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The Orienteering Problem with Variable Profits

Güneş Erdoğan ∗ Gilbert Laporte †

July 10, 2012

Abstract

This paper introduces, models and solves a generalization of the Orien-

teering Problem, called the The Orienteering Problem with Variable Profits

(OPVP). The OPVP is defined on a complete undirected graph G = (V,E),
with a depot at vertex 0. Every vertex i ∈ V \ {0} has a profit pi to be
collected, and an associated collection parameter αi ∈ [0, 1]. The vehicle may
make a number of “passes”, collecting 100αi percent of the remaining profit
at each pass. In an alternative model, the vehicle may spend a continuous
amount of time at every vertex, collecting a percentage of the profit given by
a function of the time spent. The objective is to determine a maximal profit
tour for the vehicle, starting and ending at the depot, and not exceeding a
travel time limit.

Keywords: orienteering problem, linearization, interger programming, branch-
and-cut.

1 Introduction

In the Orienteering Problem with Variable Profits (OPVP), we are given a
complete undirected graph G = (V,E), where V is the set of vertices and E
is the set of edges. Let T be a subset of compulsory vertices of V , including
a depot 0. Every vertex i ∈ V \ {0} has a profit pi to be collected, and
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an associated collection parameter αi ∈ [0, 1]. A vehicle based at the depot
may make a number of “passes” at each vertex it visits. In our context, a
pass means staying a predefined amount of time at a vertex. When a vehicle
makes k passes at a vertex, it stays there k times as long as if it did a single
pass, before leaving the vertex. Each pass at vertex i requires ri units of time
and successfully collects 100αi percent of the remaining profit. A travel time
tij satisfying the triangle inequality is associated with every edge (i, j) ∈ E.
The aim is to determine a maximal profit tour for the vehicle, starting and
ending at the depot, visiting all compulsory vertices, and not exceeding a given
travel time limit L. As an alternative model, we also consider the option of
spending zi time units at vertex i, collecting a percentage of the profit given by
a function of zi. Figure 1 depicts a feasible tour for the first model, where the
size of the vertices reflect the associated profit and the mandatory vertices are
emphasized with solid perimeters. Inner circles of increasing sizes represent
larger amounts of collection through multiple passes. The vehicle leaves the
depot and visits five vertices. It performs two passes at the first and fourth
vertex it visits, and returns to the depot after visiting the fifth vertex.

The OPVP belongs to a broader class of problems known as Traveling

Salesman Problems with Profits (TSPPs). We refer the interested reader to
the comprehensive survey by Feillet et al. (2005). Based on the classification
system presented in this survey, TSPPs contain three subclasses, depending on
how the objectives of minimizing distance and maximizing profit are handled.
The first class consists of problems in which both objectives are combined in
a linear fashion. The second class is composed of problems in which the travel
cost is a constraint and the objective is to maximize the profits collected.
Finally, problems in which the profit is a constraint and the objective is to
minimize the travel cost constitute the third class. With respect to this clas-
sification scheme, the OPVP belongs to the second class, together with the
Orienteering Problem (OP) (Golden et al. 1987), the Maximum Collection

Problem (Kataoka and Morito 1988), and the Selective Traveling Salesman

Problem (STSP) (Laporte and Martello 1990).
In the past decade, a number of studies have been conducted in the area of

the TSPP, all belonging to the second class. Most have focused on the Team

Orienteering Problem (TOP), a multi-vehicle variant of the OP. The TOP
has been tackled by Tang and Miller-Hooks (2005), Archetti et al. (2007), and
Vansteenwegen et al. (2009) using metaheuristics, as well as by Archetti et al.
(2009) who have applied both heuristic and exact methods. To the best
of our knowledge, the most successful heuristics are due to Ke et al. (2008)
and Souffriau et al. (2010), whereas the most successful exact algorithm is
that of Archetti et al. (2009). The paper by Archetti et al. (2009) also fo-
cuses on the Profitable Tour Problem, the single vehicle variant of the TOP.
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Figure 1: An illustrative example of the OPVP

An interesting application of the OP to the design of circuits for tourists is
presented by Souffriau et al. (2008). We refer the reader to the paper by
Vansteenwegen et al. (2011) for a recent survey on the OP.

Outside the domain of the OP, two notable studies have focused on a bi-
objective variant of the STSP (Bérubé et al. 2009a) and on an undirected for-
mulation for the Prize Collecting Traveling Salesman Problem (Bérubé et al.
2009b). Finally, Erdoğan et al. (2010) have presented the Attractive Traveling

Salesman Problem, where the vertices are partitioned into facility vertices and
customer vertices. The vehicle visits a subset of the facility vertices, and every
such vertex attracts a portion of the profit from the customers according to
their distance from the facility, and on its attractiveness.

A potential application of the OPVP arises in the fishing sector. For
example, in North America, there often exists a legal time limit on fishing, the
suitable locations for fishing are quite specific, and the amount of fish at each
location is variable. Another application can be found in the entertainment
sector, where multiple shows or a longer stay at a location may be required to
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collect more profit. A military application is encountered in the routing of a
reconnaissance vehicle, which has the option of staying longer at a location to
gather more information. A final application arises in humanitarian logistics,
where a helicopter looks for the survivors of a disaster, distributing food and
first aid kits whenever survivors are found. Multiple passes or longer stays at
target locations should increase the expected number of survivors found.

Our aim is to develop a unified branch-and-cut algorithm for the two ver-
sions of the OPVP just described. The remainder of this paper is organized
as follows. In Sections 2 and 3, we present the integer programming formula-
tions for the case with discrete passes and for the case with continuous time at
each visited vertex, respectively. In Sections 4 and 5, we describe linearization
schemes for the cases with concave and convex collection functions, respec-
tively. In Section 6, we provide the details of the valid inequalities we adapt
from the literature and associated the branch-and-cut-algorithm. In Section
7, we present the computational results. Finally, we draw some conclusions
in Section 8.

2 OPVP with Discrete Passes

We first present a model for the case with discrete passes. We denote the
theoretical maximum number of passes at vertex i as mi (≤ ⌊(L− 2t0i)/ri⌋),
the value of which may depend on a physical constraint (e.g. fuel), or a
managerial constraint (e.g. possibility of overfishing, danger of being noticed).
Let xij be equal to 1 if the vehicle traverses edge (i, j) ∈ E, and 0 otherwise.
Furthermore, let yik be equal to 1 if k or more passes are performed at vertex
i, and 0 otherwise.

