Options to supply the UK steel demand and meet the CO$_2$ targets

André Cabrera Serrenho, University of Cambridge
Zenaida Sobral Mourão, University of Cambridge
Jonathan Norman, University of Bath
Jonathan Cullen, University of Cambridge
Julian Allwood, University of Cambridge

ISIE Conference 2015, Guildford, UK
July 10th, 2015
Global industrial CO$_2$ emissions, 2005

- Steel, 25%
- Cement, 19%
- Aluminium, 3%
- Plastic, 4%
- Paper, 4%
- Other, 44%

(Allwood et al., 2012)

Global crude steel production

- +70%

Mt

(World Steel Association, 2014)
Reducing steel industrial emissions and supply future demand

How can steel industry emissions be reduced?

1. Switching to more efficient production routes;
2. Increasing the efficiency of current production routes;

In the UK:

- The Government has committed to a reduction of UK GHG emissions to 80% of the 1990 levels by 2050.
- **How to supply future demand for steel in the UK and meet this climate target?**
Steel flow to supply the UK demand, 2007
Steel flow to supply the UK demand, 2007

Iron and Steel Sector

Iron Ore

End-of-Life Scrap

DR: Direct reduction
BF: Blast furnace
OHF: Open hearth furnace
BOF: Basic oxygen furnace
EAF: Electric-arc furnace
FIC: Foundry of iron casting
IC: Ingot casting
CC: Continuous casting
SPC: Steel product casting

Rolling/Forming

Other Industry Sectors

UK Stock Added

Vehicles

Industrial Equip.

Construction

Metal Products

Legend

- Iron Ore used in the Rest of the World [Mt]
- UK Production [Mt]
- Crude Iron produced in the Rest of the World [Mt]
- Scrap in the Rest of the World [Mt]
- Steel produced in the Rest of the World [Mt]
- Losses [Mt]
In-use stock saturation

Stock added (per capita)

2030+

Metal goods

Vehicles

Industrial Equipment

Buildings and infrastructure

Stock removed (per capita)
Estimating future UK crude steel demand

<table>
<thead>
<tr>
<th>Product categories</th>
<th>Saturation stock [tonnes per capita] (Pauliuk et al., 2013)</th>
<th>Average lifetime [years] (Pauliuk et al., 2013)</th>
<th>Demand for new steel additions to stock [Mt]</th>
<th>Demand for crude steel [Mt]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicles</td>
<td>1.3</td>
<td>20</td>
<td>5.4</td>
<td>7.4</td>
</tr>
<tr>
<td>Industrial equipment</td>
<td>0.9</td>
<td>30</td>
<td>2.6</td>
<td>3.4</td>
</tr>
<tr>
<td>Buildings and infrastructure</td>
<td>10.0</td>
<td>75</td>
<td>13.3</td>
<td>16.4</td>
</tr>
<tr>
<td>Metal goods</td>
<td>0.6</td>
<td>15</td>
<td>3.3</td>
<td>4.6</td>
</tr>
<tr>
<td>Total</td>
<td>12.8</td>
<td>24.5</td>
<td>31.7</td>
<td></td>
</tr>
</tbody>
</table>
Options for future UK steel production
Options for future UK steel production

<table>
<thead>
<tr>
<th>Iron sources</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot metal from BF</td>
<td>67%</td>
<td>84%</td>
<td>5%</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>DRI</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>25%</td>
<td>50%</td>
</tr>
<tr>
<td>Scrap</td>
<td>33%</td>
<td>16%</td>
<td>95%</td>
<td>75%</td>
<td>50%</td>
</tr>
</tbody>
</table>
UK Carbon Plan Pathways

4 pathways for a low carbon future:

- **Core MARKAL** (cost optimisation)
 - Higher renewables; more energy efficiency
 - Higher nuclear; less energy efficiency
 - Higher CCS; more bioenergy
Emissions for the UK steel industry in 2050

- CoreMARKAL
- + CCS, + Bioenergy
- + Renewables, + Energy Ef.
- + Nuclear, - Energy Ef.

Mt CO₂

Without CCS in steel industry
With CCS in steel industry
UK Steel scenarios / Energy pathways

<table>
<thead>
<tr>
<th>A: Current Scrap / BF – BOF</th>
<th>B: BF – BOF</th>
<th>C: 95% Scrap – EAF</th>
<th>D: 75% Scrap / 25% DRI – EAF</th>
<th>E: 50% Scrap / 50% DRI – EAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>CoreMARKAL</td>
<td>High CCS, more bioenergy</td>
<td>High renewables, more energy efficiency</td>
<td>High nuclear, less energy efficiency</td>
<td></td>
</tr>
</tbody>
</table>

Total CO$_2$ emissions (in UK or other countries) required to supply UK steel demand in 2050, in terms of:

- UK production / steel imports required;
- Use of CCS in UK steel industry;
- Levels of UK electricity decarbonisation;
- Share of end-of-life scrap recycled;
- Products’ lifetime.
UK steel production / steel imports required

- CoreMARKAL
- + CCS, + Bioenergy
- + Renew., + Energy Ef.
- + Nuclear, - Energy Ef.

UK production Imports
Use of CCS in the UK steel industry
Change in products’ lifetime in the UK

- CoreMARKAL
 - + CCS, + Bioenergy
 - + Renew., + Energy Ef.
 - + Nuclear, - Energy Ef.

Mt CO₂

- A
- B
- C
- D
- E

- +50%
- +20%
- Baseline (Pauliuk, 2013)
- -20%
- UK emissions

Baseline (Pauliuk, 2013)
Conclusions

Best solutions to **minimise global CO\textsubscript{2} emissions** caused by steel purchased in the UK and to **reduce dependence on imports**:

- Maximise domestic end-of-life scrap in UK steel production;
- Deployment of direct reduced iron – electric arc furnace route in the UK;
- Extending products’ lifetime in the UK.
Options to supply the UK steel demand and meet the CO$_2$ targets

André Cabrera Serrenho, University of Cambridge
Zenaida Sobral Mourão, University of Cambridge
Jonathan Norman, University of Bath
Jonathan Cullen, University of Cambridge
Julian Allwood, University of Cambridge

ISIE Conference 2015, Guildford, UK
July 10th, 2015