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ABSTRACT 16 

UVA treatment of cultured human skin fibroblasts (FEK4) has been shown previously 17 

to reduce transcriptional activation of hemeoxygenase 1 (HO-1) following a second 18 

dose of UVA radiation, a phenomenon known as refractoriness. This study 19 

demonstrates that the levels of HO-1 protein are also reduced after a second dose of 20 

UVA radiation as are Nrf2 levels, and there is less accumulation of Nrf2 in the nucleus 21 

whereas Bach1 does accumulate in the nucleus. Cell viability is further reduced and 22 

cell membrane damage increased as compared with a single UVA treatment when an 23 

initial UVA treatment was followed by a second dose. Knockdown of Nrf2 by siRNA 24 

(siNrf2) targeting caused additional refractoriness of HO-1 protein induction to a 25 

second UVA or heme treatment and this treatment also further enhanced cell damage 26 

by a second dose of UVA radiation. However, transfection with Nrf2 caused less 27 

refractoriness of HO-1 to a second dose of UVA and reduced cell damage by a second 28 

dose of UVA radiation. These findings are consistent with the proposal that Nrf2 is 29 

involved in HO-1 refractoriness and could serve as a cytoprotective factor against cell 30 

damage caused by repeated exposure to moderate doses of UVA radiation. We propose 31 

that protection by the Nrf2-HO-1 pathway protection may have clinical relevance since 32 

human skin is exposed repeatedly to UVA radiation. 33 

34 



 

INTRODUCTION  35 

Ultraviolet A (UVA) radiation (320-400 nm) is a major part of solar ultraviolet light 36 

(>90%) and causes an oxidative stress which has deleterious effects on human skin, 37 

lead to erythema, photoaging and even cancer (1,2). Among antioxidant defence 38 

mechanisms identified in skin is the enzymatic antioxidant, heme oxygenase 1 (HO-1, 39 

Enzyme Classification Number: 1.14.99.3) (3), which catalyses heme to yield carbon 40 

monoxide, biliverdin and iron (1,4). HO-1 is a sensitive marker of oxidative stress, and 41 

is induced by UVA-irradiation of human skin fibroblasts (3) and many other cell types 42 

(1,5). Induction of HO-1 gene expression involves transactivation by a bZIP 43 

transcription factor Nrf2 (nuclear factor erythroid-2 p45-related factor 2) which forms 44 

a heterodimer with Maf (small Maf family of proteins) and binds to the antioxidant 45 

response elements (AREs) in the HO-1 gene promoter region. Conversely, Bach1 (BTB 46 

and CNC homology-1), an additional bZIP factor, forms a Bach1-Maf complex and 47 

functions as a repressor of HO-1 gene transcription (1,6,7). Our previous studies have 48 

shown that UVA induces HO-1 gene expression, but does not alter HO-2 gene and 49 

protein expression in human skin fibroblast (FEK4) cells (3,5). Treatment of chicken 50 

embryo liver cells with heme leads to development of refractoriness to HO-1 gene 51 

activation by a second heme treatment (8). Refractoriness of HO-1 gene induction to a 52 

second dose of UVA radiation was also observed in FEK4 cells (9). However, the 53 

refractoriness of HO-1 has not been examined at the protein level and the mechanism 54 

of development of refractoriness is yet to be fully defined (8,9). 55 

Nrf2 has been shown to play a pivotal role in preventing xenobiotic-related 56 

toxicity and oxidative stress. The protective role of Nrf2 involves the induction of Phase 57 

II detoxification enzymes as well as antioxidant enzymes, such as HO-1 through the 58 

ARE (6,7). Nrf2 drive- HO-1 expression has been shown to be protective in human 59 

lukemia as well as skin diseases (10,11). We have recently found that Nrf2 plays an 60 

active role in both UVA radiation and heme induced HO-1 induction, and loss of Nrf2 61 

sensitises FEK4 cells to UVA-radiation induced membrane damage as reflected by 62 



 

enhanced LDH release (12,13). Bach1 plays a negative role in HO-1 induction in both 63 

skin keratinocytes and fibroblasts (13-15). Since induction of HO-1 following UVA 64 

irradiation is modulated by Nrf2 and Bach1 proteins, both therefore contribute to the 65 

balance of cellular redox status (1,15). 66 

In this study, we investigate if there is a refractoriness to HO-1 protein induction 67 

corresponding to the refractoriness to HO-1 mRNA accumulation. In addition, we 68 

investigated the role of Nrf2, an upstream transcriptional activator of the HO-1 gene, in 69 

refractoriness and undertook a preliminary study of the role of Bach1 in the 70 

refractoriness of HO-1. Our results are consistent with a link between Nrf2 and HO-1 71 

refractoriness and demonstrate that deficiency of Nrf2 protein further increases cell 72 

damage by a second dose of UVA irradiation. We also have some evidence that Bach1 73 

is also likely to be involved in HO-1 refractoriness. These results provide a better 74 

understanding of the pathophysiological effects of UVA irradiation on human skin cells, 75 

and once similar studies are available in vivo, will help to evaluate the effects of 76 

repeated physiological exposures of the skin to UVA radiation as well as repeated 77 

clinical UVA phototherapy. 78 

  79 



 