(OPVP1)

maximize
∑

i∈V \{0}

pi
∑

k∈{1,...,mi}

αi(1− αi)
k−1yik (1)

subject to

∑

j:(i,j)∈E

xij = 2yi1 (i ∈ V ) (2)

∑

i∈S,j∈V \S
or i∈V \S,j∈V

xij ≥ 2yt1 (S ⊂ V : 2 ≤ |S| ≤ |V | − 2, T \ S 6= ∅, t ∈ S) (3)

yik ≤ yi,k−1 (i ∈ V, k ∈ {2, ...,mi}) (4)
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∑

(i,j)∈E

tijxij +
∑

i∈V \{0}

ri
∑

k∈{1,...,mi}

yik ≤ L (5)

yi1 = 1 (i ∈ T ) (6)

yi1 = 0 or 1 (i ∈ V \ T ) (7)

yik = 0 or 1 (i ∈ V, k ∈ {2, ...,mi}) (8)

xij = 0 or 1 ((i, j) ∈ E). (9)

The objective function (1) maximizes the profit to be collected. The tri-
angle inequality implies that a vertex need not be visited if no collection must
be made there, hence we can use constraints (2) as the degree constraints, and
constraints (3) as the connectivity constraints. These inequalities are adapted
from the Covering Tour Problem (CTP) formulation (Gendreau et al. 1997).
Constraints (4) prohibit the vehicle from collecting a profit without visiting
the corresponding vertex. Note that in the absence of constraints (4), the
formulation allows a solution with yi1 = 0 and yik = 1 (k > 1), which corre-
sponds to making the kth pass without making the first pass that corresponds
to the visit. Constraints (5) enforce the time limit, while constraints (6) state
that all vertices in T must be visited. The integrality requirements are defined
by constraints (7), (8) and (9).

Regarding the generality of OPVP1, the objective function (1) and con-
straints (4) deserve a closer look. The objective function can be modified to
incorporate any collection function (that may be convex, concave, or neither)
by replacing the term αi(1 − αi)

k−1yik in (1) with f(i, k) which denotes the
amount of collection for the kth pass at vertex i. The collection function that
is used in (1) is almost identical to the objective function of the Maximum Ex-

pected Coverage Location Problem (MEXCLP) model of Daskin (1983), which
was proposed as a model for covering demand points with probabilistically
available resources (ambulances). The MEXCLP does not impose constraints
of type (4), since the return of the kth resource covering a demand point is
always less than that of the (k + 1)st resource. In the case of OPVP1, how-
ever, the first pass at a vertex requires the vertex to be visited. In the absence
of constraints (4), the model could make further passes at a vertex without
actually making a first pass at that vertex. We also point out that the STSP
is a special case of the OPVP1, where αi = 1 for all i ∈ V \ {0}, which proves
that the OPVP1 is NP-Hard.

3 OPVP with Continuous Time

We now move on to the second model in which the vehicle may spend a con-
tinuous amount of time at a vertex it visits. We denote the maximum amount
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of time that can be spent at vertex i as ui (≤ L−2t0i). Similar to the param-
eter mi in Section 2, the value of which may depend on a physical constraint
(e.g. fuel), or a managerial constraint (e.g. possibility of overfishing, danger
of being noticed). Let yi be equal to 1 if vertex i is visited, and 0 other-
wise. Furthermore, let zi be the time spent at vertex i, and let fi(zi) be the
corresponding amount collected. The resulting model is

(OPVP2)

maximize
∑

i∈V \{0}

pifi(zi) (10)

subject to

∑

j:(i,j)∈E

xij = 2yi (i ∈ V ) (11)

∑

i∈S,j∈V \S
or i∈V \S,j∈V

xij ≥ 2yk (S ⊂ V : 2 ≤ |S| ≤ |V | − 2, T \ S 6= ∅, k ∈ S) (12)

zi ≥ riyi (i ∈ V \ {0}) (13)

zi ≤ uiyi (i ∈ V \ {0}) (14)
∑

(i,j)∈E

tijxij +
∑

i∈V \{0}

zi ≤ L (15)

yi = 1 (i ∈ T ) (16)

zi ≥ 0 (i ∈ V \ {0}) (17)

yi = 0 or 1 (i ∈ V \ {0}) (18)

xij = 0 or 1 ((i, j) ∈ E). (19)

Objective function (10), just as that of OPVP1, maximizes the collected
profit. Constraints (11) are degree constraints, and constraints (12) are the
connectivity constraints, stated using the new variable definition. Constraints
(13) force the vehicle to spend the minimum collection time at a vertex if it is
visited. Constraints (14) prohibit the vehicle from collecting a profit without
visiting the vertex. Constraints (15) enforce the time limit, while constraints
(16) state that all vertices in T must be visited. The nonnegativity constraints
are defined by (17) and the integrality constraints by (18) and (19). As for
OPVP1, the STSP is a special case of the OPVP2, where fi(zi) = 1 for zi ≥
ri, and fi(zi) = 0 for zi < ri, for all i ∈ V \{0}. This relationship also proves
that the OPVP2 is NP-Hard.
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4 Linearization Scheme for Concave Col-

lection Functions

We now focus on the case where the collection functions fi(zi), i ∈ V \ {0}
are concave, which we call OPVP2-CV. Even though the resulting model can
theoretically be solved through nonlinear optimization algorithms, we opt to
linearize it since most nonlinear solvers work on a static problem object, and
do not accept the addition of cuts. The presence of constraints (12), which
have to be identified and added in the course of the algorithm, makes lineariza-
tion a more suitable solution approach. As part of the linearization scheme,
we define auxiliary variables wi to denote the fraction of profit collected at
vertex i. We define the collection function as fi(zi) = 1− e−βizi , where βi > 0
is a control parameter. Applying the linearization approach of Erdoğan et al.
(2010), we construct the following valid inequalities:

wi ≤ βie
−βiz

∗
i zi + 1− e−βiz

∗
i − z∗i βie

−βiz
∗
i (i ∈ V \ {0}, z∗i ∈ [0, ui]). (20)

Inequalities (20) simply define the tangents of each collection function. We
emphasize the fact that this approach is applicable for every choice of concave
collection function, and is quite similar to that of Quesada and Grossman
(1992) for convex MINLP optimization problems. The resulting linearized
formulation for OPVP2-CV is

maximize
∑

i∈V \{0}

piwi (21)

subject to

0 ≤ wi ≤ 1 (i ∈ V \ {0}), (22)

and (11) – (20).
The auxiliary variables allow us to impose the following set of valid in-

equalities without using nonlinear functions:

wi ≤ (1− e−βiui)yi (i ∈ V \ {0}). (23)

Denote the linearized formulation including valid inequalities (23) as
OPVP2-CV-L. Furthermore, denote the continuous relaxation of an integer
programming formulation F as FR, and its optimal objective value as v(FR).
We now state the relationship between v(OPVP2-CV-LR) and v(OPVP2-CVR),
and show that the relaxation of OPVP2-CV-L is stronger than OPVP2-CV.
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Proposition 1. v(OPVP2-CV-LR) ≤ v(OPVP2-CVR).
Proof: Clearly, any solution for OPVP2-CV-LR is feasible for OPVP2-

