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Abstract- A class of sparse optimization techniques that require solely matrix-vector products, rather 

than an explicit access to the forward matrix and its transpose, has been paid much attention in the 

recent decade for dealing with large-scale inverse problems. This study tailors application of the so-

called Gradient Projection for Sparse Reconstruction (GPSR) to large-scale time-difference three-

dimensional electrical impedance tomography (3D EIT). 3D EIT typically suffers from the need for a 

large number of voxels to cover the whole domain, so its application to real-time imaging, for 

example monitoring of lung function, remains scarce since the large number of degrees of freedom of 

the problem extremely increases storage space and reconstruction time. This study shows the great 

potential of the GPSR for large-size time-difference 3D EIT. Further studies are needed to improve its 

accuracy for imaging small-size anomalies. 

Keywords: three-dimensional electrical impedance tomography, sparse recovery, Gradient Projection 

for Sparse Reconstruction, lung imaging 

        1.      Introduction 

   Electrical Impedance Tomography (EIT) is a diffusive imaging modality for reconstructing the 

conductivity field inside an object from surface electrical measurements [1,2]. This technique has 

many applications in medicine, e.g., real-time monitoring of lung [3,4], detection of breast tumors [5], 

or imaging of brain activity [6]. Typically, a number of electrodes are attached to the skin of the 

subject, a small alternating current is injected through some of these electrodes successively, and the 

induced electrical potentials are measured on the remaining electrodes [1,2].  

   The image reconstruction is done by iteratively updating the conductivity field until 2!  norm of 

discrepancy between simulated and real measured data is minimized. From a theoretical point of 

view, it involves alternatively a nonlinear forward problem of calculating the surface voltages from 

the conductivity field via finite element method (FEM) and a severely ill-posed inverse problem for 

updating the conductivity field from the surface voltages [7-9]. To cope with the nonlinear 
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relationship between the conductivity field and the data sets, a Jacobian (sensitivity) matrix is 

computed to linearize the problem around a homogenous conductivity [8,9]. To deal with the high ill-

posedness of the problem, the inverse problem is often regularized via assuming a priori assumptions 

about the conductivity field [10-12].  

   EIT is an efficient tool for real-time monitoring of lung since there is a large contrast between the 

conductivity of air and that of the encompassing tissues [4]. There are, however, some sources of error 

during the measurement. Breathing action or posture changes may move the electrodes during the 

measurements, thus deleteriously affecting the recovered conductivity [13,14]. To cope with such 

errors, time-difference reconstruction is often given precedence over absolute reconstruction. 

Employing the time-difference reconstruction, the objective is to infer conductivity changes from 

difference between two boundary data sets that are measured at different times [14]. 

   Classical quadratic inverse solvers in EIT often consider some correlations between adjacent finite 

elements, thereby reducing the ill-posedness of the problem [11]. In this way, the problem is 

stabilized at the cost of imposing some smoothness on the reconstructed image, so detecting sharp 

discontinuities over the conductivity field will be impossible [15,16]. There are, however, many 

organs that have well defined boundaries, and thus represent sharp variations over the conductivity 

profile, e.g., interfaces between collapsed and ventilated regions of lung [15, 17].  

   To overcome this effect, Total variation (TV) regularization has been applied to EIT, thanks to its 

ability to better preserve sharp interfaces, compared to the classical quadratic regularization [15,18]. 

To the best of our knowledge, the TV reconstruction schemes that have been applied to EIT so far are 

based on Newton’s method, e.g., Primal-Dual interior point method or Lagged diffusivity method 

[15,18]. These codes are available on EIDORS website [19]. Newton’s methods intuitively require 

inverse Hessian, so their application to 3D EIT leads to very large computations.  

   EIT is inherently three dimensional since electrical current cannot be confined to flow solely at the 

electrodes plane. As a result, 2D EIT is subject to artefacts produced by contrasts that are off the 

electrodes plane [20]. 3D EIT has thus received much attention with at least two planes of electrodes 

[20-30]. Among quadratic regularized solvers, Krylov subspace methods such as Conjugate Gradient 

(CG) best suit 3D EIT, as classical Newton’s methods involve the costly inversion of Hessian [26-28]. 

Indeed, the very large size of forward operator in 3D EIT increases the ill-posedness of the problem, 

as well as computational time. As a result, the main advantage of EIT over other imaging modalities 

for real time imaging will be lost [29,30]. 