MATERIALS AND METHODS 80 

Cell Culture and Antibodies:Human primary skin fibroblasts (FEK4) cells were 81 

grown in Earle’s modified Minimal Essential Medium (MEM). The MEM medium was 82 

enriched with 15% (v/v) FCS and 2 mML-glutamine along with 50 units/mL of 83 

penicillin and streptomycin mixture. Antibodies against HO-1 (OSA-110) and HO-2 84 

(OSA-200) were purchased from the Bioquote International (UK).Three antibodies 85 

(Anti-Nrf2 H300, sc-13032; anti-Bach1 C-20, sc-14700; anti-actin sc-9104) and three 86 

secondary antibodies (anti-goat, -rabbit and -mouse IgG) made by Santa Cruz 87 

Biotechnology (USA) and Sigma-Aldrich Chemical Co. (UK), respectively, were used 88 

(12-15). 89 

Irradiation of Cells with UVA: Sellas (Germany) made broad spectrum (4-kW) lamp 90 

was used to irradiate cells following standard procedures (12,13) while non-irradiated 91 

cells were used as a background control (sham = 0 kJ/m2). After incubation of UVA-92 

irradiated cells for a period of time (48-72 h), the cells were re-irradiated, and then 93 

incubated in a saved conditional medium (cMedium) for the required time. The basic 94 

protocol for the re-dosing regimen is set out in Table 1. 95 

 96 

Table 1.The basic protocol for the re-dosing regimen interval time (24-72h) 97 

1st dose(1o) 2nddose (2o) Symbol 

Sham Sham Sham(-/-) 

Sham UVA -/UVA  (-/+) 

UVA  Sham UVA/-  (+/-) 

UVA UVA UVA/UVA (+/+) 

<Table 1> 98 

RNA Interference by siNrf2: Sequences of all small interference RNAs (siRNAs) 99 

against Nrf2 are as follow:  100 

No.1 s9491  Sense: 5’-GAAUGGUCCUAAAACACCAtt-3’  101 

    Antisense: 5’-UGGUGUUUUAGGACCAUUCtg-3’  102 



 

No.2 s9493  Sense: 5’-CAGUCUUCAUUGCUACUAAtt-3’ 103 

    Antisense: 5’-UUAGUAGCAAUGAAGACUGgg-3’ 104 

Cells were transfected with two different concentrations of siNrf2 (5 and 30 nM) and 105 

scrambled control (Sb, 30 nM) at the time of plating as follow: After trypsinization, 106 

cells in suspension were transfected with scrambled oligonucleotides control (Sb, 107 

AM4611) (Ambion) and siNrf2 using the siPORT™ NeoFX™ Transfection Agent 108 

(AM4511, Ambion) using the different steps. The siRNA dilution were made in 100 µl 109 

OPT-MEM and 5 µl NeoFX in 100 µl OPT medium respectively, uniformly mixed and 110 

incubated together at room temperature (RT) for 10 min until the siRNA complexes are 111 

formed. The siRNA complex was taken in 6- cm plates and a medium containing 3x105 112 

cells were added to make a final volume of 2.5 ml. After about 24 hours, the plates were 113 

additionally given 1 ml of 15% (v/v) of FCS-MEM fresh medium and again incubated 114 

for 48-72 h prior to further treatment (12-15).  115 

Transient transfection: Cells were seeded into 96-well and 6- cm plates (in order to 116 

perform RT-PCR of HO-1 and confirm transfection of Nrf2) 40 h before transfection 117 

to reach 60% confluency. They were then transfected with pcDNA3.1-Nrf2 and its 118 

control vector using the transfection reagent Lipofectamine 2000 (Invitrogen), in a 1:2 119 

volume ratio (DNA:Lipofectamine) at RT according to the manufacturer's instructions. 120 

The DNA–Lipofectamine complex was incubated with cells in Optimum (OPT) 121 

medium (Invitrogen) for 6 h and then 1:1 growth medium was added for 6 h, finally 122 

this medium was replaced with growth medium for a further 34 h (total 40 h) before 123 

UVA irradiation (12, 15).  124 

RNA isolation, reverse transcription, and quantitative real-time PCR: Total RNA 125 

was collected from sham- and UVA-irradiated cultured skin cells using an RNA 126 

extraction kit, following the supplier's instructions. RNA samples were quantified and 127 

reverse transcription was performed (15). Quantitative real-time PCR primers were as 128 

follows: HO-1, forward (F): AAGAGGCCAAGACTGCGTTC; reverse (R), 129 

GGTGTCATGGGTCAGCAGC; Nrf2, F: GCGACGGAAAGAGTATGAGC R: 130 



 