CVR. We now prove that certain feasible solutions of OPVP2-CVR are not
feasible for OPVP2-CV-LR. The objective function (10) and constraints (14)
set the upper bound of the profit to be collected at vertex i as 1 − e−βiuiyi

for OPVP2-CVR. However, valid inequalities (23) set the upper bound as
(1− e−βiui)yi for OPVP2-CV-LR. We need to show that

g(yi) = (1− e−βiui)yi − (1− e−βiuiyi) ≤ 0 for 0 ≤ yi ≤ 1. (24)

Observe that g(yi) is a continuous and differentiable function in the interval
0 ≤ yi ≤ 1 and g(0) = g(1) = 0. These properties allow us to apply Rolle’s
theorem, and to conclude that g′(yi) has at least one root in this interval. The
first derivative of g(yi) can be computed as g′(yi) = 1 − e−βiui − βiuie

−βiuiyi

and the second derivative as g′′(yi) = (βiui)
2e−βiuiyi . The only root of g′(yi)

is y∗i = −ln((1− e−βiui)/βiui)/βiui, which we know to be in the interval (0, 1)
through Rolle’s theorem. Since g′′(yi) is strictly positive, we can conclude
that it is a local minimum. Consequently, g(yi) attains its maximum at the
endpoints with a maximal value of 0. �

5 Linearization Scheme for Convex Collec-

tion Functions

In this section, we focus on the case where the collection functions
fi(zi), i ∈ V \{0} are convex, which we call OPVP2-CX. We define the collec-
tion function as fi(zi) = (e(zi/ui)− 1)/(e− 1), although the following analyses
apply to any convex collection function. For the case of convex collection func-
tions, the valid inequality approach given in the previous section fails to set
the exact value of the auxiliary variable. We need linear functions hi(zi) that
will provide an upper bound for wi, such that

∫ ui

0 (hi(zi)− fi(zi)) dzi is mini-
mized. As depicted in Figure 2a, the linear function satisfying this condition is
the line connecting the points (0, 0) and (ui, fi(ui)), i.e. hi(zi) = zi(fi(ui)/ui).
The resulting valid inequalities that provide an imperfect linearization are

wi ≤ zi
fi(ui)

ui
. (25)

Let us create a linearization for OPVP2-CX by replacing (20) by (25) in
OPVP2-CV-L. We denote this linearization as OPVP2-CX-L, its relaxation
as OPVP2-CX-LR, and a feasible solution for OPVP2-CX-LR as w∗

i , z
∗
i . If w

∗
i
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Figure 2: Branching scheme for the linearization of convex collection functions
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assumes a value that is greater than the collection function evaluated at z∗i ,
i.e. fi(z

∗
i ) < w∗

i (as depicted in Figure 2b), then this solution is infeasible for
the OPVP2-CX. The remedy is to construct two subproblems by branching
on the bounds of zi, and adding new linearization constraints for the two
convex subparts of fi(zi), also depicted in Figure 2b. We now formally state
this result.

Proposition 2. For a solution of OPVP2-CX-LR with w∗
i , z

∗
i : fi(z

∗
i ) < w∗

i

where zi ∈ [ai, bi] and z∗i ∈ (ai, bi), a branching scheme that constructs two
subproblems, the first one with the constraints

zi ≥ z∗i , (26)

wi ≤ zi
fi(bi)−fi(z∗i )

bi−z∗
i

+ fi(bi)− bi
fi(bi)−fi(z∗i )

bi−z∗
i

, (27)

and the second one with the constraints

zi ≤ z∗i , (28)

wi ≤ zi
fi(z

∗
i
)−fi(ai)

z∗
i
−ai

+ fi(ai)− ai
fi(z

∗
i
)−fi(ai)

z∗
i
−ai

(29)

finds the optimal solution.
Proof: The result follows from the fact that the branching scheme suc-

cessfully discards the infeasible point and partitions the problem into two
subproblems whose feasible regions contain all feasible solutions of the corre-
sponding partition of the original problem. �

Although the branching scheme will result in an optimal solution, the
implementation may prove to have a high computational cost since almost all
the variables wi will need to be branched on. We now analyze the similarity
of a subproblem of OPVP2-CX with another problem from the supply chain
literature, which will help us construct a stronger formulation. The Concave

Cost Supply Problem (CCSP), is the problem of choosing among n suppliers
to purchase a given quantity A of a single item or service type. Each supplier
i ∈ {1, ..., n} can provide the items subject to the conditions that 1) there is a
minimum amount mi to be purchased if the supplier is chosen to provide the
item, 2) the supplier cannot provide more than Mi units, and 3) the price per
item monotonically decreases as the amount purchased increases (hence, the
concavity). The aim of the CCSP is to choose a subset of suppliers as well
as the quantities to be purchased from the chosen suppliers, so as to satisfy
the demand requirement and to minimize the total cost. Chauhan and Proth
(2003) have studied the CCSP and have provided the following formulation:
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minimize
∑

i∈{1,...,n}

ki(xi) (30)

subject to

∑

i∈{1,...,n}

xi = A, (31)

xi ∈ {0} ∪ [mi,Mi] (i ∈ {1, ..., n}). (32)

where ki(xi) are concave functions of xi,∀i ∈ {1, ..., n}. The authors have also
proved that there exists at least one optimal CCSP solution in which there is at
most one variable x∗i ∈ (mi,Mi), and the remaining variables are equal to zero
or one of their associated bounds, i.e. x∗j ∈ {0,mj ,Mj},∀j ∈ {1, ..., n} \ {i}.
Now consider the subproblem of OPVP2-CX in which the routing decisions
are fixed, i.e. xij = x∗ij,∀(i, j) ∈ E and yi = y∗i ,∀i ∈ V , and denote it
OPVP2-CX-S. Clearly, OPVP2-CX-S consists of a maximization of separable
convex functions with respect to a time limit constraint, and upper and lower
bounds for every visit duration. We now show that OPVP2-CX-S has the
same property as CCSP.

