of decision variables. 

Creating surrogate models was considered by Booker et al [9] as not ideal. In their report 

published by NASA, Booker et al. argues this violates a fundamental tenet of numerical optimisation: 

“one should not work too hard until one nears the solution”. 



This was related to the need of constructing a surrogate model before knowing the shape of the 

decision space and performing an optimisation run of the surrogate model that might have been built 

with points that are not near the areas where the optimum is located and therefore does not represent 

the areas of high fitness well. Booker et al. suggested a more efficient way of performing the 

optimisation: he used an on-line surrogate model that improves during the optimisation as more “true” 

points are selected and calculated in areas with high fitness.  

The work of Magnier and Haghighat [7], was the only one found in the literature that uses 

surrogate models to make a more efficient optimisation in building design. In the work of Magnier 

and Haghighat artificial neural networks and true points in the decision space are used to create a 

meta-model that is optimised.  

The use of surrogate models has almost not been exploited in building design although Wetter 

and Wright mentioned in their work [17] that the use of optimisation with surrogate models in 

building design is a promising area of research. No research has been found that uses optimisation for 

building design and the surrogate models created by simplifying the models themselves (type a in the 

listing of Barthelemy and Haftka). 

3 Method 

In this paper, we show a way of combining modern optimisation techniques with different 

building modeling techniques to create an optimisation method for building design that is more 

efficient than the traditional methods. 

The optimisation uses different assessment tools during the optimisation. This means that the 

objective landscape will change during the optimisation. That is called a Dynamic Optimisation 

Problem (DOP). This kind of problems will be described in Section 3.1. 

The algorithm used has to be such that will be able to adapt to these changes in the objective 

landscape. We have selected the Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) for 

this. The algorithm is described in Section 3.2. 

Three ways of evaluating the energy demand of the building had been chosen for this work. 

The specific tools used here are not an intrinsic part of the method. We described the three chosen in 

Section 3.3. 

The implementation of the methodology to perform the application of Section 4 is shown in 

Section 3.4. 

 

 Dynamic optimisation problems  3.1

The objective function in some optimisation problems is not constant in time, but instead, it 

changes during the optimisation. The algorithm must track the optimum as it moves through the 



objective landscape to make sure the best option is always chosen. Such problems are called Dynamic 

Optimisation Problems (DOPs), and solving them has gained considerable popularity in the last few 

decades [18]. Examples are complex control in robotics or network management.  

The formulation of a DOP is: 

 

                                    optimise f(x,t),                                                                             Eq. 1 

                                        subjected to x ϵ Ω. 

 

where f is the objective function, x is the set of decision variables, t is the time at which the objective 

function is evaluated and Ω is the set of viable options (the decision space). If one compares the 

formulation of Eq. 8.1 to that of a traditional optimisation problem, the time parameter is the only 

difference. In DOPs, the objective function (or objective landscape for a more graphical 

understanding) changes as the optimisation is performed. This generates a landscape with one (or 

more) moving optimum.  

The review by Cruz et al. [18] outlines the features that an optimisation algorithm should have 

in order to be efficient in tracking a movable optimum in a DOP. In most DOPs, the objective 

landscape does not change continuously in time. Instead, the optimisation algorithm is capable of 

performing i iterations with a static objective landscape before the next change occurs. During the i 

iterations, the algorithm has to look for the location of the peak. However, it is not intended that the 

algorithm will converge completely in that single point, as the algorithm should be able to move to 

other areas of the landscape efficiently if the objective landscape changes. 

Population-based algorithms have proven to be a good way of maximising exploration of the 

decision space, and thus being able to recognize changes in the objective space [19]. Algorithms that 

use a set of solutions (populations), instead of a single one, are able to evaluate several points of the 

decision space in each iteration. If the spread of these points is maintained, the algorithm will always 

have some notion of the shape of the objective landscape. This spread of solutions is called diversity 

(following the evolutionary jargon). 

Branke detailed the features that make a evolutionary algorithm suitable for solving DOPs [20]. 

These are: 

 

1. Increasing diversity after a change, 

2. Maintaining diversity throughout the run, 

3. Use of memory, and 

4. Multiple populations. 

 

 The review by Cruz et al. [18] pointed out that Evolutionary Algorithms (EAs) are one of the 

most popular and efficient ways of solving DOPs. EAs are population-based algorithms that have 



been used to solve optimisation problems for almost four decades now [21]. They have proven 

effective in several synthetic objective functions and real-world problems, and have produced 

satisfactory results (see [22], [23] , [24], [25] for general texts on EAs). These algorithms use 

crossover, mutation and selection to find the best individuals (solutions) when a population (set of 

solutions) evolves (converge) over generations (iterations).  

