Identification of cis-regulatory elements in the upstream regions of zebrafish runx3 through in silico analysis: Implications for function

Running title: in silico analysis of runx3 promoter regions

By B. Simões1,2,3 #, N. Conceição3 #, R.N. Kelsh4 and M.L. Cancela1,3

1Department of Biomedical Sciences and Medicine and 2PhD program in Biomedical Sciences, University of Algarve, Faro, Portugal; 3Centre of Marine Sciences/CCMAR/CIMAR-LA, University of Algarve, Faro, Portugal; 4Department of Biology and Biochemistry, University of Bath, Claverton Down, United Kingdom

#Both authors contributed equally
Summary

RUNX3 encodes a member of the runt domain family of transcription factors. In mammals this family includes three genes (*RUNX1-3*) and their protein products function as context-dependent transcription factors, either transcriptional activators or repressors, during developmental processes such as hematopoiesis, neurogenesis, and osteogenesis; all are proto-oncogenes or tumour suppressors. All three genes were shown to be transcribed from two promoters, giving rise to protein products bearing either the P1 or the P2 N-termini, translated respectively from transcripts originating from the distal (P1)- or the proximal (P2)-promoters. Understanding their differential regulation and interaction may help explain how RUNX factors contribute to such different and often opposing biological processes. In this study, we have identified putative molecular players affecting zebrafish *runx3* transcription by using a computational approach to search for cis-regulatory transcription factor binding sites (TFBSs) in the *runx3* promoter regions of zebrafish (*Danio rerio*) and fugu (*Takifugu rubripes*). From the data obtained it was possible to identify the sites most likely involved in regulating expression of *runx3* in zebrafish. Our comparative approach reduced substantially the number of putative TFBSs in the *runx3* promoter regions; reassuringly, published TFs identified as transcriptional regulators of *Runx3* are confirmed by our *in silico* analysis. Our data now provides the basis for focused *in vitro* and/or *in vivo* experimental tests of the transcriptional regulatory activities of strong candidate regulators of zebrafish *runx3*.

Keywords: transcription factor, runx3, transfection, promoter regions, comparative analysis, transcription regulation
Introduction

RUNX3 encodes a member of the runt domain family of transcription factors, which also include RUNX1 and RUNX2. RUNX proteins can bind DNA as a monomer to the core sequence 5'-PyGPyGGT-3' found in a number of enhancers and promoters, but their affinity for DNA is enhanced when the RUNX protein forms a heterodimer with its non-DNA binding partner CBFβ (Ogawa et al., 1993; Bae et al., 1994). The RUNX proteins also interact with other transcription factors, thus modulating their activity.

Despite the recognized importance of this family in gene transcription, little is known about the factors regulating RUNX3 transcription. Like the other two RUNX genes, RUNX3 was shown to be transcribed from two promoters (Ghozi et al., 1996; Xiao et al., 1998; Rini and Calabi, 2001), giving rise to RUNX3 protein products bearing either the P1 or the P2 N-termini, resulting from transcripts derived from the distal (P1) or the proximal (P2) promoters, respectively (Bangsow et al., 2001; Rini and Calabi, 2001).

The identification of several RUNX binding sites in the RUNX promoter regions (Ghozi et al., 1996; Levanon et al., 2001; Bangsow et al., 2001) led to the demonstration that auto- and cross-regulation of RUNX expression by RUNX proteins was likely to contribute to their regulation (Drissi et al., 2000; Spender et al., 2005). However, little work has addressed the regulatory processes that determine when RUNX proteins bind to the promoters of the genes of the other two family members to inhibit their expression in a kind of intrafamilial competition, nor when each RUNX protein acts mainly on its own promoter either promoting or inhibiting its own transcription, for example, to stabilise its levels of expression. Spender et al. (2005) have shown that in human B lymphoid cell lines, RUNX3 represses RUNX1 expression, thus contributing to their mutually exclusive expression in those cells. In this case, RUNX3 represses the RUNX1 P1 promoter by binding specifically to the conserved RUNX sites located near
the transcription start site of that promoter, thus confirming that cross-regulation between different RUNX family members is a means of controlling RUNX expression (Spender et al., 2005). The demonstration that RUNX transcription factors can be regulated by other members of the RUNX family may help explain their diverse functions and has important implications for the interpretation of pathologies associated with RUNX gene knockout or amplification. RUNX family proteins can function as context-dependent transcription factors during diverse developmental processes such as hematopoiesis (de Bruijn and Speck, 2004), neurogenesis (Li et al., 2002; Fainaru et al., 2004), and osteogenesis (Karsenty, 2000; Komori, 2005). RUNX2 and RUNX3 have also been shown to regulate chondrocyte differentiation and maturation (Yoshida et al., 2004). In zebrafish, loss of function of runx3 was shown to lead to severe reduction of head cartilage at 4 days post-fertilization (dpf) (Flores et al., 2006; Dalcq et al., 2012). Furthermore, it was shown that a regulatory cascade formed by Runx3-Egr1-Sox9b controls late chondrogenesis by reducing expression of Follistatin A, a BMP inhibitor (Dalcq et al., 2012). This down-regulation allows the correct activation of BMP signalling required for expression of runx2b in developing chondrocytes (Dalcq et al., 2012). These observations were further investigated by Larbuisson et al. (2013). Using loss of function studies these authors observed cartilage defects in Fgfr1a or Fgfr2 morphants that could be rescued by expression of exogenous Runx3 or Egr1. Recently, using RNA-sequencing of Atlantic salmon notochord during segmentation it was also shown that runx3 was one of the genes expressed during - and implicated in - tissue mineralisation, alongside other genes such as the chondroblast-specific sox6, sox5 and sox9 (Wang et al., 2014).