   Finding sparse solutions to large-size linear systems of equations has attracted much interest 

recently [31-33]. The presence of an 1!  norm as the regularization function encourages small 

components of the unknown parameters to become exactly zero, thus promoting sparse solutions [31].  
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   To reduce the computational cost of calculating the conductivity over a large number of finite 

elements in 3D EIT, this study tailors the application of a class of sparsity inverse solvers that does 

not require the Jacobian ( J ) to be stored explicitly, but only needs matrix-vector products including 

J  and TJ [31-34]. This study shows the great potential of the so-called Gradient Projection for 

Sparse Reconstruction (GPSR) method for time-difference 3D EIT. The GPSR was first proposed in 

the context of signal processing [31], and has then been extended to other applications (See [35-42]). 

Applying time-difference imaging, the GPSR splits the update at each iterate into its negative and 

positive parts, and then enforces a nonnegativity constraint on each part so that the background 

conductivity is gradually set to zero with the progress of the solver [31]. Since for the time-difference 

reconstruction, the background is typically set to zero, and a solution around zero is expected, it 

benefits notably from the splitting behavior of the GPSR, unlike other competing sparsity solvers, 

which fail to possess this advantage.  

   Furthermore, the superiority of the GPSR over other popular sparsity solvers, e.g., l1-ls [32], two-

step iterative shrinkage thresholding (TWIST) [33], or fixed-point continuation (FPC) [34], for large-

scale inverse problems has already been demonstrated, e.g. [31]. 

   The sparsity regularization for EIT has attracted much interest recently. To best of our knowledge, 

the most well-known algorithm for sparsity reconstruction in EIT was proposed in [43], and was then 

applied to real experiments [44,45]. Although similar to the GPSR, this algorithm follows a gradient-

based method which requires solely matrix-vector products, it does not benefit from the splitting 

scheme in the GPSR. In addition, a direct application of the Gradient of the residual leads to 

numerical instability for this algorithm, even in two-dimensional cases, so a Sobolev smoothing step 

is applied to the gradient via solving an augmented Dirichlet boundary value problem at each iterate, 

which increases the computational cost [43-45].  

   Typically, the gradient-based sparsity reconstruction considerably reduces the computational cost in 

comparison to Newton-based !! reconstructions such as [46]. In spite of the very fast nature of these 

solvers, which is highly demanded for 3D imaging of lung function, their application to 3D lung 

imaging has not been reported so far. To the best of our knowledge, this manuscript reports the first 

application of the Gradient-based sparsity reconstruction for this case.  

   Preconditioned Conjugate Gradient (PCG), the most popular algorithm for large-size 3D EIT, 

available on the EIDORS website [19], is considered as the first benchmark [26-28]. The second 

benchmark is the sparsity algorithm specified for EIT in [43-45].  

2.      Method 

2.1. Forward and inverse models 
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   The forward problem in EIT is to calculate the surface electrical potentials on the electrodes ( U ) as 

a function of the injected currents ( I ) and the conductivity distribution ( ! ). To implement the 

forward problem, elliptic partial differential equations (PDEs) are defined over the mesh according to 

Ohm’s law. Neumann and Dirichlet boundary conditions are determined as functions of the boundary 

data sets (!! !). The resulting nonlinear systems of equations are written as I!U )(F!= , where  

! ! ! ! ! ! denotes Neumann-to-Dirichlet (NtD) map, and !! ! ! ! represents Dirichlet-to-

observation map [1,2]. The resulting problem is nonlinear with respect to the conductivity, so it is 

linearized around the background conductivity bg! via computing the Jacobian ( J ) as follows [9]. 

)())()(( bgbgFF !!JI!!U !"!= #$ .                                                                                              (1) 

   Applying the time-difference imaging, the objective is to calculate conductivity changes !!  from 

difference between two data frames that are measured at times 1t and 2t ( V! ) [13,14]. In a matrix 

notation, in light of !JU !! = , the inverse problem is to infer !!  from the real difference measured 

data V! in the form 

!V!J
!

!onassumption priorias.t.!!min 2

2!
!                                                                        (2) 

The unconstrained Tikhonov form of (2) can be written as  

)!(!!min 2

2!
!V!J

! rR!+" ,                                                                                                            (3) 

where 

 r
r

rr
R

!
!! 1)( = .                                                                                                                                  (4) 

2.2. Preconditioned Conjugate Gradient (PCG) inverse solver 

   The choice of 2=r  turns problem (3) to quadratic regularized form [8-12]. In this work, to evade 

the costly computation of inverse Hessian, the quadratic optimization problem is solved by the PCG, 

rather than Newton’s methods. PCG method is a Krylov subspace techniques [47]. Generally, setting 

the derivative of least squares problem 
2

2!
!!min !JV

!
!  to zero yields 

VJ!JJ !! TT = .                                                                                                                                   (5) 

Applying the PCG to Eq. (5) yields the following optimization algorithm. Given J , V! , initial guess 

0!! , preconditioner M , and stopping tolerance! , the algorithm is outlined as follows.  
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   Algorithm 1. Preconditioned Conjugate Gradient [47] 

0! 0 =! !