The review by Cruz et al. and the one by Branke [20], describe how increasing diversity, 

following a change in the environment, or maintaining that diversity are ways of adapting a traditional 

EA to make it capable of solving a DOP. In this work, a specific EA has been selected that is able to 

enhance diversity intrinsically when needed. 

 The algorithm: CMA-ES 3.2

The Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) is an EA created by 

Hansen et al. [26] with the aim of reducing the stochastic nature of ESs by using the Covariance 

Matrix (CM) in each population of solutions. The CM provides information about the shape of the 

decision space to the algorithm.  

The CMA-ES has been proven to be an efficient method for optimisation in building design 

[27], its main strength is that the algorithm is able to recognise changes in the objective landscape 

through the CM, and adapt to those new scenarios. Although the calculation of the CM could be 

considered as a computationally expensive calculation, if the time needed to calculate this matrix is 

compares with the time needed to perform an annual simulation of a building using a complex 

simulator (EnergyPlus in our case), this calculation results trivial (three order of magnitude smaller), 

especially using small population sizes (10 individuals in this work). 

The algorithm has been used in this research in the form of the code provided in [28].  

 Building assessment tools 3.3

Three ways of evaluating the objective function were chosen in this work: 

 

1. Simple calculation methodologies: sets of algebraic equations or chart-based tools that 

allow the calculation of energy demands for a given building. 

 

2. RC-networks based simulators: simulators which use an RC-network to represent the 

thermo-dynamic response of the building.  

 

3. Benchmark simulators: tools more commonly used by architects and building scientists, 

benchmark simulators are comprehensive simulator suites that consider a multitude of 

phenomena that occur in the building. Examples of these are IES - <VE> or EnergyPlus. 



 

This separation into three groups is mainly based in complexity of each method. However, 

there is an assumption here that computational time is proportional to final accuracy, but this is not 

proven
1
. In Figure 1, the different kinds of calculations are compared qualitatively, against 

computational time and potential error. 

 
Figure 1 - Building assessment tools: Potential error vs computational time. 

 

In this paper we suggest a procedure whereby multiple building assessment tools are used at 

different stages of the optimisation. Starting with those in the top-left of Figure 1, the process will 

follow the path of the graph, and it will end using a benchmark simulator (bottom-right of Figure 1). 

This is expected to be a more efficient way of using computational resources than maintaining the 

same levels of accuracy along the run as done in traditional optimisation. The algorithm has to be 

such that is able to update the search when a more complex simulator is used, so the variables that 

were left behind in the previous iterations get evaluated and optimised when it is needed. 

                                                      
1
 The higher complexity of a building model is due to a larger number of phenomena being represented by the 

code. However, simulating a larger number of phenomena does not imply having a better accuracy. The more 

phenomena represented the larger the number of inputs that are asked to the modeller. Even if those inputs are 

chosen under a fair judgment, they will be uncertainty. Examples of this is a weather file for a location that 

might come from observed data, but it is unlikely to happened again, or the consideration of solar gains, but 

considering an ideal horizon/sky. In opposition to this detailed simulators, simpler calculations are normally 

used with values that come from empirical correlations what can make the overall calculation more accurate 

than in the case than a complex simulation with the wrong inputs.  



For this research, three stages using three different assessment tools are used. Although the 

selection of the number of stages is rather trivial, it is sufficient to use the main three building 

assessment tools represented in the previous classification.  

One tool was selected for each of the stages listed previously. These tools are: the LT-method 

as the simple calculation methodology; an LPM simulator as the RC-Network simulator; and 

EnergyPlus for the benchmark simulator. Although there exist some weaknesses in some of these 

assessment methods, these tools were chosen to check the validity of the methodology, the reason for 

this will be explained in Section 4, where the application of the method is shown. 

 Implementation 3.4

The methodology developed in this research uses building assessment tools with different 

computational times at different stages of the optimisation for reducing computational times. The 

simpler calculation methods are considered surrogate models, and the benchmark simulator the closest 

computational assessment tool used to the real objective function. 

Changing the assessment tool during the optimisation run will imply a change in the objective 

function, therefore will make the problem a dynamic optimization problem (DOP).  

The method developed in this paper is a cross-over between optimisation using surrogate 

models and optimisation in dynamic environments. In this case, the change in the landscape is 

triggered by the algorithm itself once it has been seen that the run is reaching a termination criteria, 

with the changes being the selection of the next assessment method.  

To implement the sequential optimisation algorithm, which has been called here CMA-ES with 

Sequential Assessment (CMA-ES-SA), the CMA-ES has been used with the default parameters 

suggested by the author in [28]. The algorithm is started with the simplest assessment tool, and it is 

run until the termination criteria are reached: 

 

1. The scope of the search has become smaller than a given value; therefore the 

assessment method has to change to maintain diversity. 