GTTGGCAGATCCACTGGTTT; GAPDH, F: GACATCAAGAAGGTGGTGAA; R, 131 

TGTCATACCAGGAAATGAAG. RT-PCR was carried out with a Roche LightCycler 132 

1.5 instrument using the SYBR green assay (Roche). A standard curve was created 133 

using serial dilutions of a pooled sample of cDNA. Gene expression levels are presented 134 

as arbitrary units normalized to the expression of the housekeeping gene GAPDH (15). 135 

Treatment of Cells with Heme: Cells in the presence of hemin (ferri-protoporphyrin 136 

IX) were incubated in cMedium for 1 h to generate heme (ferrous-protoporphyrin IX). 137 

Cells were rinsed with PBS two times, and then cMedium was added and the cells 138 

incubated for the next 48 h. Cells were re-treated again with hemin for 1 h, washed 139 

twice using PBS and re-incubated with cMedium for the prescribed intervals. 140 

To reduce the variations due to cell division, the freshly confluent FEK4 cells 141 

(95-100%) were employed as described previously (9): Cells were treated with UVA 142 

radiation, heme (1 h) or cadmium (1 h), re-incubated in cMedium for the indicated times 143 

(interval times) and then were exposed to a second treatment of these agents.  144 

Protein extraction and western blotting: Standard methods (12-14] were used to 145 

extract proteins from the harvested cells following treatment. Equal amounts of total 146 

protein lysate (30-50 µg depending on the experiment) and loading buffer were mixed 147 

to separate on a 10% SDS-PAGE. A second gel was run using the identical protein 148 

lysate as a loading control. After separated proteins were shifted onto PVDF (Millipore) 149 

membranes and probed with actin (1:3000), Nrf2 (1:200), Bach1 (1:400) and HO-1 150 

(1:200) antibodies, following a standard protocol (12-14). Subsequently, 151 

chemiluminescence makes the protein bands visible on X-ray film by using the ECL 152 

Western blotting detection system (Invitrogen). Digital densitometry was done to 153 

quantify the intensity of protein bands by using the program NIH Image J1.33. Actin 154 

was used to compare and normalize the data with respective controls and presented as 155 

the fold change adjusted to 1.  156 

Immunocytochemistry: Cells were grown to sub- or just freshly confluent on glass 157 

cover-slips, collected and rinsed with PBS following fixation in 4% (w/v) 158 



 

paraformaldehyde then incubated in 100% methanol at -20oC. The Image-iT™ Fx 159 

signal enhancer (Invitrogen) was used to block the cells and then were treated with 160 

1:100 Nrf2 and 1:200 Bach1 antibody and then Alexa-Fluor secondary antibody. 161 

Hoechst nuclear stain was applied and the cover-slips mounted. For analysing the cells, 162 

oil immersion epi-fluorescence Nikon Eclipse TE2000-U microscope was used and 163 

finally the images were taken using UltraVIEW program. 164 

LDH measurement: The levels of extracellular lactate dehydrogenase (LDH) were 165 

monitored by using the ready to use cytotoxicity detection kit for LDH (Cat. No. 166 

11644793001, Roche Applied Science) according to supplier instructions. Cells after 167 

treatment with SiNrf2 (7500) were seeded into 96-well plates for 48 h, then irradiated 168 

with UVA, incubate for 4 h and finally LDH release was measured according to Zhong 169 

et al. (12). LDH release was calculated as the extracellular LDH as a fraction of total 170 

LDH. Data was represented as the fold increase in LDH release over sham-irradiated, 171 

scrambled siRNA or vector- treated control. 172 

MTS assay: After treatment as described in the LDH assay, 20 µl of MTS reagent (The 173 

Cell Titer 96®AQueous Non-Radioactive Cell Proliferation Assay reagent Promega Cat. 174 

No. G5421) were added to monitor the absorbance at 490 nm after the optimal time (1.5 175 

h post incubation). The absorbance peaks, are the measure of the cell viability, were 176 

used to compare sham-irradiated cells with that of scrambled siRNA or vector- treated 177 

control, were set to 100. 178 

Statistical analysis: Two-tailed T-test was applied to analyse the data and a P-value 179 

<0.05 was taken to be statistically significant value. The descriptive statistics [mean, 180 

standard errors (SE)] is presented graphically.  181 

  182 
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RESULTS 183 

HO-1 protein is induced by UVA irradiation 184 

HO-1 is an oxidative stress-inducible protein whose expression is highly inducible in 185 

human primary skin fibroblast FEK4 and other cell lines, when treated with a large 186 

number of physical stressors (e.g., UVA irradiation) and chemical (e.g., H2O2, hemin) 187 

agents (1,3,16). HO-1 protein levels following the various doses of UVA irradiation in 188 