00 !! !JVr != !

010 rMd != !

000 )( dr T=! !

While !"" >)/( 0k   Do 

kk Jdq = !

kTk

k
k

qd )(

1!

= "# !

kkkk d!! !+" #1!! !

kkkk qrr !"# "1 !

kk rMs 1!= !

kTkk sr )(=! !

1!= k

k
k

"
"# !

kkkk dsd !+"+1 !

1+! kk !

End   Do 

Where, !! and !! denote the search direction and step length at iteration k, respectively. In this work, 

the PCG is implemented with the aid of the EIDORS software [19], and is regarded as the first 

benchmark for evaluating the performance of the proposed inverse solver. The second benchmark is 

the most well-known sparsity algorithm in EIT [43-45], which is outlined in appendix. For further 

theoretical details, the reader is referred to [43-45]. 

 2.3. Sparse recovery 

   Many different approaches have been proposed to seek a sparse solution to large-size linear system

nAxy += , where y is the observation data and n is the noise. Roughly they can be divided into two 
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categories, i.e., constrained and unconstrained optimization problems. Assuming T and ! to be 

nonnegative parameters, the constrained form leads to the following two formulations, i.e.,  

T!"
1

2

2
s.t.min xAxy

x
,                                                                                                        (6) 

the so-called Quadratic program (QP), i.e., least absolute shrinkage and selection operator (LASSO) 

[48], and 

!"# 2

21
s.t.min Axyx

x
,                                                                                                         (7) 

namely Quadratically constrained linear program (QCLP), or Basis pursuit with ! ! ! [49]. 

There has also been much interest in solving the unconstrained form of the problem, i.e.,  

1

2

2
min xAxy

x
!+" ,                                                                                                                      (8) 

where !  is the regularization parameter. It was proved that a solution of (6) for ! ! ! is a minimizer 

of (8) for some ! ! !. Similarly, a solution of (7) is either ! ! !, or a minimizer of (8) for some 

! ! ! (31).  

2.4. Gradient Projection for Sparse Reconstruction (GPSR) inverse solver 

The choice of 1=r  conducts problem (3) to  

12!
!!!min !!JV

!
!+" ,                                                                                                               (9) 

which is equivalent to Eq. (8). 

   The GPSR approach is applied in this work to infer a sparse solution of the conductivity changes 

from the difference data !!. The base of this approach is to initially split the unknown vector !!  into 

its positive and negative parts, and then enforcing a nonnegativity constraint on each part [31], i.e., 

0,0,! !!"= wuwu! .                                                                                                                (10) 

Accordingly, considering a mesh made up of n finite elements, for ni ,...,2,1= ,  

+

+

!=
=

)!(
)!(

ii

ii

!w
!u

,                                                                                                                                    (11) 
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where { }xx ,0max)( =+ . Considering the penalty term in (9) in the form w1u1! T
n

T
n +=

1
!  with 

T
n ]1,...,1,1[=1  yields [31] 

 0 0,    s.t.)(!min 2

2,
!!++"" wuw1u1wuJV

wu

T
n

T
n ##  .                                                  (12) 

Supposing !
"

#
$
%

&
=

w
u

z , 
!
!
"

#

$
$
%

&'
+=

VJ

VJ
1c

!

!
2 T

T

n(  and !
"

#
$
%

&
'

'
=

JJJJ
JJJJ

B
TT

TT

, (12) is rewritten as 

0s.t.)(
2
1min !"+ zzBzzzc

z
#TT .                                                                                           (13) 

   Now Gradient projection (GP) method is employed, which involves two stages at each iteration 

[31,50]. First, given kz , 0>k!  is chosen as a step length for searching along negative direction 

)( kz!"#  from kz  in the feasible set. 

  +!"= ))(( kkkk zz! #$                                                                                                                    (14) 

The nonnegativity constraint imposed to k! iteratively nulls the background with the progress of the 

algorithm. ]1,0[!k"  is then chosen to set 

)(1 kkkkk ! z!zz !+=+ .                                                                                                                    (15) 

The step length k!  is chosen in two different ways, which is explained in the sequel. 