2. The algorithm gets stagnated: More than N generations without reaching Condition 1 

(the algorithm is not converging) 

 

When the algorithm reaches one of the termination criteria, the code changes to the next 

assessment tool and modifies the parameters of the algorithm to ensure the exploration of the new 

objective function. This is repeated for the third assessment tool (EnergyPlus in our application) and 

when the algorithm reaches a termination criteria exclusive for this stage the run is finished. 



One of the mechanisms that can be read in [18] to improve the efficiency of algorithms in 

dynamic environments is to maintain diversity. In the methodology shown here, the algorithm will 

change to the next assessment method before the population has converged completely.  

The CMA-ES recognise changes in the objective landscape through the CM, if the change on 

the assessment tool generates a substantial change in the objective landscape; it is expect that the 

algorithm would change the parameters of its operators to adapt to this change.  

 

 
Figure 2 - Interpretation of the recognition of the landscape by the CM in one dimension: The straight line 

shows a linear regression of the solutions (circles). The same population that shows a linear regression with 

slope close to zero in the left, shows a linear regression with negative slope after a change in the objective 

landscape. 

The CMA-ES is self-adaptive; this means that the algorithm calculate the next move depending 

on the population and on which direction the population should move. This is equivalent to 

calculating the gradient in continuous derivable functions, but CMA-ES calculates this on a discrete 

way (through the CM). As the variability of the objective function changes less with variations of the 

decision variables (equivalent to a gradient of zero) the algorithm makes smaller movements, this is 

equivalent to focusing on a smaller area. If the members of a population are over a peak in the 

objective function, the algorithm will see no substantial modification of the objective function with 

the covariance matrix of the individuals, if the landscape changes and they appear in the next iteration 

in an area with a substantial slope, the algorithm would detect that a movement needs to be done to 

the population and therefore will modify the scope of the mutation to make that happened. The CMA-

ES, also internally modifies the probability of direction of the mutation to aim for the areas of the 

landscape likely to give high fitness individuals (illustrated in Figure 2). 

Hansen et al. used the CMA-ES on the presence of uncertainties before in: [29]. However this 

was not a dynamic optimisation problem or optimisation with surrogate models. 



4 Application 

To evaluate the strengths and weaknesses of the method, it was applied to a building design 

problem. 

This application tests the capability of an evolutionary optimisation algorithm (CMA-ES) to 

solve an optimisation problem in which the objective landscape varies due to changes in the technique 

for calculation of the objective function. The optimisation algorithm selected is the CMA-ES, and the 

three techniques for calculating the objective function are: an LT-calculation, an LPM simulation and 

EnergyPlus. The use of the CMA-ES with sequential assessment has been called CMA-ES-SA. 

The problem was defined to emulate real optimisation problems that can be found in 

architecture. The optimisation was single objective, but the method can be easily adapted to run multi-

objective problems. The objective was the energy demand (heating and cooling) as this thesis has 

been highly motivated by the current need of reducing energy use in buildings.  

The optimisation problem at hand is the design of an office that is constrained to have 70 m2 

and being only one storey, as it is supposed to be part of an office block. The gains have been 

extracted from [30] and represent the benchmark values and are shown in Table 1. 

The decision variables include the properties of the fabrics of the envelope, the material 

properties of the internal partitions, the fenestration, and overhangs for windows in the south, east and 

west façade. Also, the aspect ratio and the infiltration levels were considered as decision variables. All 

the variables can be found in Table 2. 

 

 
Table 1 - Benchmark values for internal heat gains for offices. 

Density of 

occupation 

[person/m
2
] 

Heat gain [W/m
2
] 

People Lighting Equipment 

1/8  10 12 20 

 

 

Many decision variables have been selected in this problem because this methodology is trying 

to offer an alternative to optimisation methods that use meta-models with large computational time 

needed upfront to build the surrogates. With this application, it will be tested if the methodology 

performs well with large decision spaces (many decision variables), where the constructions of meta-

models are not viable due to their long computational times. 

The decision variables included in the problem control almost all thermally relevant elements 

of the building (see Table 2). Some of the elements are more relevant to the overall energy demand 

than others, these decision variables have been chosen in propose, to verify the capabilities of the 

algorithm to focus in the variables that are more than others along the optimisation. 

 

 



Table 2 - Variables forming the decision space. IP are internal partitions. 