FEK4cells has not examined before. To confirm the dose response for the inducibility 189 

of HO-1 in FEK4 cells, we examined the protein levels of HO-1 by western blotting at 190 

8 h following UVA irradiation in the range of 50 to 500 kJ/m2. This study also included 191 

longer incubation times (3 to 72 h) than a previous study (9). As expected, the induction 192 

of HO-1 protein by UVA is dose-dependent. A maximal induction of HO-1 protein was 193 

observed in FEK4 cells that were exposed to 250 kJ/m2 UVA radiation. However, the 194 

protein level declined with exposure to a higher dose of radiation (500 kJ/m2) (Fig. 1A). 195 

HO-1 protein induction post a moderate dose, i.e., 250 kJ/m2 has not examined before, 196 

so a time course of HO-1 protein induction was determined during 72 h following 197 

treatment with a moderate dose (250 kJ/m2) of UVA radiation. As shown in Fig. 1B, 198 

the maximal increase of HO-1 protein (12±1.2 folds) was observed 12 h post irradiation 199 

and HO-1 level remains higher than basal until at least 48 h and then decreased to basal 200 

levels by 72 h. 201 

<Figure 1> 202 

Refractoriness of HO-1 protein to re-induction occurs with UVA and heme but 203 

not cadmium  204 

A Western blotting assay showed that HO-1 protein levels returned to the basal levels 205 

60-72 h after single UVA treatment (Fig. 1). Total protein was collected between 8-12 206 

h following the second treatment since during this period UVA radiation shows 8-12 207 

fold HO-1 induction (Fig. 1B) (9,12,14). The levels of HO-1 protein were significantly 208 

reduced in the pre-irradiated cells as compared with the non pre-irradiated samples 209 

when the interval time was up to 48 h (Fig. 2A, middle panel, P <0.05). Indeed, an 210 

interval time of 72 h was required to obtain maximal reduction in HO-1 protein levels, 211 



 

i.e. from 12 fold (-/UVA) to 6 fold (UVA/UVA) induction of HO-1 (Fig. 2A, right 212 

panel, P <0.05). No reduction of HO-1 induction was observed when the interval time 213 

is 24 h (Fig. 2A, left panel, P >0.05) and after an interval time of 96 h the HO-1 214 

refractoriness is strongly reduced as compared with 72 h (data not shown). A second 215 

treatment with heme induced a modest, yet significant reduction of HO-1 protein levels 216 

as compared with cells that have not been pre-treated with heme, i.e., 9 fold vs. 6 fold 217 

(P <0.05, Fig. 2B). However, with a second cadmium (Cd) treatment or a cadmium pre-218 

treatment following by UVA radiation, HO-1 levels were not reduced (Fig. 2C). A 219 

positive control demonstrated that the refractoriness response to UVA was normal i.e., 220 

10 fold (-/UVA) vs. 6 fold (UVA/UVA) at this 60 h interval time (Fig. 2B and C, P 221 

<0.05). After these treatments, HO-2 remains at a constant level (Fig. 2A and data not 222 

shown). 223 

<Figure 2> 224 

Refractoriness of Nrf2 activation to a second UVA treatment develops after an 225 

initial UVA exposure 226 

Nrf2 has been implicated in the induction of HO-1 protein levels in skin fibroblasts by 227 

both UVA radiation and heme (12). We hypothesise that the refractoriness to re-228 

induction of HO-1 protein by UVA might be associated with the altered Nrf2 and Bach1 229 

accumulation in the nucleus following a second dose of UVA radiation. We thus 230 

examined sub-cellular localisation and total protein levels of both Nrf2 and Bach1 231 

following a second dose of UVA radiation. In order to perform immunostaining for the 232 

localisation of Nrf2 and Bach1, a 48 h (but not 72 h) interval time was chosen between 233 

two irradiations to avoid cells being too confluent and to facilitate cell morphology 234 

studies. At this time (48 h), refractoriness to HO-1 mRNA accumulation was maximal 235 

(9) but maximal refractoriness to HO-1 protein induction occurred a few hours later 236 

(Fig. 2A). Both Nrf2 and Bach1 translocations were monitored at 2, 4 and 8 h following 237 

a second dose of UVA irradiation and compared to levels observed after a single dose 238 

of UVA radiation (Fig. 3). Fig. 3A showed that Nrf2 did not accumulate in the nucleus 239 