Proposition 3. OPVP-CX-S has at least one optimal solution in which
at most one vertex i is visited with an intermediate collection time (ri < z∗i <
ui, y

∗
i = 1), and the rest of the vertices are visited with either maximal or

minimal collection times (z∗j ∈ {ri, ui}, j ∈ V \ {0, i} : y∗j = 1).
Proof: Take any feasible solution for OPVP-CX-S, (z̄). Assume that

there exist two vertices i, j ∈ V \{0} such that ri < z̄i < ui, rj < z̄j < uj , and
f ′
i(z̄i) ≥ f ′

j(z̄j). Define δ = min{ui− z̄i, z̄j−rj} and construct another feasible
solution (ẑ) as ẑi = z̄i + δ, ẑj = z̄j − δ, ẑk = z̄k ∀k ∈ V \ {0, i, j}. Since the
collection functions fi(zi) and fj(zj) are convex, their tangents constructed
at z̄i and z̄j will provide lower bounds for fi(ẑi) and fj(ẑj), i.e.

fi(ẑi) ≥ (z̄i + δ)f ′
i(z̄i) + fi(z̄i)− z̄if

′
i(z̄i) (33)

and

fj(ẑj) ≥ (z̄j − δ)f ′
j(z̄j) + fj(z̄j)− z̄jf

′
j(z̄j). (34)

Summing up the inequalities (33) and (34) gives

fi(ẑi) + fj(ẑj) ≥ fi(z̄i) + fj(z̄j) + δ(f ′
i(z̄i)− f ′

j(z̄j)). (35)
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Since δ > 0 and f ′
i(z̄i) ≥ f ′

j(z̄j), we can conclude that fi(ẑi) + fj(ẑj) ≥
fi(z̄i) + fj(z̄j). Repeating this process with different pairs of variables will
lead to a solution with at most one intermediate collection time. �

Because Proposition 3 holds for any instance of OPVP2-CX-S, it carries
over to OPVP2-CX. We now construct an improved linearization for OPVP2-
CX based on this property. Let y1i be 1 if vertex i is visited with the minimum
collection time ri, and 0 otherwise. Let y2i be 1 if vertex i is visited with an
intermediate collection time zi ∈ [ri, ui], and 0 otherwise. Finally, let y3i be 1
if vertex i is visited with the maximum collection time ui, and 0 otherwise.
The formulation is then

(OPVP2-CX-L2)

maximize
∑

i∈V \{0}

pi(fi(ri)y
1
i + wi + fi(ui)y

3
i ) (36)

subject to

∑

j:(i,j)∈E

xij = 2(y1i + y2i + y3i ) (i ∈ V ) (37)

∑

i∈S,j∈V \S
or i∈V \S,j∈V

xij ≥ 2(y1k + y2k + y3k) (S ⊂ V : 2 ≤ |S| ≤ |V | − 2, T \ S 6= ∅, k ∈ S)

(38)

y1i + y2i + y3i = 1 (i ∈ T ) (39)

y1i + y2i + y3i ≤ 1 (i ∈ V \ T ) (40)
∑

i∈V \{0}

y2i ≤ 1 (41)

zi ≥ riy
2
i (i ∈ V \ {0}) (42)

zi ≤ uiy
2
i (i ∈ V \ {0}) (43)

∑

(i,j)∈E

tijxij +
∑

i∈V \{0}

(riy
1
i + zi + uiy

3
i ) ≤ L (44)

wi ≤ zi
fi(ui)

ui
(i ∈ V \ {0}) (45)

zi ≥ 0 (i ∈ V \ {0}) (46)

yki = 0 or 1 (i ∈ V \ {0}, k ∈ {1, 2, 3}) (47)

xij = 0 or 1 ((i, j) ∈ E). (48)
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The objective function (36) maximizes the collected profit. Constraints
(37) are degree constraints, and constraints (38) are connectivity constraints,
stated using the three new variable definitions. Constraints (39) force the
vehicle to visit the compulsory vertices. Constraints (40) dictate that a non-
compulsory vertex can be visited with no more than one of the given options.
Constraints (41) ensure that at most one vertex is visited with an intermediate
visit time. Constraints (42) and (43) set the lower and upper bounds for the
time spent at a vertex visited with the option of intermediate collection time.
Constraints (44) enforce the time limit, and constraints (45) define the initial
(and imperfect) linearization. The nonnegativity constraints are defined by
(46) and the integrality constraints are defined by (47) and (48).

As a final note, we stress the fact that variants of OPVP2 involving ver-
tices with convex collection functions as well as vertices with concave collec-
tion functions have this property. To solve such problems, both linearization
schemes should be used in conjunction.

6 Valid Inequalities and Branch-and-Cut

Algorithm

The similarity in the structures of the OPVP and the CTP enables us to adapt
valid inequalities for the CTP to OPVP1, OPVP2-CV-L, and OPVP2-CX-
L2. The proofs of validity are identical for CTP and the OPVP2-CV-L, and
extend to OPVP1 through the transformation yi = yi1, and to OPVP2-CX-L2
through the transformation yi = y1i + y2i + y3i .

1) Arc-vertex constraints

Proposition 4. The inequalities

xij ≤ yi (i, j ∈ V ) (49)

and

xij ≤ yj (i, j ∈ V ) (50)

are valid for OPVP2-CV-L.

2) Strong connectivity constraints

Proposition 5. The following inequalities are valid for OPVP2-CV-L:
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∑

i∈S,j∈V \S
or i∈V \S,j∈V

xij ≥ 2 (S ⊂ V : 2 ≤ |S| ≤ |V | − 2, T \ S 6= ∅, S ∩ T 6= ∅). (51)

3) Strong 2-matching constraints

Proposition 6. The following inequalities are valid for OPVP2-CV-L:

∑

i,j∈H

xij +
∑

i,j∈E′

xij ≤
∑

i∈H

yi +
1

2
(|E′| − 1), (52)

for all H ⊂ V and E′ ⊂ E satisfying
(i) |{i, j} ∩H| = 1 ((i, j) ∈ E′),
(ii) {i, j} ∩ {k, l} = ∅ ((i, j) 6= (k, l) ∈ E′),
(iii) |E′| ≥ 3 and odd.

Note that Propositions 5 and 6 were already mentioned by Gendreau et al.
(1998) as well as by Erdoğan et al. (2010), and are provided in this paper
for the sake of completeness. We now describe the unified branch-and-cut
algorithm capable of handling all three formulations OPVP1, OPVP2-CV-L,
and OPVP2-CX-L2.

4) Branch-and-cut algorithm

Step 1 (Root node). Construct a subproblem consisting of the initial for-
mulation. Note that for OPVP2-CV-L this corresponds to a subproblem that
does not contain any linearization constraints. Insert this subproblem in a
list.
Step 2 (Node selection). If the list is empty, stop. Else select and remove
a subproblem from the list.
Step 3 (Subproblem solution). Solve the subproblem. If the objective
function value is less than the best lower bound, go to Step 2.
Step 4 (Constraint generation). Identify violated members of the associ-
ated constraints and related valid inequalities (arc-vertex constraints, strong
connectivity constraints, strong 2-matching constraints, and linearization con-
straints), and add them to the subproblem. If at least one constraint is gen-
erated, go to Step 3.
Step 5 (Integrality check). For OPVP1 and OPVP2-CV-L, if the solution
is integer, update the best known lower bound, and go to Step 2. For OPVP2-
CX-L2, if the solution is integer and the auxiliary variable for the vertex with
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intermediate collection time does not violate the collection amount, go to Step
2.
Step 6 (Branching). For OPVP1 and OPVP2-CV-L, construct two sub-
problems by branching on a binary fractional variable. For OPVP2-CX-L2,
construct two subproblems by branching on a binary fractional variable, or
by applying the branching scheme of Proposition 2 on an auxiliary variable
exceeding the collection amount. Add the subproblems to the list and go to
Step 2.