 Variable Type Lower bound Upper bound Unit 

 Infiltration Real 0.021 0.6 ach 
 Aspect Ratio Real 0.3 3 m/m 

 Fenestration, North (% 

of wall) 

Real 12 80 % 

 Fenestration, South (% 

of wall) 

Real 12 80 % 

 Fenestration, East (% 

of wall) 

Real 12 80 % 

 Fenestration, West (% 

of wall) 

Real 12 80 % 

 Wall Type Symbol.d Construction 

A 

Construction D n/a 

 Insulation Real 100 500 (U-Value=0.1) 

0.1) 

mm 

 Conductivity of IP Real 0.2 2.3 W/(mK) 

 Capacity of IP Real 200 3000 J/(kgK) 

S
o

u
th

 

O
v

er
h

a
n

g
 

Depth  Real 0.0 2.0 m 

Left extension Real 0.0 5.0 m 

Right extension 

 

 

 

Real 0.0 5.0 m 

E
a

st
 

O
v

er
h

a
n

g
 

Depth  Real 0.0 2.0 m 

Left extension Real 0.0 5.0 m 
Right extension Real 0.0 5.0 m 

W
es

t 

O
v

er
h

a
n

g
 

Depth  Real 0.0 2.0 m 

Left extension Real 0.0 5.0 m 
Right extension Real 0.0 5.0 m 

 

 

Table 3 - Possible constructions of solutions. 

Construction  Outside Layer Intermediate Inside Layer 

A 200mm concrete Insulation 25mm stucco 
B 200mm      ’’            ’’ 200mm concrete 

C 25mm stucco ’’ 200mm     ’’ 

D 25mm    ’’      ’’ 25mm stucco 

 

 The algorithms 4.1

Two algorithms have been used in this application, the one created in this thesis: the CMA-ES 

using sequential assessment (CMA-ES-SA) and a canonical form of GA. GAs are popular 

optimisation methods broadly used in the literature of building design and therefore, they seem as an 

adequate algorithm to take as the baseline. Several works can be found in the literature were GAs 

where used, examples of this in building design are: [2, 4-7, 31-37].  

Both optimisation algorithms have been implemented in Octave (similar to Matlab). The 

genetic algorithm has been given the values recommended by Schaffer in [38] for crossover 

probability and mutation probability (Table 4), the algorithm has been run with 100 individuals, and 

uses the stochastic universal sampling as selection mechanism [39]. The CMA-ES has been given the 

default parameters provided by the author (Table 5) [28].  

The decision variables have been normalised into the interval [0, 10] as recommended by 

Hansen [28] for both algorithms. 



 

 

Table 4 - Default parameters of the GA, from [38]. 

Parameter Value 

Population size 100 individuals 

Selection mechanism Stochastic universal sampling 

Crossover probability 0.75 crossovers per couple  

Mutation probability 0.005 mutations per bit  

 

 

Table 5 - Default parameters of the CMA-ES, from [28]. 

Parameter Value 

Population size 12 = (4+3*ln(dimensions)) 

Number of parents 6 =  (population size / 2) 

 

 

The algorithms have been provided with specific features to make sure that the optimisation is 

performed adequately. In the case of the CMA-ES-SA, the algorithm is able to detect that the 

population is converging into a few points (losing diversity) by checking the value of the step-size of 

mutation (called sigma ‘σ’). When the step-size is smaller than a given value, the algorithm changes 

automatically the assessment method or terminates the run depending on the current stage. The 

actions are shown in Table 6. 

 

 

Table 6 - Initial, final and intermediate steps of the CAM-ES-SA. 

Assessment method Action at the start of using the 

method 

Termination/Change of assessment 

method 

LT-Method Initialisation of the algorithm σ < 0.5  or simulations > 500 

LPM Nothing σ < 0.1 & simulations > 1000 

EnergyPlus Nothing σ  < 0.09 or stagnation 

 

 

When using the GA the decision space has to be discretised for every decision variable, in this 

problem, the decision space has been discretised in 50 values per variable. This means that, for the 

GA, the decision variables will have a precision of 10/50=0.2 units. This accuracy is translated 

differently in the physical values depending on the range of each one. This encoding represents 

9.54x10
33

 possible solutions in the decision space.  

Evolutionary Strategies (ESs) do not need discretization of the decision space as the variables 

are kept in real format. However, to make sure that advantage is not given to any of the methods, the 

CMA-ES-SA is allowed to evolve only until it reaches the same levels of accuracy of the discretised 

space of the GA (0.2 units). The GA can be run for as many generations as the operator decides, but 

the ES is self-stopped by definition when certain accuracy is reached. To make sure that the judgment 

of the computational times is fair, the GA has been stopped when the solution is similar to that 



obtained by the CMA-ES-SA. The details of discretisation and termination are summarised in Table 

7. 