 

at 2, 4 and 8 h following a second dose of UVA irradiation and it stays mostly in the 240 

cytosol, whereas nuclear accumulation of Nrf2 did occur in cells that had not been 241 

irradiated previously. Increased nuclear accumulation of Bach1 was observed following 242 

a second spell of UVA irradiation (Fig. 3B).  243 

 Furthermore, Nrf2 protein levels in whole cell lysates were significantly reduced 244 

following the second dose of UVA irradiation, i.e. 3 fold (UVA/UVA) vs. 5 fold (-245 

/UVA) Nrf2 induction 8 h following UVA (Fig. 3D); whereas Bach1 protein levels 246 

were significantly higher, i.e. 3.3 fold (UVA/UVA) vs. 2 fold (-/UVA) (Fig. 3E). The 247 

reduced Nrf2 and increased Bach1 levels corresponded temporarily with reduced HO-248 

1 levels (Fig. 3F). Reduced Nrf2 levels were also observed at the 72 h interval time 249 

(data not shown) and these were comparable to those seen with the 48 h interval time. 250 

The nuclear and cytosolic fraction were used and found that the Nrf2 levels are increase 251 

even more in nuclear when compared with total cellular level (data not shown),but the 252 

total cellular levels of Nrf2 reflect the nuclear increase of Nrf2, therefore was used for 253 

the following experiments (12). 254 

<Figure 3> 255 

Nrf2 may involve in the refractoriness of HO-1 protein to induction by a second 256 

treatment with UVA irradiation and heme 257 

In a previous study, it has been shown that Nrf2 was involved in up-regulating HO-1 258 

following UVA radiation and heme treatment and silencing of Nrf2 led to a reduction 259 

in both UVA- and heme induced HO-1 levels (12,13). We studied whether modulation 260 

of Nrf2 would effect a second treatment with either UVA radiation or heme with respect 261 

to the refractoriness to induction of HO-1 protein in human dermal fibroblast FEK4 262 

cells.  263 

First silencing of Nrf2 was performed and Nrf2 protein knockdown by siRNA 264 

was confirmed. Concentrations of 5 and 30 nM siNrf2 caused a reduction of up to 80% 265 

of original protein levels (12). The level of HO-1 that is induced in cells, which had 266 

been given siNrf2 were further reduced, i.e. from 7 fold of the scrambled control to 5 267 



 

fold (5 nM siNrf2) and 2.5 fold (30 nMsiNrf2) 12 h following the second dose of UVA 268 

radiation (Fig. 4A, P <0.05). Similarly, siNrf2 treatment has significantly decreased the 269 

level of HO-1 induction by a second dose of heme (Fig. 4B, P <0.05). A second siNrf2 270 

reagent that targeted a different exon in Nrf2 (Ambion, No. 2) showed similar results 271 

(data not shown). 272 

Nrf2 overexpression was confirmed and we observed that the concentrations of 273 

0.5 and 2 μg Nrf2 caused an increase of up to 10-fold of basal mRNA levels (data not 274 

shown). The level of induction of HO-1 mRNA at 6 h following UVA irradiation (with 275 

48 h interval time between irradiations) was shown to be 16- fold compared to the sham 276 

control. The expression of HO-1 in cells, which had been transfected with Nrf2 was 277 

increased, i.e. from 8- fold of the vector control to 11- fold (0.5 μg Nrf2) and 15- fold 278 

(2 μg Nrf2) 6 h following the second dose of UVA radiation (Fig. 4C, P <0.05).  279 

<Figure 4> 280 

Nrf2 may play a role in protection against a second treatment with UVA radiation 281 

Nrf2 is implicated in protection of many cell types against oxidative damage since it is 282 

involved in up-regulating detoxifying phase-II enzymes, such as HO-1. A previous 283 

study indicated that cells treated with UVA radiation twice, have the same extent of 284 

free iron release as the first dose and thus may cause the same extent, if not more cell 285 

membrane damage in FEK4 cells (17). We next examined whether loss of Nrf2 further 286 

increased damage induced by a second UVA treatment, using LDH leakage and cell 287 

viability to measure the damage. Our results show that a second UVA treatment 288 

(UVA/UVA) significantly increased membrane damage to 2.6- fold (Fig. 5A, P <0.05) 289 

and decreased cell viability to 79% (Fig. 5B, P < 0.05) when compared to the situation 290 

in cells that had received a single dose of UVA (-/UVA). Furthermore, a second UVA 291 

treatment caused both LDH leakage increase and cell viability loss and this damage was 292 

further exacerbated by Nrf2 knockdown i.e., LDH leakage increased from 2.6- fold 293 

(column 4) to 3- fold (column 6) and 3.6- fold (column 7) with 5 nM and 30 nM siNrf2 294 

pre-treatment, respectively (Fig. 5A, P < 0.05). Also, cell viability decreased from 79% 295 



 

(column 4) to 73% (column 6) and 65% (column 7) with 5 and 30 nM siNrf2 pre-296 

treatment, respectively (Fig. 5B, P <0.05). Both types of cell damage increase in a 297 

siNrf2 concentration dependent manner. 298 

We then tested whether an increase in Nrf2 levels reduced damage following a 299 

second UVA treatment, using LDH leakage and cell viability to measure the damage. 300 