2.4.1. Basic GPSR 

 Employing the basic variant of the GPSR, the gradient is defined as [31]  

!
"
# <$>$

=
otherwise,0

0))((or0if,)( i
kk

ii
k

k
i

zzz
g

%%
,                                                                        (16) 

Applying the gradient in this way prevents the elements of z that were nulled by the constraint in the 

previous iterates from any further updates, reducing the number of degrees of freedom of the problem 

iteratively. An initial guess for !  is chosen so that!  is minimized along kg , i.e., 

)(minarg0
kkk gz !"!

!
#= .                                                                                                               (17) 

An exact minimizer for the above problem is written as [31]  
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kTk

kTk
k

Bgg
gg

)(
)(

0 =! ,                                                                                                                               (18) 

0!  is then encountered by upper and lower bounds min! and max! . For the backtracking line search, 

considering scalar parameters )1,0(!"  and )2/1,0(!µ , k! is chosen to be the first value in the 

sequence ,...,, 0200 !""!!  that satisfies 

)))((()()()))((( ++ !""!"#!" kkkkTkkkkk zzzzzzz $%$µ$$%$                                         (19) 

2.4.2. Barzilai-Borwein GPSR 

Employing Barzilai-Borwein (BB) scheme, k!  is chosen such that Ik! approaches the inverse 

Hessian )(2 x!" over the latest step. Letting 1!!= kkks zz  and )()( 1!"!"= kkk zz ##$ , the exact 

step length is computed as  

 
kTk

kTk
kkk

ss
ss

)(
)(minarg

2

20
!!""

"
=#= .                                                                                             

(20)                                                                                                                                                

0!  is then encountered by upper and lower bounds min! and max! , similar to the basic GPSR. In 

comparison to the BB GPSR in [31], a more sophisticated version of the BB rule was employed in our 

study. This BB rule was similarly applied to the standard sparsity algorithm presented in Appendix, 

according to [43-45]. The step length computed by Eq. (20) is reduced in an inner iteration by a 

constant factor until the following criterion in Eq. (21) is satisfied. It turns out that enforcing 

monotonicity would deteriorate the behavior of the BB rule on the convergence. As a result, a 

globally convergent Barzilai-Borwein is employed, where !!!! is accepted as a new iterate if [52] 

! !!!! ! ! !"#
!!!!!!!!!

! !! ! !! !

!
! !!!! ! !!

!

!
!.                                                                            (21) 

Where i denotes the ! previous iterations, and )1,0(!µ  is a constant that is often chosen near zero. 

The stopping criterion is defined based on perturbation results for linear complementarity problems 

(LCP) as follows [31,53]. There exists a scalar parameter !  such that 

)(,min(),(dist zzsz !" #$ ,                                                                                                           (22) 

where s represents the solution to problem (13), )(dist ! denotes the distance operator, and the 

minimizing operator is taken component-wise. In light of (22), the algorithm is terminated if 
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tol!" )(,min( zz # .                                                                                                                         (23) 

The GPSR algorithm is outlined as follows. 

Algorithm 2. Gradient Projection for Sparse Reconstruction [31] 

Set 00 =z , and choose [ ]maxmin
0 ,!!! "  

While stopping criterion is not satisfied Do 

Choose !! based on basic (2.4.1) or BB (2.4.2) scheme 

Set kkkkk zzz! !"!= +))(( #$   

Calculate !! ! !"#! !! !! !
!!!!!!

!! !
!!!

! !  

Set kkkk !zz !+=+1   

1+! kk  

End Do 

 

2.5. Analysis of computational cost 

   At first glance, the problem (13) may appear more costly than the classical form of the problem in 

(12) since the dimension of the problem becomes twice, i.e., nR2!z . However, Considering

Bzzzcz TT

2
1)( +=! , matrix 

!
!
"

#

$
$
%

&'
+=

VJ

VJ
1c

!

!
2 T

T

n(  is independent from the unknown parameter !! , 

so it can be computed once at the start of the algorithm. In addition, BzzT  yields a scalar value, 

which can be easily calculated as  

2

2
)()()( wuJwuJJwuBzz !=!!= TTT .                                                                                   (24) 

Therefore, the total cost for the calculation of )(z!  at each iteration involves a matrix-vector product 

)( wuJ !  and a vector-vector product zcT . To minimize !  in problem (13), the gradient of )(z! is 

computed at each iterate in the form  

Bzcz +=! )(" .                                                                                                                                (25)     

Considering 

!
!
"

#

$
$
%

&

''

'
=

)(

)(

wuJJ

wuJJ
Bz

T

T

,                                                                                                                      (26) 
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the cost for computing )(z!"  is two matrix-vector products, as c  is calculated independently from 

the iterates. In this study, the application of the GPSR to 3D EIT was tailored. To implement the 

GPSR, a MATLAB code in the context of signal processing, which is available online [54], was 

modified. 