 

Table 7 - Parameters of the optimisation algorithms. 

 Precision of variables Termination 

GA 0.2 units (=10/50) objective < solution of CMA-ES-SA  

CMA-ES-SA No predefined limit σ  < 0.09 (Table 6) 

 

 

The CMA-ES-SA has its most substantial strength on using surrogate models to analyse the 

solutions along the optimisation. These surrogate models are different methods of calculating the 

heating and cooling demands. The following section shows how the building was modelled for each 

of these assessment methods.  

 The modelling 4.2

This section shows the way the building was modelled in each of the assessment tools. 

1.1.1 Model for the LT-Method 

The office modelled for this work, is located in London, therefore being mid European coastal, 

it is considered to have each of the façade orientated to each of the cardinal points. The fenestration 

percentage of each façade is an independent decision variable and it is considered that these windows 

are not affected by casted shadows from surrounding obstacles. The LT-Method suggests separating 

passive areas to non-passive areas and so was done for this application. The passive areas are 

delimited by external walls and the imaginary surface parallel to them 6 meters into the zone, this 

multi-zone configuration was used for the EnergyPlus model too.  

1.1.2 Model for the LPM 

The building created with the characteristics defined by the decision variables was created for 

each solution, and then the equivalent RC-network was obtained. The RC-network representing all the 

elements of the building was then reduced to a LPM with the methodology shown in [40]. The office 

is modelled as a single zone, to make possible its representation by the LPM. The model does not 

include ceiling and floor, as this surfaces are considered adiabatic because the office above and below 

the one studied were considered at the same temperature. The computational time needed to run a 

yearly simulation with this model was 0.29 seconds 

To perform the simulation, the model has been solved with an ideal heating and cooling 

system, but also with natural ventilation.  

 



 
Figure 3. LPM of the building. 

 

The software calculates the cooling load for each time step and it checks if that demand can be 

covered with natural ventilation by window opening (the software recognise how much air can be 

moved depending on the windows size and the external wind speed), if this load can be totally 

covered by natural ventilation, the windows will open the appropriate fraction to provide the adequate 

cooling. In the case that this is not enough, ventilation will happened first, and the cooling load will be 

calculated on top. With this the model is trying to mimic the capability of the more complex system 

used in EnergyPlus that is able to adjust the airflow taken from the outside to cool down the inside of 

the office. 

The solar gains are calculated in a basic way for this simulator. The solar radiation per square 

meter in each time-step was calculated and reported for each of the surfaces of the building (North, 

South, East and West) using EnergyPlus before performing the optimisation and stored in a data base. 

For each solution, the fenestration area of each façade will be multiplied in each time-step by the 

appropriate value and the summation of those will give the total solar gain for each time-step.  The 

gains due to metabolic, light and electric appliances were the same as in the run with EnergyPlus. 

This model has been solved using state-space equations, and boundary conditions read from a 

weather data file of London ([41] as with EnergyPlus). The integration time-step of the equations was 

of 0.1 hours (6 minutes). 

1.1.3 Model for EnergyPlus 

The simulation in EnergyPlus is the most complex of all three. The way the building was 

modelled in this simulator is as follows. 

The office is modelled in EnergyPlus as a single story office in a multi-storey block, with no 

exchange of heat through floor and ceiling celling and floor (adiabatic).  

The conditioning equipment is an air-based system that uses an electric chiller and a gas 

furnace to deliver cold and warm water respectively that circulates through coils on the outlets of the 

air ducts for each area. The conditioning system is able to use un-conditioned outside air to cool down 

the office, what is equivalent to the natural ventilation modelled in the LPM simulator.   



The model is multi-zone as the one described for the LT method with the addition of a plenum 

zone that gathers the air flow from the zones and returns it to the conditioning system. The geometry 

of the office with an aspect ratio of 1.0 and with arbitrary windows and overhangs can be seen in 

Figure 4. 

The office has been surrounded by four surfaces with the same height of its walls but located at 

30 meters away of each façade, with this; the shadow of potential buildings is represented.  

The objective function is calculated after summing up the heating demand and the cooling 

demand multiplied by a constant factor. This factor accounts for the different price of primary energy 

use for the chiller (electricity) compare with the furnace (gas). The factor was the same in the three 

assessment methods. 

 
Figure 4 – Example of the 3D geometrical model of the office used for this work, the overhangs, windows and 

aspect ratio vary. The units are metres.  

The next section shows the results of using the CMA-ES-SA to minimise the annual energy 

demand (heating and cooling) for the application described. 