Our results showed that the level of both increased LDH leakage (Fig. 5C) and cell 301 

viability loss caused by a second UVA treatment (Fig. 5D) were reduced by Nrf2 302 

overexpression i.e., LDH leakage reduction from 2.5- fold (vector control: column 3) 303 

to 2.3- fold (column 4) and 1.9- fold (column 5) with 0.5 and 2 μg Nrf2 transfection, 304 

respectively (Fig. 5C, P < 0.05), while a single UVA treatment caused a ~2- fold LDH 305 

release when compared with sham control as observed previously (12). We observed 306 

cell viability loss from 20% (column 3) to 15% (column 4) and 8% (column 5) with 0.5 307 

and 2 μg Nrf2 transfection, respectively (Fig. 5D, P < 0.05), with a significant recover 308 

in cell viability loss (P > 0.05). Both types of cell damage decrease in a Nrf2 309 

concentration- dependent manner. 310 

 311 

<Figure 5> 312 

 313 

  314 



 

DISCUSSION 315 

Refractoriness of HO-1 protein following the second dose of UVA irradiation 316 

Refractoriness of HO-1 gene activation to a second treatment with hemin was first 317 

observed in chicken embryo liver cells (8). Later it was shown that, following a second 318 

treatment with a moderate, physiological dose of UVA irradiation or hemin, human 319 

skin fibroblasts FEK4 had acquired refractoriness to activate the HO-1 gene as 320 

monitored at the level of transcription (9). In this study we extended these observations 321 

to the protein level by studying the development of refractoriness to re-induction of 322 

HO-1 protein following a second treatment with UVA radiation at different time 323 

intervals. As expected, refractoriness to HO-1 protein induction develops at later times 324 

than refractoriness to HO-1 mRNA accumulation and the former occurs maximally with 325 

a 48 h interval time. The initial UVA inducedHO-1 mRNA accumulation is back to 326 

normal at 16 h following UVA irradiation (9). The maximal reduction in HO-1 protein 327 

levels (refractoriness) occurred following the second dose of UVA irradiation when 328 

cells were incubated for 72 h between two doses of UVA irradiation. The apparent lack 329 

of refractoriness to HO-1 induction for UVA/UVA treatment at a 24 h interval may be 330 

due to increased amount of HO-1 protein as observed in the relevant controls (UVA/-): 331 

still remaining high level 24 h after irradiation, i.e. the pre-irradiated cells still had 3-4 332 

times higher level of HO-1 protein as compared to the sham control. It is notable that 333 

an interval time of 24 h was required to obtain a maximal reduction in re-induction of 334 

HO-1 activity by a moderate dose of UVA irradiation in a mouse model (18) indicating 335 

either a species, or in vitro versus in vivo difference.  336 

Both UVA and heme treatment can cause refractoriness to induce HO-1 protein 337 

by a second treatment. Cadmium chloride (cadmium) increased both HO-1 and Nrf2 338 

levels (19) but it does not lead to the refractoriness to any type of second treatment. 339 

This is similar to previous studies with sodium arsenite, another strong HO-1 inducer 340 

and it is likely that this is because these compounds do not alter heme levels (1,9,15,20). 341 

A combination of heme and UVA radiation treatments was not given because heme 342 



 

sensitises cells against UVA mediated cell death (9,16). The UVA induction of HO-1 343 

level is correlated to the extent of UVA released microsomal heme, and reduced heme 344 

levels were found 48 h following UVA irradiation (16). Refractoriness observed 345 

following a second treatment with UVA radiation or heme might link to the reduction 346 

of heme levels because it is known that the first treatment strongly increases HO-1 347 

levels(9). This result was supported by our previous study showing that the inhibition 348 

of heme synthesis significantly reduced UVA-induced HO-1 protein levels (12,14).  349 

Refractoriness of HO-1 protein may due to Nrf2 refractoriness 350 

Nrf2 is involved in dissipating the stress and providing a protective response following 351 

UVA induction of oxidized phospholipids in skin cells (21). Loss of Nrf2 increases 352 

UVA-mediated apoptosis in mouse skin fibroblasts (22). The protein can be activated 353 

as a result of stabilisation, translocation and nuclear accumulation (6). Our results show 354 

that Nrf2 silencing leads to an enhanced refractoriness to HO-1 induction after a second 355 

treatment with both UVA radiation and heme; and that an increase in Nrf2 protein leads 356 

to a reduced refractoriness to HO-1 induction after a second treatment with UVA 357 

radiation. These results indicate that pre-irradiation not only leads to reduced total 358 

levels of Nrf2 protein accumulation following a second dose, but it may also result in 359 

reduced Nrf2 nuclear accumulation. UVA treatment leads to both a reduced level of 360 