7 Computational Results

We have implemented the algorithm described in Section 7, utilizing C++ and
CPLEX 12.1, and we have run a number of experiments on instances adapted
from the TSPLIB (Reinelt 1991) on the IRIDIS computing cluster having Intel
Nehalem nodes with two 4-core processors and 22 GB RAM. We have used
the instances kroA100, kroB100, kroC100, kroA200, and kroB200, which are
randomly generated points in the plane. We have used the following scheme to
convert the data for OPVP1 and OPVP2. We take the first vertex in the data
file to be the depot. We designate the next |T | − 1 vertices together with the
first vertex to constitute T . The next |V | − |T | vertices are used as elements
of V \ T . We compute tij using the Euclidean distance formula, and rounded
to the closest integer. Let Xmax,Xmin, Ymax, Ymin denote the maximum X
coordinate, minimumX coordinate, maximum Y coordinate, and minimum Y
coordinate of all vertices, respectively. For OPVP1, we set two parameters as
pmin = 10 and pmax = 100. Using these parameters, we determine the profit
of a vertex i ∈ V to be pi = pmin+⌊Xi+Yi⌋ mod (pmax−pmin). To determine
the capture ratio αi, we set two parameters as αmin = 10 and αmax = 100,
and determine αi as αi = αmin + ((⌊Xi + Yi⌋ mod 20)/20) × (αmax − αmin).
The dwell times are also determined in a similar manner, using the formula
ri = rmin + ((⌊Xi + Yi⌋ mod 15)/15) × (rmax − rmin), where rmin = (Xmax −
Xmin + Ymax − Ymin)/100 and rmax = (Xmax −Xmin + Ymax − Ymin)/50. For
OPVP2, we have used a similar conversion scheme and set βi = αi/200. For
both models, we have determined the travel time limit as L = ⌊2.5× (Xmax−
Xmin + Ymax − Ymin)⌋. For OPVP2-CV, we have set ui = L − 2t0i whereas
for OPVP2-CX, we have used ui = 10ri.

The results for the instances kro100A, kro100B, and kro100C for both
OPVP1, OPVP2-CV-L, OPVP2-CX-L2 are presented in Tables 1, 2, and 3
respectively. We have also run experiments with larger instances adapted
from kro200A and kro200B, the results of which are presented in Table 4.
The column headings are defined as follows:

15



Instance : Name of the TSPLIB instance that was adapted.
|V | : Number of vertices in the graph.
|T | : Number of compulsory vertices.
Objective value : The objective value of the best solution found.
Final gap : Percent deviation of the best solution found from the best upper
bound.
B&C nodes : Number of nodes generated in the branch-and-cut tree.
Arc-vertex : Number of arc-vertex constraints added.
Strong conn. : Number of strong connectivity constraints added.
Strong 2-match. : Number of strong 2-matching constraints added.
Lin. cons. : Number of linearization constraints added.
CPU time (sec) : CPU time in seconds.

As can be observed from Table 1, OPVP1 solved all 36 instances with
|V | ≤ 100 within five minutes of CPU time. OPVP2-CV-L, as shown in
2, successfully solved 34 out of 36 instances. The maximum deviation from
the best upper bound was observed to be 8.8%. Finally, OPVP2-CX-L2,
as 3 demonstrates, successfully solved 31 out of 36 instances. The maxi-
mum deviation from the best upper bound was observed to be 8.0%. For all
three formulations, the CPU time requirement is observed to drop as |T | in-
creases. A first explanation for this phenomenon lies in the increasing number
of stronger connectivity constraints, which greatly improve the performance
of the branch-and-cut algorithm despite the increased CPU time requirement
for separation. The second reason is due to the fact that the determination
of most of the routing by the compulsory vertices. The average CPU time
requirement for OPVP2-CX-L2 is approximately three times that of OPVP2-
CV-L, which shows the difference of strength of the linearization schemes. For
the second instance set, OPVP1 was able to solve 21 out of 24 instances. The
branch-and-cut algorithm failed to find a feasible solution for kroB200, with
|V | = 200 and |T | = 100. Excluding this instance, the maximum optimality
gap is observed to be 3.6%. Overall, the computational reach of OPVP1 is
around 200 vertices, whereas that of OPVP2-CV-L and OPVP2-CX-L2 are
about 75.

We now provide the results of OPVP1 when applied to OP instances from
the literature. We have solved the “diamond shaped” instances with 64 ver-
tices provided by Chao et al. (1996), using OPVP1 and the branch-and-cut
algorithm. Out of the 14 instances, 11 were solved in less than 5 seconds,
whereas the other three required 9, 11, and 45 minutes of CPU time. The
instances with |V | = 75 and |T | = 1 are the most similar to this set of OP
instances, which required 26.5 seconds of CPU time on the average. We con-
clude that OPVP1 requires more time than the majority of OP instances,

16



but the results presented above are by no means exhaustive, and pathological
instances may require considerably more time for both OP and OPVP1.

We have also performed an analysis on the results of all three models, the
details of which are provided in Table 5. Additional column headings for this
table are given below:

Vertices visited : The total number of vertices visited by the vehicle, in-
cluding the depot.
Multiple passes : The number of vertices in which more than one pass have
been performed.
Avg. passes : The average number of passes, among the vertices with
multiple passes.
Max. passes : The maximum number of passes performed at any vertex.
Time limit : The total time L that can be spend for traveling and collection.
Min. time spent : The minimum collection time spent, among the visited
vertices.
Avg. time spent : The average collection time spent at the visited vertices.
Max. time spent : The maximum collection time spent, among the visited
vertices.
Min. visits : The number of visits performed with minimal collection time.
Inter. visits : The number of visits performed with the collection time
between the maximum and minimum.
Max. visits : The number of visits performed with maximal collection time.