5 Results and discussion 

The sequential optimisation methodology, CAM-ES-SA, was applied to the problem described 

before: the optimisation of an office in a block located in London with 70 m
2
 floor area and with the 

decision variables as shown in Table 2. In order to study the benefits of the approach, the same 

optimisation problem was solved using a traditional GA and the CMA-ES-SA. To verify the solutions 

that can be obtained using only the LPM and the LT-method, two more runs were performed. 



To evaluate properly the accuracy of the method, the two approaches, the GA and the CMA-

ES-SA have been applied several times and the results of these runs studied.  

Firstly, 20 runs were done using the CMA-ES-SA. The solutions of this set are represented in 

Figure 5b. 

       
Figure 5 - Boxplot of the results obtained with the traditional GA (a) and the CMA-ES-SA (b). The single point 

represent an outliner in both cases: Points are drawn as outliers if they are larger than q3 + w(q3 – q1) or smaller 

than q1 – w(q3 – q1), where q1 and q3 are the 25th and 75th percentiles, respectively. 

The same optimisation problem was solved using the GA; in this case, 9 runs were performed. 

The parameters needed to achieve solutions of the order of those that were obtained with the CMA-

ES-SA were investigated. A population size of 100 individuals and a number of generations of 140 

came out as the most efficient combination; the results of the nine runs using the GA are shown in 

Figure 5a.  

The variability of the solutions obtained with the CMA-ES is of 30.40 kWh, around 0.6% of 

the average value of the objective function. This variation between solutions, although substantial in 

numerical algorithms theory, it is negligible in building energy calculations
2
. Several authors have 

shown that energy calculations have much larger variability due to uncertainties [42] [43] [44] [45] 

[46]. 

                                                      
2
 The difference between using a desktop computer, with a nominal power of 100W, and using a laptop with a 

nominal power of 50W, 8 hours a day 5 days a week, sums up a total difference in energy demand of 104 kWh 

over the year. 



Figure 5 shows that the two optimisation methods were run until reaching solutions with 

similar solutions as imposed by the termination criteria. After seeing that both algorithms were run in 

a way in which they delivered the same accuracy in the solution, the computational times were 

studied. The result is shown in Figure 6.  

 
Figure 6 - Time differences in running the two optimisation methods. The time for the GA is always the same as 

the generations and population size has been fixed to achieve the same accuracy as the CMA-ES-SA, the time of 

the CMA-ES-SA varies. 

The CMA-ES-SA used different times for every run, as the algorithm is stochastic and this 

makes the times at which the assessment methods are changed different, also the speed of converging 

in each of the steps is different. In opposition, the GA was always run with 100 individuals and 140 

generations, and therefore makes always 14000 evaluations of the objective functions, the time 

needed by the CMA-ES-SA is a fraction of the time needed by the GA to get to almost the same 

solutions.  

Figure 6 shows that the differences on times are substantial, even in the worst case scenario the 

CMA-ES-SA is much faster than the GA.  

To understand better the solution to the optimisation problem in both cases, one solution from 

each of the set of the runs was studied in more detail. 

One of the results from the optimisation using the CMA-ES-SA with and objective value of 

5080.97 kWh was chosen, the solution using the GA with an objective value of 5086.00 kWh was 



selected for this comparison. The value of the decision variables for both of these solutions are shown 

in Table 8. 

 

Table 8 - Results of the optimisation runs using specific assessment tools, and sequential optimisation.  

    Genetic Algorithm CMA-ES-SA 

 Variables Units LT  LPM  e+ Sequential 

 1 Infiltration  ach n/a 0.021 0.021 0.021 

 2 Aspect ratio m/m 0.374 1.098 1.326 1.673 

 3 U-Value wind. W/(mK) n/a 1.966 1.890 1.921 

 4 North Window % 12.7 22.1 12.01 12.56 

 5 South Window % 14.0 12.1 33.78 23.31 

 6 East Window % 21.9 12.0 12.10 12.60 

 7 West Window % 47.0 12.0 12.05 12.18 

 8 Wall Type symbolic n/a C C C 

 9 Insulation mm n/a 499 499.7 500.0 

 10 k - partitions W/(mK) n/a 1.85 2.39 2.398 

 11 cp – partitions 

 

J/(kgK) n/a 2976 2999 2989 

S
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12 Depth  m n/a n/a 1.050 0.774 

13 Left extension m n/a n/a 1.614 2.485 

14 Right extension 

 

m  n/a n/a 1.549 2.060 

E
as

t 

O
v
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h
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g
 

15 Depth  m n/a n/a 0.665 0.742 

16 Left extension m n/a n/a 0.172 3.660 

17 Right extension 

 

m n/a n/a 0.935 4.740 

W
es

t 

O
v

er
h

an
g
 

18 Depth  m n/a n/a 1.828 0.610 

19 Left extension m n/a n/a 1.433 4.435 

20 Right extension 

 

 

m n/a n/a 0.026 2.790 

       

Best 

objective 

 kWh 28014 5197 5086.00 5080.97 

      

       

Evaluations   7000 14000 14000 1009+ 1716+ 

1356 

Time per simulation s 0.001 0.29 16.70 0.001, 0.29, 

16.7 

Total time  s 7 40600 238,000 23,551 

 

 

Two other runs using the GA and only the LT-method and only the LPMs have been also 

included in Table 8 for illustrative proposes. 