        3.      Numerical results 

   A 3D shape of an adult human thorax was simulated by using the EIDORS and NETGEN software 

as follows [19,55]. The contour of a human thorax and lungs were plotted according to a CT image 

available on the EIDORS, and were then mapped onto a 3D finite element mesh generated by the 

NETGEN software [55]. The created 3D mesh was made up of 161021 tetrahedral elements with a 

height of 1. Thirty two circular electrodes were installed around the chest in two rings aligned by axial 

planes 0.33 and 0.66. The electrodes were simulated based on complete electrode model with a 

contact impedance of 100 !  and a radius of 0.05 [23]. An electrical current with amplitude of 5 mA 

was successively injected through the electrodes, and the induced potentials were measured according 

to planar alignment protocol, the most well-known protocol for 3D EIT [20].  

The noise contributed to the measurement data was an additive white Gaussian noise (AWGN). 

Considering the difference imaging, AWGN is simulated as 

!"#$% ! !"!!"#!!"!!!"#$#,                                                                                                      (27) 

where, where NL is noise level, std is standard deviation of difference between two frames of data, 

and randn is a vector denoting pseudorandom values drawn over a standard Gaussian distribution. 

The simulated data was contaminated with a 20 db AWGN, i.e., !" ! !"!!"!!" ! !!!  (see [19]). 

   To avoid the so-called inverse crime, the inverse solver was applied to a coarser mesh made up of 

20955 elements. The background conductivity was set to 1, while the lungs’ conductivity was set to 

0.3 1Sm! . Fig. 1(a) shows the simulated chest phantom from a 3D view. Figs. 1(b) and (c), 

respectively, exhibit the mesh from a top and a lateral view. The time-difference reconstruction was 

employed with the background conductivity as the reference data. 

                        
                          (a)                                              (b)                                                  (c) 
Fig. 1. The simulated human chest from: (a) a 3D view, (b) a top view, and (c) a lateral view.  
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   The PCG solver was implemented, and terminated at threshold 21 != e" . This parameter was 

heuristically selected to produce the image best fitting the simulated model over 100 iterates. The 

sparsity algorithm specified for EIT in [43-45], referred to as ‘’standard sparsity algorithm’’ here, the 

basic GPSR and BB GPSR were implemented, and were continued until the threshold 21 != etol . 

Heuristically, among a wide range of regularization parameters, ! ! !! ! !  produced the optimal 

image for both the basic and BB GPSR. The optimal image for the standard sparsity algorithm was 

produced by ! ! !! ! !.  

Fig. 2 displays the 3D images reconstructed by the solvers at equidistant axial cross sections. From 

the left side, the first column corresponds to the 3D image reconstructed by the PCG solver, the 

second column represents the standard sparsity algorithm, and the third and fourth columns pertain to 

the basic GPSR, and BB GPSR, respectively. The slices were exhibited according to the colourbar 

shown to the right of each column, which was adjusted such that its minimal value represents 

discrepancy of the conductivity between the lungs and background in the simulated phantom, i.e., -0.7
1Sm! . The vertical position of each transverse plane was written to the left of the figure. 

                                            

Fig. 2. From the left side, the 3D images reconstructed by the PCG, standard sparsity, basic GPSR, 

and BB GPSR, displayed at transverse planes written to the left of the figure.      

   Observations. As shown in the left column of Fig. 2, the PCG produced a great blurriness, and 

failed to precisely detect the sharp conductivity jumps over the reconstructed image. These smoothing 

effects have given rise to a low spatial resolution aligning all dimensions. A fair comparison between 

Fig. 1 (b) and the second column in Fig. 2 reveals that the standard sparsity algorithm was not tolerant 

enough to accurately determine the lung boundaries. Furthermore, comparing the second column to 
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Fig. 1(c) shows that the spatial resolution aligning the longitudinal axis has been lost, and a great 

artefact has been produced in the top and bottom slices, where the lungs do not exist.  

   As displayed in the third and fourth columns of Fig. 2, the GPSR solver considerably improved the 

reconstruction in determining the sharp jumps over the conductivity profile.  A comparison between 

Fig. 1 and the two last columns reveals that the GPSR determined the lung boundaries more 

accurately than the PCG and standard sparsity algorithms over all the transverse planes. According to 

the colourbars, the GPSR determined the conductivity changes amplitude with a much higher 

accuracy as well. Furthermore, compared to the basic GPSR, conducting the GPSR through the BB 

scheme improved the solution regarding contrast, as well as the amount of artifact. Figs. 3 (a), (b) and 

(c), respectively, exhibit the images reconstructed by the standard sparsity, basic GPSR and BB GPSR 

from a 3D view. In other words, Figs. 3(a), (b) and (c) represent 3D views of the images shown in the 

second, third and fourth columns in Fig. 2. The image reconstructed by the PCG was neglected, as it 

was covered by very large amount of artefacts around the lungs. 