Nrf2 activation, and increased Bach1 activation when a second dose of UVA is applied. 361 

Reduction of Nrf2 leads to a lower induction of HO-1 by UVA irradiation (12) while 362 

an increase of Nrf2 will lead to high induction of HO-1 by UVA irradiation. Conversely, 363 

Bach1 reduction leads to increased levels of HO-1 after UVA irradiation in these cells 364 

(15). The alteration of Nrf2 up-regulation by either heme or UVA irradiation may 365 

therefore be involved in the HO-1 refractoriness response.  366 

Both Nrf2 and Bach1 translocation and expression are modulated by UVA 367 

radiation which therefore modulates UVA-induced HO-1 expression (12-15). We may 368 

expect that lack of free heme following an increased activity of HO-1 will prevent 369 

stabilisation of Nrf2. The consequent reduction in Nrf2, together with the stabilisation 370 



 

and increase in Bach1 levels will both contribute to diminish HO-1 re-induction by a 371 

second UVA dose. 372 

Repeated UVA irradiations cause more cell damage and Nrf2 is implicated in 373 

protection from a second treatment with UVA irradiation  374 

Loss of Nrf2 sensitises cells to UVA radiation induced damage (12,22). Nrf2 is 375 

involved in protecting many different cell lines against oxidative damage since it up-376 

regulates detoxifying phase II enzymes, especially HO-1. The protective effect of Nrf2 377 

against UVA radiation as well as several other damaging agents has been demonstrated 378 

in skin keratinocytes and fibroblasts (12,13,22). A previous study indicated that a 379 

second regime of UVA radiation causes the same extent of free iron release as the first 380 

dose and thus may cause similar or increased cell membrane damage in FEK4 cells (17). 381 

These findings are in agreement with studies by Merwald (23), who found that the 382 

fractioned UVA exposure precedes a greater rate of cells mortality compare with single 383 

regime. However, they are in contrast to a previous finding from Tyrrell’s laboratory 384 

that fully confluent FEK4 cells are protected by pre-irradiation with an optimum dose 385 

of UVA radiation (250 kJ/m2) from high doses of UVA radiation (750 kJ/m2) (24). In 386 

the previous study, protection was found 24 h following UVA treatment, when HO-1 387 

protein levels are significantly higher (9,24) (Fig. 1). Furthermore, fully confluent cells 388 

are generally more resistant to UVA irradiation than less confluent cells.  389 

A related study in a mouse model reported that UVA radiation induced refractoriness 390 

to HO-1 induction by a second UVA treatment with a 24 h time interval and this is 391 

linked to reduced immunoprotection (18). This result further indicated that repeated 392 

UVA irradiation may cause more damage to skin when compared with a single 393 

exposure. The fact that a second exposure with an optimum dose (250 kJ/m2) of UVA 394 

can cause and enhance cell damage relative to a single dose of UVA may be attributable 395 

to a lower expression of Nrf2 protein under these conditions. Repetitive UVA damage 396 

may be reduced by an increase in Nrf2 levels, which further implies that activation of 397 

Nrf2 contributes to the protection of human skin fibroblasts against oxidative damage. 398 



 

However other molecules may also be involved (12,13,25,26). It has been argued that 399 

Nrf2 signalling may offer a protective role in aging, including photoaging and it may 400 

play a role during keratinocyte differentiation (27,28). Further, increase in Nrf2 levels 401 

by moderate proteasome activation may affect the aging process and the cellular 402 

response to oxidative stress in human fibroblasts (29). While the Nrf2/HO-1 system 403 

may protect human skin cells against UVA-mediated damage, the activation may 404 

increase tumour progression (30).   405 

In summary, we have demonstrated that UVA radiation causes refractoriness of 406 

human skin fibroblasts to re-induction of both HO-1 and Nrf2 by a second dose of UVA 407 

irradiation and that both Nrf2 and Bach1 might cooperate in HO-1 refractoriness. While 408 

our data support the concept that Nrf2 may have a protective function in skin fibroblasts 409 

upon single and multiple UVA treatments, the involvement of Nrf2 in human skin 410 

protection in vivo remains to be determined. Repeated introduction of human skin cells 411 

to moderate and high doses of UVA irradiation results in enhanced cell damage and 412 

Nrf2 may offer protection under such conditions. 413 
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FIGURE CAPTIONS 524 

Figure 1. Dose and time dependence of induction of HO-1 protein by UVA in the 525 

human skin fibroblastFEK4. Cell lysates were harvested at 8 h after UVA radiation 526 

(A), or at the indicated times following exposure to 250 kJ/m2UVA radiation (B). In 527 

each lane, total protein (40 µg) was separated on 12% SDS-PAGE gels, transferred to 528 