Table 8 shows the values of the decision variables together with other parameters of the 

optimisation of the solutions found by different methods. The first set of decision variables (from 1 to 

11), are the interpreted by the LPM simulation, and are supposed to be the most influential in the 

energy demand of the office. Most of the values for these variables are very similar using the GA and 

the CMA-ES-SA, and the ones that are not similar, show an interesting fact: the aspect ratio and the 

windows size lead to similar sizes of windows. It can be seen that the aspect ratio in the solutions 



from the GA and the CMA-ES-SA are different, this ratio, is going to have an impact in window size, 

as the last one is defined as a percentage of the area of the façade. If one observes the aspect ratio and 

the size of the window in the south façade, one can see that although the window in the solution of the 

CMA-ES-SA is smaller, the aspect ratio is larger, and therefore, the effect of both decision variables 

together make the solution more similar to the solution in the GA. 

Another interesting fact to note from Table 8 is the failure of implementing the overhangs 

properly in the optimisation. For the assessment tool, an overhang that extends 4 meters over the 

window is as valid as one that extends 0.5 metres; no penalisation was put in place for solutions that 

have overhangs that are too large. Also, if an overhang needs to be at least, let it be said 1 meter, and 

the simulator recognise that having an overhang of 5 meters is as good in the energy demands, then 

any value between 1 and 5 will be chosen by the algorithm and therefore, the user will not be able to 

know what is best, as he/she would not be able to recognise from the solutions the “at least x meters” 

condition. Including this type of decision variables in the algorithms in the future can be challenging 

and would need to be done properly in the future if this method is applied. 

It can be seen in the number of function evaluations, that the CMA-ES-SA need less than the 

GA even without differentiating between the stages with different assessment tools. The GA needed 

14,000 function evaluations, and the CMA-ES-SA needed 4,081 in this example. This could be 

because using surrogate models allow the algorithm to concentrate in the variables that mater the most 

in each stage; because the efficiency of the CMA-ES itself is higher than the efficiency of the GA or 

because a combination of the two. Observing the comparisons done in [47] one could assume that 

CMA-ES would always be more efficient. 

The number of function evaluations that were needed using the computationally expensive 

simulator (EnergyPlus) are few when using the sequential optimisation (CMA-ES-SA). This will have 

the greatest impact on the total computational time. Only 33.23% of the function evaluations are 

carried out with EnergyPlus, the rest, 66.77% of the function evaluations, are done with the other two 

assessment tools (surrogate models), although this is a large percentage of the evaluations, it only 

accounts for 2.15% of the total computational time of the optimisation as these are assessments that 

are “cheap” to run. The benefits of using this pre-processing in the optimisation using the surrogates 

models are clearly shown in this case; the extra computational time of this pre-processing with 

surrogates is negligible (~8 minutes) compared with the savings in computational time that produced 

when compared with a traditional GA (~two and a half days, or 214450 seconds). A representation of 

how the computational time is spread in the optimisation using the CMA-ES-SA can be seen in Figure 

7. 



 
Figure 7 - Graph showing the time spent in each stage of the optimisation using the CMA-ES-SA for the case 

shown in Table 8. Time is represented by areas in this graphs and measured in seconds. The computational time 

saved has been shown as the light grey area. 

If one observes the results of the optimisations performed by using only one of the surrogates 

models (either the LT-method or the LPMs) in Table 8, one can see that the runs carried out using the 

LT-method as the assessment tool, although much faster, could not reach a low-energy design. This 

was expected as the LT method is a very basic tool that does not even interpret the majority of the 

variables. In the case of the solution found using only LPMs, the optimum found is close to the 

minimum found when using GA and EnergyPlus (around 2%). This justifies the selection of these 

simulators for optimisation problems as was done by [5] and [6]. One could think after seeing this 

result that one should go straight to the use of LPMs for optimisation; however, it should be 

remembered that the problem at hand here is rather simplistic. There is no detailed study of the air 

flows, illumination or other components. In other cases, where real buildings are being created, a 

much higher level of accuracy would be needed. It is believed that the CMA-ES-SA has a great 

potential for those problems. 