               

                    (a)                                                     (b)                                                      (c) 

Fig. 3. The images reconstructed by: (a) the standard sparsity (second column in Fig. (2)), (b) basic 

GPSR (third column in Fig. (2)), and (c) BB GPSR (fourth column in Fig. (2)), from a 3D view. To 

better visualize the inclusions, maximal values of colourbars were increased, compared to Fig.2. 

The performance of the solvers was evaluated in terms of Relative Error (RE), i.e., 

2

2

phantom

phantomsolution
RE

!

!! !
= ,                                                                                                                (28) 

where phantom!  denotes the conductivity distribution over the simulated phantom, and solution!  denotes 

the computed absolute conductivity, i.e., the calculated conductivity changes plus the background. 

Accordingly, the first row in Table 1 shows the RE for the reconstructed images. The RE of the 

images reconstructed by the basic and BB GPSR was, respectively, 31% and 43% smaller than that of 

the standard sparsity algorithm. The PCG produced much greater RE than all the employed sparsity 

algorithms. 
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   Computational cost.  The second row in Table 1 shows the CPU time elapsed on implementing the 

solvers. All the computed CPU times involve 0.81 Sec for computation of the Jacobian. The processor 

that was employed in this work is an Intel® Core ™ i3-3220 Processor (3.30 GHz) with a RAM of 

4GB and a 64-bit operating system (Windows 7, Microsoft, Seattle, WA). 

Table 1. The RE of the images reconstructed from the simulated chest and the CPU time. 

  PCG  Standard Sparse  Basic GPSR  BB GPSR 

RE  0.61  0.35  0.24  0.20 

Time  25.81  10.73  1.93  5.79 

 

According to Table 1, the GPSR considerably reduced the computational time, compared to the 

competing algorithms. Since the BB scheme typically conducts the solution without forcing the 

objective function to decrease monotonically through all the iterations, the CPU time elapsed on the 

BB GPSR was three times more than the basic GPSR. In this way, the BB scheme reconstructed the 

image with an RE 17% smaller than the basic GPSR. 

        4.      Experimental results 

   To validate the proposed image reconstruction, the algorithms were also tested on a real data 

measured from a human chest. The data, which is available on the EIDORS website, pertains to thirty 

four frames of a breathing cycle of a human subject [56]. To recover the real shape of lungs in a 3D 

representation, a very fine mesh was needed. Accordingly, the inverse problem was applied to a 

simulated chest made up of 143119 voxels. Fig. 4 displays the created mesh from a 3D view. The 

electrodes were placed aligning axial plane 0.5, and were represented by the green circles. 

                                                    

Fig. 4. The chest phantom created for reconstructing image from the experimental data pertaining to 

thirty four frames of a breathing cycle.  

   Employing the solvers, the time-difference imaging was applied such that the first frame was used 

as the reference data. The PCG algorithm was first employed, and the images were calculated at 

stopping threshold 37 != e" , which produced the best image heuristically. Fig. 5 shows the 

reconstructed images concerning all the thirty four frames. Note that these frames are originally 3D 
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images that are shown solely at axial plane 0.5, aligned by the electrodes plane, due to space 

constraints.  

                                            

Fig. 5. The 3D images reconstructed by the PCG solver at thirty four frames of the breathing cycle. 

The slices were taken at the electrodes plane. 

   Since the simulated results showed the superiority of the GPSR over the standard sparsity algorithm 

proposed in [43-45] regarding both accuracy and time, the standard sparsity solver was neglected in 

this section. The GPSR solvers were implemented until 21 != etol , and 3D images were computed. 

The regularization parameter was heuristically chosen to be ! ! !! ! !. Figs. 6(a) and (b), 

respectively, display the images reconstructed by the basic and BB GPSR at the electrodes plane. 

                  

                                  (a)                                                                                     (b) 

Fig. 6. The 3D images reconstructed by: (a) the basic GPSR, and (b) BB GPSR at thirty four frames 

of the breathing cycle. The slices were taken at the electrodes plane. 