PVDF membranes and probed for HO-1 and actin. Quantification of optical densities 529 

of individual bands was carried out using digital densitometry. Values were normalised 530 

with respect to the actin signals. The expression levels of HO-1 are shown as a fold 531 

induction relative to the sham irradiated control (set to 1) on the bar graph. Data are 532 

presented as mean ± S.E (n = 4). *, P<0.05，**, P<0.01 vs. the sham control. 533 

 534 

Figure 2. Treatments with UVA irradiation and heme, but not cadmium lead to 535 

refractoriness to re-induction of HO-1 protein. Cells were treated with 250 kJ/m2 536 

UVA irradiation (A), 5 µMheme (B) or 2.5 µM cadmium (C) for 1 h, and then incubated 537 

in conditional medium (cMedium) for 24, 48, 72h (Figure 2A,UVA irradiation), and 60 538 

h (Figure 2B and C, heme or cadmium) before a second treatment under similar 539 

conditions. The cells were harvested at 12 h after second treatment and assayed for the 540 

expression of HO-1 protein. Values were normalised by actin loading, the levels of HO-541 

1, a relative fold induction to the sham irradiated control (set to 1) were shown in the 542 

bar graph. Data are presented as mean ± SE (n = 4). *P<0.05, **P<0.01 vs. the sham 543 

control. Cd: cadmium. 1o: first treatment, 2o: second treatment. 544 

 545 

Figure 3.The effect of a second UVA radiation treatment on total and nuclear 546 

accumulation of Nrf2 and Bach1 protein.FEK4 cells were pre-treated with 250 kJ/m2 547 

UVA irradiation, and re-incubated in cMedium for 48 h, followed by a second dose of 548 

UVA. Cells were collected at the indicated times post irradiation. A. Cells grown on 549 

coverslips were collected and fixed, then permeabilised and immunostained with anti-550 

Nrf2 antibody (1:200, green: 3A), Bach1 (1:300, Red: 3B). Hoechst dye (shown in red) 551 



 

was used to visualise cell nuclei. 3C.Western blotting was performed with 35μg/lane of 552 

whole cell protein as described previously; Actin signals were determined for all 553 

samples and used to normaliseNrf2 Bach1 and HO-1, protein levels. Relative Nrf2 (3D), 554 

Bach1 (3E) and HO-1 (3F), levels in the samples were expressed as fold increases. Data 555 

are presented as mean ± SE (n = 4). * P<0.05vs.the relevant single irradiated control (-556 

/UVA). 557 

 558 

Figure 4. Effect of modulation of Nrf2 levels on refractoriness of HO-1 to induction 559 

by a second treatment with UVA. FEK4 cells were transiently transfected with 560 

vehicle control (–), negative scrambled control siRNA (Sb, 30 nM), 5 and 30 nM of 561 

siNrf2, using siPORTNeoFX transfection reagent (Ambion) as described in materials 562 

and methods (A and B). Cells were transiently transfected with vector control (V), Nrf2 563 

constructs (0.5 and 2 μg), using lipofectamine transfection reagent as described in 564 

materials and methods (C). 565 

Cells were cultured for 60 h, then pre-treated with 250 kJ/m2 UVA irradiation (A) or 5 566 

µM heme (B), and re-incubated in cMedium for an additional 60 h, followed by a 567 

second dose of either 250 kJ/m2 UVA irradiation or heme, and collected 12 h later; 568 

Cells were transfected with Nrf2 as described in Fig. 4, then pre-treated with 250 kJ/m2 569 

UVA irradiation, and re-incubated in cMedium for an additional 48 h,  and collected 570 

at 6 h following UVA irradiation (C). Western blotting of HO-1 protein and PCR for 571 

mRNA was performed as described previously. Relative HO-1 levels were expressed 572 

as a fold increase after being normalised by actin protein (A and B), or C for GAPDH 573 

mRNA signals. Data are presented as mean ± SE (n = 4). *, P <0.05 vs. the relevant 574 

control. 575 

 576 

Figure 5. Nrf2 silencing further increased re- UVA irradiation induced cell 577 

damage; while Nrf2 overexpression reduced re- UVA irradiation induced cell 578 

damage. FEK4 cells were transfected with siNrf2 (A and B) or Nrf2 (C) for 48 h, then 579 



 

either sham or UVA-irradiated and re-incubated, prior to a second UVA treatment (as 580 

described in Fig. 4). At 8 h following the re-irradiation, membrane damage (A, C) and 581 

cell viability (B, D) were determined by the LDH and MTS assays, respectively. The 582 

percentage of LDH leakage and viability were expressed as relative fold changes 583 

compared with the sham irradiated control, set as 1 (A) and 100 (B), respectively. Data 584 

are presented as mean ± SE (n = 4). * P<0.05 vs. the relevant control. 585 