Figure 9 and Figure 8 show the evolution of the optimisation using the GA and the CMA-ES-

SA respectively for the examples shown in Table 8.  



 
Figure 8 - Evolution of the GA using EnergyPlus. Minimum value of the objective function found (dashed line). 

Relative improvement of the objective value found until then (solid). 

 
Figure 9 - Evolution of the CMA-ES-SA. “A” shows the differences between the objective values of the best 

solution at the moment of changing the assessment tool from the LT-Method to the LPM. “B” shows the 

differences between the objective values of the best solutions at the moment of changing the assessment tool 

from the LPM to EnergyPlus. 

 

Figure 8 shows that, in the GA, the solution get improved with a relative change of 10
4
 at the 

beginning (the difference in objective value in the best individual from a generation and to the best 

individual of the next is of that order), and after 14000 function evaluations refines to relative 

improvements of the order of 2 kWh. In the case of the CMA-ES-SA, the improvement on the 

objective value of the solutions is steeper. It can be seen that in the stage of the optimisation where 

LPMs are used (from the point at the optimisation where “A” is marked to the point where “B” is 

marked) the accuracy of the search grows rapidly getting an improvement of the solution of the order 



of 100kWh in about two thousand function evaluations. This can also be seen in the stage where 

EnergyPlus is used, in which the improvement of the solutions goes from around 500 kWh to 1 kWh 

in around 1300 evaluations.  

This rapid convergency of the method explains the higher efficiency of the CMA-ES-SA, it can 

be seen that the GA gives a constant logarithmic improvement of the solution. However the CMA-ES-

SA shows that at the beginning of each change of the assessment tool, the algorithm improves the 

solution rapidly, and making the assessment sequential provides 3 such stages. 

Finally it should be said that two of the 20 optimisations done with CMA-ES-SA failed as they 

converged immediately after changing to EnergyPlus. The similarities in the objective landscape 

when the assessment tool was the LPM and when the assessment tool was EnergyPlus, made the 

algorithm not able to recognise the change and therefore diversity was not augmented. The 

termination criteria (sigma <0.09) was reached before the CMA-ES-SA was able to explore the new 

landscape provided by EnergyPlus. This problem is easily solvable by imposing a minimum number 

of function evaluations for EnergyPlus. In this case a minimum of 100 function evaluations would be 

enough, as this would allow the algorithm to increase the step-size and eliminate the potential 

premature convergency.  

The CMA-ES is effective in adapting the parameters of the optimisation to new landscapes, 

and therefore in solving this kind of optimisation problem. If one observes the step-size (sigma) of the 

CMA-ES-SA in Figure 9, one can see that at the points where “A” and “B” are located (i.e. where the 

assessment tool changes), sigma starts getting larger. This is because the algorithm is able to 

recognise the changes in the landscape, and starts increasing the step-size to make sure that the new 

landscape is explored properly. However, it would appear that the algorithm should be forced to run a 

minimum of function evaluations at each stage to ensure that the internal mechanisms of the algorithm 

are able to recognise the new objective landscape. The premature convergency is likely to happen 

when the sigma required to change the assessment tool is similar to the sigma required to terminate 

the optimisation, as happened in this case.  

The algorithm was able to cope well with the symbolic variable, providing the same results in 

the CAM-ES-SA run and the GA run. 

6 Conclusions 

The methodology suggested in this paper has been seen to need less computational time in this 

application than a GA that uses only one assessment tool to evaluate the solutions.  

It is seen that the optimum found using the LPM simulator is similar to that found using 

EnergyPlus. This justifies the use of this kind of model in previous publications [5] or [6]. 



Several software developers, such as IES-<VE>, and EnergyPlus are integrating optimisation 

modules into their packages
3,4

.  These new modules can have long computational times if the 

objective functions are always evaluated using the whole comprehensive dynamic simulator; this 

paper shows that there are more efficient ways of searching for optimal solutions in building design 

and those are using self-adaptive optimisation methods and surrogate models. This method is similar 

to the natural method of building design, where simplified tools are used in the early stages when 

many variables have to be determined, and only at later stages more complex tools are used. There are 

also clear analogies to product development or scientific thought, where a series of ever more 

complex models are created with piece meal optimisation in between. 

The results of this work are in general satisfactory. However, improvements are possible; for 

example, choosing a different number of building assessment tools, or changing the criteria that make 

the algorithm jump from one assessment tool to the next, would increase efficiency further. It is 

though that in the case of running an optimisation, where the maximum level of accuracy requires 

running simulations that take the order of hours, the CMA-ES-SA could show a much better reduction 

in the computational times compared with the traditional method. 
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