15 
 

 Observations. The results show that PCG failed to accurately recover shape of the lungs over a 3D 

chest phantom with such large number of voxels. The images include great amounts of artifact as 

well. On the other hand, the GPSR considerably improved the reconstruction. Both the basic and BB 

GPSR better determine the lung shape during the breathing cycle, compared to the PCG. In addition, a 

fair comparison between Figs. 6(a) and (b) shows that the BB scheme provided a better contrast over 

the frames than the basic scheme, as well as a smaller amount of artefact.  

For all the solvers, the maximal mean of conductivity changes occurred for the 22nd frame of the 

breathing cycle. Fig. 7 exhibits the images pertaining to the 14th, 22nd, and 30th frames from a 3D 

scene. Figs. 7(a), (b) and (c) show the images of the 14th frame, in the middle of inhalation stage, 

reconstructed by the PCG, basic and BB GPSR, respectively. Similarly, Figs. 7(d), (e) and (f) show 

3D views of the images of the 22nd frame, maximum end-respiratory. Figs. 7(g), (h) and (i), 

respectively, represent the 3D images reconstructed by the PCG, basic and BB GPSR for the 30th 

frame of the breathing cycle, in the middle of exhalation stage. In other words, Figs. 7(a), (d) and (g) 

represent the three aforementioned frames of Fig. (5), Figs. 7(b), (e) and (h) show the 3D view of 

these frames in Fig. 6(a), and Figs. 7(c), (f) and (i) represent the corresponding frames of Fig. 6(b). To 

better visualize the 3D images, maximal values of colourbars were increased, compared to Figs. (5) 

and (6) so that very small artefacts were neglected. As shown in this figure, compared to the PCG, the 

GPSR solvers better recovered shape of the lungs, and reduced the amount of artefact. 

              

                      (a)                                                   (b)                                                      (c) 

            

                     (d)                                                   (e)                                                      (f) 
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                  (g)                                                      (h)                                                      (i) 

Fig. 7. The images of the 14th  frame of the breathing cycle from a 3D view, reconstructed by: (a) 

PCG, (b) basic GPSR, and (c) BB GPSR, the images of the 22nd frame of the breathing cycle from a 

3D view, reconstructed by: (d) PCG, (e) basic GPSR, and (f) BB GPSR, and the 3D images of the 30th    

frame, reconstructed by: (g) PCG, (h) basic GPSR, and (i) BB GPSR.    

   Computational cost.  In real-time imaging, e.g., monitoring of pulmonary function, the 

reconstruction time is vital, which limits the applicability of the 3D reconstruction as a result of the 

need for a large number of voxels. Table 2 shows the CPU time consumed by the employed solvers 

for reconstructing 3D images of all the thirty four frames. According to this table, the GPSR 

noticeably reduced the reconstruction time, compared to the PCG. This table also affirms that the 

execution of the BB GPSR is more than the basic GPSR. Indeed, the BB scheme does not force the 

objective function to decrease monotonically through all iterates, and adjusts the step length in a more 

sophisticated way, so the accuracy of the solution was improved at the cost of the reconstruction time. 

The results show that the BB and basic GPSR were, respectively, 4.83 and 9.09 times faster than the 

PCG in reconstructing all the frames. 

Table 2. The CPU time elapsed on reconstructing images from the real human lung data over all the 

thirty four frames (Sec).  

PCG  Basic GPSR  BB GPSR 

144.79  15.92  29.94 

        5.      Discussion 

   The results show that both the basic and BB GPSR are more tolerant than the standard sparsity and 

PCG algorithms for 3D EIT of human chest. To the best of our knowledge, the most valid sparsity 

solver for EIT is the algorithm proposed in [43], which was then tested on real data in [44,45]. 

Namely standard sparsity here, we regard this algorithm as the benchmark for testing the performance 

of the GPSR inverse solvers. According to appendix, the convergence of this algorithm is contingent 

on computation of a smoothed Sobolev gradient of the residual norm, which imposes some 

smoothness on the solution, as well as extra time for solving the corresponding Dirichlet boundary 
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value problem at each iterate. As shown in the simulated results in section 3, the basic and BB GPSR 

outperformed the standard sparsity solver regarding the accuracy and time. 

In addition, the PCG is regarded as the most well-known solver for 3D EIT in both literature and 

EIDORS website since it does not require the inverse Hessian, in contrast to classical Newton’s 

methods [19, 26-28]. The PCG, however, deleteriously smoothed the solution, and failed to accurately 

determine sharp conductivity jumps over lung boundary. As a result, the resulting images contain very 

little information for diagnostic purposes. In addition, although its computational cost is much lower 

than Newton’s method, it is not yet tolerant enough to deal with a large number of finite elements, i.e., 

more than 20000 voxels. Indeed, the 3D reconstruction for real cases suffers severely from the large 

number of degrees of freedom of the problem, which increases the ill-posedness, as well as the 

reconstruction time. 