It can be easily observed that the optimal solution for the OPVP1 chooses
to visit most vertices with multiple passes. On the average, 67% of vertices
are visited with multiple passes. Among these vertices, the average number
of passes is 4.16, with a maximum of 8 passes. This clearly shows that the
OPVP1 returns different results than the OP, which requires at most one
pass. The number of vertices visited increases as |T | increases, though not in
a linear fashion. On the contrary, the maximum number of passes decrease
as |T | increases. The reason beyond these phenomena is the tendency of the
model to collect as much as possible once a vertex is visited, and move on to
the next vertex as the marginal return of each additional pass drops.

OPVP2-CV-L shows a similar tendency, with both minimum time spent
and maximum time spent at the vertices decreasing as T increases. In 75% of
the instances, the minimum time spent actually drops to its absolute minimum
as |T | exceeds 50% of |V |. The maximum time spent also decreases so as
to reflect the time spent in visiting mandatory vertices. The average time
spent at the vertices is closer to the maximum time spent, although not in
an extreme manner, reflecting the nature of the concave collection functions.
OPVP2-CX-L2 behaves in a similar fashion to OPVP2-CV-L, with a higher
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and higher percentage of minimal visits as T increases. This model always opts
for an intermediate time visit, to better utilize the travel time limit. OPVP2-
CX-L2, in constrast with OPVP2-CV-L, favors the minimal visits over the
maximal visits when |T | is high. This is the result of the convex collection
function, which requires more time to collect a considerable amount of the
profit.

8 Conclusion

We have introduced a generalization of the OP, in which the collection of
profits at a vertex require either a number of discrete passes or a continuous
amount of time to be spent at the vertex. We have provided a linear integer
programming model for the former case and a nonlinear integer programming
model for the latter. We have devised linearization schemes for the nonlinear
models for the cases of concave and convex collection functions. The lineariza-
tion was achieved through valid inequalities in the concave case, whereas a
branching scheme in conjunction with valid inequalities was required for the
convex case. The linearization scheme for the concave collection functions also
helped strengthen the original formulation through a linear number of linear
constraints. A theoretical result from the supply chain literature was used for
constructing an improved formulation for the convex case. We have adapted
valid inequalities from the CTP, and presented a unified branch-and-cut al-
gorithm using these valid inequalities. We have performed computational ex-
periments on instances adapted from TSPLIB. Results show that the discrete
pass model can be solved for about 200 vertices within two hours of computing
time, whereas the continuous time model is beyond the computational reach
for more than 75 vertices.
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Table 1: Computational results for OPVP1
CPU

Objective Final B&C Arc- Strong Strong time
Instance |V | |T | value gap nodes vertex conn. 2-match. (sec)
kroA100 25 1 754.37 0.0% 83 28 0 0 0.45

25 6 782.46 0.0% 20 17 29 0 0.12
25 12 814.27 0.0% 203 9 29 0 0.21
25 18 869.43 0.0% 91 4 32 0 0.09
50 1 1075.17 0.0% 220 99 0 0 9.64
50 12 1112.29 0.0% 74 42 130 0 0.84
50 25 1231.32 0.0% 65 25 184 0 0.56
50 37 1225.40 0.0% 134 9 102 10 0.68
75 1 1238.88 0.0% 212 151 0 53 35.15
75 18 1309.66 0.0% 10 77 525 2 6.58
75 37 1333.48 0.0% 585 36 325 0 5.51
75 56 1492.97 0.0% 455 20 734 16 7.63

100 1 1342.30 0.0% 189 236 0 15 122.60
100 25 1466.14 0.0% 1266 103 1321 119 85.43
100 50 1475.50 0.0% 2068 61 2439 85 77.11
100 75 1792.08 0.0% 103 21 396 78 4.70

kroB100 25 1 888.39 0.0% 50 21 0 0 0.41
25 6 855.43 0.0% 10 14 28 0 0.08
25 12 885.19 0.0% 392 10 40 0 0.30
25 18 913.62 0.0% 224 7 43 0 0.28
50 1 1150.01 0.0% 288 63 0 0 4.74
50 12 1127.02 0.0% 17 49 408 0 5.40
50 25 1254.80 0.0% 0 21 178 0 0.32
50 37 1303.86 0.0% 4 10 160 0 0.22
75 1 1366.71 0.0% 891 113 0 5 24.16
75 18 1374.22 0.0% 228 80 682 10 12.49
75 37 1447.59 0.0% 365 36 202 0 3.56
75 56 1385.03 0.0% 1256 19 153 0 10.04

100 1 1629.90 0.0% 1264 179 0 18 162.66
100 25 1596.72 0.0% 1359 97 814 31 42.60
100 50 1604.51 0.0% 851 54 625 27 11.80
100 75 1621.05 0.0% 3559 50 3796 2197 287.19

kroC100 25 1 838.74 0.0% 44 11 0 8 0.15
25 6 847.79 0.0% 56 4 4 0 0.04
25 12 737.32 0.0% 101 11 27 12 0.11
25 18 778.97 0.0% 35 6 30 0 0.06
50 1 1058.67 0.0% 130 95 0 4 6.56
50 12 897.86 0.0% 908 49 338 246 8.77
50 25 993.93 0.0% 3 22 85 7 0.18
50 37 1113.33 0.0% 392 14 110 23 1.75
75 1 1301.35 0.0% 183 153 0 0 20.47
75 18 1054.04 0.0% 327 67 703 27 23.48
75 37 1205.22 0.0% 378 38 1001 1379 16.24
75 56 1568.47 0.0% 101 14 337 27 2.26

100 1 1488.69 0.0% 511 213 0 194 91.51
100 25 1196.24 0.0% 600 117 988 44 108.49
100 50 1535.96 0.0% 1099 54 1210 190 27.93
100 75 1945.74 0.0% 751 22 416 4 16.28
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Table 2: Computational results for OPVP2-CV-L
CPU

Objective Final B&C Arc- Strong Strong Lin. time
Instance |V | |T | value gap nodes vertex conn. 2-match. cons. (sec)
kroA100 25 1 512.38 0.0% 41 40 0 0 116 0.40

25 6 486.84 0.0% 12 31 34 0 69 0.18
25 12 476.30 0.0% 16 12 51 0 71 0.12
25 18 514.46 0.0% 2 9 47 0 64 0.05
50 1 659.54 0.0% 1925 261 0 4 202 110.75
50 12 613.02 0.0% 195 85 202 1 143 3.28
50 25 651.87 0.0% 57 47 229 21 122 1.31
50 37 627.16 0.0% 16 13 193 2 116 0.52
75 1 736.68 0.0% 2456 410 0 10 279 530.68
75 18 672.47 0.0% 629 175 997 109 183 42.22
75 37 661.40 0.0% 117 65 533 120 150 7.32
75 56 695.19 0.0% 7 23 462 48 131 3.30