   The GPSR was already proposed in the context of signal processing for sparse recovery of signals 

[31]. A modified version of the GPSR was tailored in this study for the time-difference 3D EIT. Both 

the numerical and experimental results reveal that the basic and BB GPSR noticeably improved 3D 

EIT for real-time lung imaging, compared to the PCG and the standard sparsity solvers. Applying the 

GPSR to the time-difference 3D EIT, the updated conductivity changes with positive and negative 

values are regarded as separate sparse vectors, and subsequently enforcing a nonnegativity constraint 

to the gradient projection nulls the background conductivity through the iterates. The results show the 

high potential of the GPSR for time-difference 3D EIT. The computations only require matrix vector 

products, so the computational cost arising from explicitly storing J  and JJT  will be removed. Both 

the basic and BB GPSR provided a more accurate conductivity profile during the breathing cycle 

regarding determination of interfaces, as well as the conductivity amplitude. In addition, the results 

show that the GPSR better addressed the large number of voxels, and appreciably reduced the CPU 

time against the competing solvers. 

   However, according to our previous numerical results, the main drawback of the GPSR for 

application to 3D EIT is that its accuracy is severely deteriorated in determining very small inclusions 

[57]. This problem was addressed by adopting a compressive sensing scheme for sampling the finite 

elements covering the inclusions. By application of a preprocessing PCG step, the proposed scheme 

improved accuracy at the cost of speed. For further information, the reader is referred to [57]. 

           6.      Conclusion 

   3D EIT typically suffers from the need for a large number of finite elements to cover the whole 

domain, thus requiring very large computations [26-28]. Although the main advantage of 2D EIT for 

real-time imaging of lung is its high speed [4,6], the applicability of 3D EIT to this case remains 

scarce, since the large number of degrees of freedom of the problem increases the computational cost 
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notably. Indeed, recovery of inter-medium interfaces inside human organs will be erroneous over a 

coarse mesh. For example, for lung monitoring, sharp jumps over the conductivity profile cannot be 

detected suitably over a coarse mesh, thus providing misleading physiological information. This study 

showed that the GPSR algorithm best suits 3D EIT of chest. The GPSR suitably deals with a large 

number of voxels, and determined the conductivity field more accurately than the PCG and standard 

sparsity solvers, at the same time considerably reducing the computational time. Further studies are 

still needed to cope with its poor performance in imaging small-size anomalies.  

      Appendix  

Algorithm 3. The sparsity algorithm proposed for EIT in [43-45] (standard sparsity solver) 

Set !!! ! ! 

While stopping criterion is not satisfied Do 

! !!! ! !! ! !!!!
!
!
 

Compute !! !!! ! !! ! !!!! ! !!  

Compute the Sobolev smoothed gradient via Dirchlet boundary value problem  

!!"!!!!!!! ! !!!!!!! ! !! !!!  in !   s.t.  !! !!! ! ! on !  

Determine the step length !! via an inner iteration based on the BB scheme 

Update the conductivity changes !!!!! ! !!! ! !!!! !!!  

!! !!!!! ! !"#$! !!!!! !!"# !!!!! ! !! !  

End DO 

   Where,!! and ! represent the medium and its boundary, respectively, and !! denotes Sobolev 

smoothed gradient of the residual (See [43]). !! denotes the soft shrinkage operator with ! ! !!, 

which sets small elements of each update to zero, thus promoting the sparse solution, ! denotes the 

Laplacian operator, and!! is a scalar parameter controlling the degree of smoothing of the gradient.  

   Similar to the GPSR algorithm, the stopping criterion was adopted based on LCP, according to Eqs. 

(22) and (23) with replacing !! by!!!! . 

   The rationale behind employing the smoothed Sobolev gradient is that heuristically, the direct 

application of !! to this algorithm exhibits unappealing oscillations in the reconstruction, which 
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often gives rise to numerical instability. This is another superiority of the GPSR over this algorithm, 

as the GPSR suitably converges through the direct application of the gradient. 

Applying the BB scheme, an initial guess for the step length is made according to Eq. (20). This initial 

guess is then iteratively reduced until the following equation is satisfied  

! !!! ! !! !!! ! !!!! !!! ! ! !"#!!!!!!!!!!! ! !!! ! !! !
!
! !! !!! ! !!!! !!! ! !!!

!

!
,         (A1) 

 where, i denotes the ! previous iterates, and )1,0(!µ  is a constant that is often chosen near zero.  
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