100 1 800.52 0.0% 5423 634 0 78 380 2842.79
100 25 709.74 0.0% 2896 240 1692 663 213 333.19
100 50 674.53 0.0% 295 113 1361 96 175 40.18
100 75 799.25 0.0% 35 27 393 45 168 5.72

kroB100 25 1 533.22 0.0% 186 60 0 0 118 0.91
25 6 473.56 0.0% 162 39 61 0 101 0.55
25 12 485.27 0.0% 49 23 71 1 104 0.26
25 18 487.99 0.0% 8 8 64 0 70 0.10
50 1 641.43 0.0% 4063 201 0 72 213 102.32
50 12 603.11 0.0% 547 107 292 26 167 8.93
50 25 594.71 0.0% 75 34 221 20 130 1.65
50 37 592.11 0.0% 13 17 170 8 111 0.55
75 1 764.11 0.0% 10102 407 0 38 305 2554.16
75 18 674.92 0.0% 608 175 585 56 177 33.36
75 37 670.18 0.0% 59 69 425 16 169 4.48
75 56 576.29 0.0% 1 23 231 0 108 1.00

100 1 886.32 8.8% 4456 797 0 0 377 7200.00
100 25 751.41 0.0% 2710 267 2027 229 230 304.66
100 50 703.60 0.0% 204 100 1038 137 182 28.21
100 75 649.29 0.0% 516 52 1478 499 130 69.67

kroC100 25 1 514.79 0.0% 272 65 0 12 108 1.32
25 6 503.02 0.0% 28 31 21 0 79 0.18
25 12 391.55 0.0% 10 21 52 2 68 0.12
25 18 406.00 0.0% 2 7 27 0 61 0.05
50 1 650.54 0.0% 594 191 0 23 207 24.20
50 12 452.25 0.0% 326 92 188 141 125 4.63
50 25 477.95 0.0% 42 39 189 8 119 0.97
50 37 512.94 0.0% 23 15 206 50 100 0.81
75 1 746.38 0.0% 4615 459 0 42 288 1280.76
75 18 517.94 0.0% 962 149 476 66 190 33.97
75 37 544.06 0.0% 647 74 744 171 155 28.93
75 56 707.90 0.0% 44 19 301 70 143 3.73

100 1 875.47 3.7% 4766 845 0 26 334 7200.00
100 25 569.47 0.0% 4389 264 1676 173 233 390.10
100 50 701.09 0.0% 356 85 927 271 193 39.71
100 75 878.11 0.0% 41 36 490 153 189 8.73
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Table 3: Computational results for OPVP2-CX-L2
CPU

Objective Final B&C Arc- Strong Strong time
Instance |V | |T | value gap nodes vertex conn. 2-match. (sec)
kroA100 25 1 648.68 0.0% 153 66 0 11 9.56

25 6 554.88 0.0% 329 54 120 0 6.24
25 12 537.31 0.0% 123 19 92 0 0.81
25 18 550.67 0.0% 148 6 92 0 0.50
50 1 796.06 0.0% 776 156 0 371 593.19
50 12 639.34 0.0% 1291 88 704 15 181.97
50 25 589.28 0.0% 3535 44 907 47 422.52
50 37 501.79 0.0% 1406 14 445 17 25.66
75 1 866.62 0.4% 1499 292 0 1140 7200.00
75 18 651.18 0.0% 2929 147 3361 132 3549.89
75 37 532.94 0.0% 4049 56 2120 48 571.26
75 56 491.83 0.0% 612 28 1734 150 142.82

100 1 880.96 8.0% 1051 323 0 2753 7200.00
100 25 661.48 0.0% 2152 161 5053 141 3320.91
100 50 496.75 0.0% 1333 95 6904 253 1871.49
100 75 549.48 0.0% 681 28 1244 163 149.50

kroB100 25 1 680.00 0.0% 409 75 0 0 15.41
25 6 576.43 0.0% 298 34 82 0 3.82
25 12 558.21 0.0% 451 30 138 0 2.32
25 18 521.96 0.0% 232 6 80 0 0.76
50 1 836.00 0.0% 601 170 0 226 449.84
50 12 638.60 0.0% 1308 82 966 18 346.95
50 25 567.89 0.0% 971 42 865 24 84.52
50 37 522.49 0.0% 500 14 488 12 9.74
75 1 949.00 0.0% 1413 279 0 1412 3632.80
75 18 660.69 0.0% 1845 149 2767 44 2337.43
75 37 576.05 0.0% 1827 76 2205 147 394.09
75 56 351.53 0.0% 1004 24 1414 157 128.14

100 1 1043.54 1.7% 1146 238 0 4285 7200.00
100 25 671.00 0.0% 1806 190 6094 95 4101.94
100 50 480.10 0.0% 1954 87 5670 379 2049.92
100 75 341.75 0.0% 1620 49 5895 1783 1312.31

kroC100 25 1 724.00 0.0% 266 65 0 19 19.59
25 6 699.27 0.0% 274 45 54 5 2.94
25 12 486.53 0.0% 307 18 121 10 2.65
25 18 501.47 0.0% 143 7 86 0 0.50
50 1 806.27 0.0% 461 140 0 133 128.28
50 12 512.00 0.0% 683 68 628 40 81.76
50 25 478.32 0.0% 480 29 513 2 26.72
50 37 437.05 0.0% 742 18 375 83 16.36
75 1 862.14 7.2% 1273 366 0 3229 7200.00
75 18 539.58 0.0% 1301 114 2308 48 791.37
75 37 450.51 0.0% 2469 80 1319 189 401.83
75 56 550.11 0.0% 752 26 1144 68 102.04

100 1 924.20 5.4% 1135 393 0 3356 7200.00
100 25 511.50 0.0% 1288 127 3702 267 2043.80
100 50 523.38 0.0% 1572 56 2387 102 423.53
100 75 612.52 0.0% 774 19 1132 28 78.88
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Table 4: Computational results for OPVP1 on larger instances
CPU

Objective Final B&C Arc- Strong Strong time
Instance |V | |T | value gap nodes vertex conn. 2-match. (sec)
kroA200 125 1 1589.89 0.0% 1 281 0 0 207.12

125 31 1342.30 0.0% 696 124 1096 84 52.34
125 62 1846.14 0.0% 233 65 926 5 9.55
125 93 2225.99 0.0% 249 37 949 803 32.45
150 1 1645.89 0.0% 1064 432 0 401 2623.81
150 37 1456.86 0.0% 359 157 2364 421 312.02
150 75 2096.94 0.0% 211 75 1137 11 16.61
150 112 2726.65 0.0% 867 39 1994 1277 71.71
175 1 1757.80 0.0% 2929 502 0 172 5028.12
175 43 1544.80 0.0% 753 224 5111 321 1021.76
175 87 2157.93 0.0% 377 114 4532 1080 273.61
175 131 2767.03 2.3% 883 98 36831 10517 7200.00
200 1 1820.88 0.0% 1120 594 0 40 4026.56
200 50 1708.65 0.0% 1089 196 3599 162 353.84
200 100 2522.27 0.0% 889 138 7944 3340 848.29
200 150 3262.74 0.0% 864 88 21122 7554 3191.51

kroB200 125 1 1703.64 0.0% 2070 275 0 115 646.40
125 31 1595.58 0.0% 791 148 2156 23 354.47
125 62 1540.96 0.0% 1174 108 4087 290 332.15
125 93 2005.65 0.0% 732 60 7102 1775 390.54
150 1 1811.37 0.0% 2309 328 0 40 1157.18
150 37 1713.08 0.0% 42 123 1848 1 178.51
150 75 1652.63 0.0% 1758 140 16618 5873 3995.93
150 112 2424.15 0.0% 289 54 5296 755 317.23
175 1 1835.60 0.0% 541 416 0 106 1271.23
175 43 1698.13 0.0% 577 181 2399 9 603.47
175 87 1768.38 3.6% 461 132 29810 6411 7200.00
175 131 2760.51 0.0% 6717 60 15370 5836 3668.72
200 1 1911.83 0.0% 82 453 0 0 1646.82
200 50 1733.39 0.0% 594 188 1640 5 106.93
200 100 N/A N/A 0 115 9449 381 7200.00
200 150 3146.84 0.0% 1566 79 16126 10419 2489.42
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Table 5: Evaluation of the computational results
OPVP1 OPVP-CV-L OPVP2-CX-L2

Vertices Multiple Avg. Max. Vertices Time Min. time Avg. time Max. time Vertices Min. Inter. Max.

Instance |V | |T | visited passes passes passes visited limit spent spent spent visited visits visits visits

kroA100 25 1 18 16 3.9 6 12 14212.0 462.1 859.0 1388.6 12 0 1 11

25 6 18 15 3.7 5 12 15118.0 155.8 513.4 753.6 9 0 1 8

25 12 21 17 3.5 5 16 16104.0 61.0 371.7 642.0 13 5 1 7

25 18 23 19 3.5 5 19 17162.0 57.0 343.9 689.3 18 10 1 7

50 1 21 19 3.3 5 16 14617.0 209.8 514.7 717.9 12 1 1 10

50 12 27 20 2.9 4 21 16563.0 63.0 310.0 542.5 17 9 1 7

50 25 36 23 2.7 4 32 18955.0 59.0 215.1 480.2 28 21 1 6

50 37 43 21 2.5 4 40 21059.0 59.0 172.2 480.2 38 32 1 5

75 1 26 25 3.0 5 18 14702.0 187.8 502.0 730.5 14 2 1 11

75 18 34 23 2.6 4 27 17754.0 59.0 253.0 495.2 21 13 1 7

75 37 49 20 2.2 4 43 21180.0 59.0 161.8 425.0 39 33 1 5

75 56 60 21 2.2 3 58 24388.0 59.0 126.2 354.4 57 51 1 5

100 1 29 28 2.8 5 20 14702.0 71.0 474.3 693.3 16 5 1 10

100 25 45 25 2.4 4 37 19066.0 59.0 192.2 425.0 30 23 1 6

100 50 58 19 2.1 3 52 23362.0 59.0 134.8 357.9 52 47 1 4

100 75 80 22 2.1 3 76 27522.0 59.0 116.9 357.9 76 72 1 3

kroB100 25 1 17 15 4.1 6 13 13435.0 340.7 528.6 727.4 10 0 1 9

25 6 18 16 3.6 6 13 14169.0 58.0 415.5 631.8 9 1 1 7

25 12 20 17 3.6 6 15 15065.0 58.0 396.8 707.7 14 5 1 8

25 18 22 19 3.2 5 20 16019.0 58.0 264.8 516.9 19 12 1 6

50 1 23 22 3.1 4 17 14102.0 247.2 414.8 626.0 13 0 1 12

50 12 26 22 3.0 4 21 15812.0 61.0 308.2 561.4 16 8 1 7

50 25 35 23 2.7 4 32 17994.0 61.0 186.4 483.6 27 20 1 6

50 37 41 24 2.4 4 38 19940.0 61.0 162.2 369.2 38 32 1 5

75 1 27 26 2.9 4 18 14550.0 388.6 536.2 717.9 14 0 1 13

75 18 36 25 2.5 3 28 17344.0 63.0 230.6 429.0 23 15 1 7

75 37 46 26 2.3 3 41 20566.0 63.0 165.0 372.2 38 32 1 5

75 56 58 13 2.0 2 57 23648.0 63.0 102.1 245.0 56 53 1 2

100 1 33 31 2.8 4 20 14782.0 327.9 504.5 677.7 15 2 1 12

100 25 45 26 2.1 3 36 18854.0 64.0 186.4 381.3 29 21 1 7

100 50 59 17 2.0 2 56 23128.0 64.0 117.1 341.6 50 44 1 5

100 75 78 6 2.0 2 77 27310.0 60.0 91.5 199.3 75 72 1 2

kroC100 25 1 17 16 4.9 8 11 14040.0 381.9 789.7 1250.3 11 0 1 10

25 6 17 16 4.6 8 13 14800.0 131.3 521.7 806.7 12 2 1 9

25 12 18 13 3.5 5 16 15748.0 64.0 303.9 610.1 14 7 1 6

25 18 21 14 3.6 5 19 16578.0 57.0 256.3 647.7 18 11 1 6

50 1 24 23 3.6 6 16 14372.0 161.9 584.8 1031.1 12 1 1 10

50 12 26 17 2.6 4 20 16124.0 66.0 228.8 465.7 15 9 1 5

50 25 34 15 2.4 3 30 18154.0 58.0 169.4 465.7 25 20 1 4

50 37 41 17 2.4 3 39 20088.0 58.0 141.9 465.7 37 32 1 4

75 1 29 26 3.2 5 18 14480.0 101.0 474.6 629.3 14 3 1 10

75 18 34 19 2.3 3 27 17098.0 58.0 197.1 440.2 19 12 1 6

75 37 46 17 2.2 3 42 20238.0 58.0 133.7 341.4 39 33 1 5

75 56 62 22 2.2 3 59 23500.0 58.0 126.8 428.5 56 49 1 6

100 1 29 27 2.9 4 19 14690.0 275.9 493.2 662.9 15 3 1 11

100 25 39 18 2.2 3 37 18554.0 59.0 143.9 342.4 26 19 1 6

100 50 62 16 2.1 3 57 22758.0 59.0 121.4 342.4 51 45 1 5

100 75 81 21 2.1 3 80 27362.0 59.0 113.3 342.4 75 68 1 6
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