Recently, we have cloned the full-length cDNA sequence of the zebrafish runx3, observed the tissue distribution pattern and analyzed their bioinformatic features.
With the aim to characterize the genomic structure and to analyze the promoter activities, we have cloned the 5′-flanking regions of the runx3 (P1 and P2). In this study we have analysed the promoter activities of the 5′-flanking regions of the zebrafish runx3 (P1 and P2) and identified putative transcriptional regulators of zebrafish runx3 by using a computational approach to search for cis-regulatory transcription factor binding sites (TFBSs) in the promoter regions (P1 and P2) of the runx3 gene from zebrafish (Danio rerio) and fugu (Takifugu rubripes). Our in silico strategy provides a quick way to identify the most promising candidates among the large number of TFs that might potentially regulate zebrafish runx3 in vivo. Testing the functionality of these sites in vitro and in vivo will then be the priority for future studies.

Materials and Methods

Cell culture, transient transfection and luciferase assay

C6 cells (rat glioma cell line) were maintained in F-12K Nutrient Mixture Medium supplemented with 2.5% fetal bovine serum, 15% horse serum and 1% penicillin/streptomycin. U2OS cells (human osteosarcoma cell line) were maintained in Dulbecco’s modified eagle medium (DMEM) supplemented with 10% fetal bovine serum, 2mM L-Glutamine and 1% penicillin/streptomycin. For both cell lines, incubation was carried out at 37 °C in a humidified atmosphere containing 5% CO₂. The media, FBS, antibiotics and glutamine were obtained from Invitrogen. For all transfections, the C6 and the U2OS cells were seeded into 24-well plates at the density of 5 x 10⁴ cells/well and 3 x 10⁴ cells/well, respectively. Following 16 h of incubation, when the cells were about 70-80% confluent, transient transfection of the plasmids was carried out using Lipofectamine® LTX with Plus™ Reagent (Invitrogen) for C6 cells
and X-tremeGENE HP DNA Transfection Reagent (Roche) for U2OS cells. To normalize the transfection efficiency, the pRL-null vector (Promega) encoding Renilla luciferase was co-transfected at the ratio of 1:10 relative to pGL3-basic vector. After incubation for 48 h, cells were harvested. The luciferase activities were measured by the Dual-luciferase Reporter Assay System (Promega). The data were normalized by calculating the ratio of the specific activity of firefly luciferase to that of Renilla luciferase.

Sequence collection

Sequence databases at GenBank (www.ncbi.nlm.nih.gov) and Ensembl (release v72; www.ensembl.org) were searched for annotated Runx3 sequences derived from zebrafish and fugu. The promoter sequences from these two genes were extracted for analysis by selecting 5000 base pairs (bp) upstream of the known translation initiation site (TIS) giving rise to both isoforms, P1 and P2. This length of sequence provided a reasonable assurance of containing the target gene’s TFBSs. The promoter sequences were masked for repetitive elements by the program RepeatMasker (www.repeatmasker.org) with the default mode.

Comparative analysis of promoter TFBSs

For each zebrafish-fugu orthologous promoter pair, the DNA Block Aligner (DBA) software (www.ebi.ac.uk/Tools/psa/promoterwise/) was used to extract blocks of aligned sequence using the default parameter settings based on the postulation that conserved regulatory blocks may be regions important for regulation of the gene. DBA alignments between orthologous promoters vary substantially, in many cases having no significant alignment, but others having several large sections of aligning sequences. This also clearly shows that many genes have multiple aligning blocks, sometimes spaced quite widely apart in the 5 kb region. With this software it is possible to obtain
four different types of conserved blocks of a certain degree of similarity: type A, 60-70%; type B, 70-80%; type C, 80%-90%; and type D, 90-100%.

The promoter sequences (P1 and P2) of the zebrafish *runx3* gene were then assessed for TFBSs by running MatInspector (http://www.genomatix.de/) against TF binding site position weight matrices (PWM). For this study we used the default settings for the core similarity 0.75 and for matrix similarity 0.80.

For the multiple alignment plus prediction of TFBSs in the set of identified conserved blocks present within the promoters, we used the DiAlignTF software (http://www.genomatix.de/). We retained the same settings as used for the TFBSs prediction in the promoters (score similarity 0.75 and matrix similarity 0.8) and all the common TFBS matches located in aligned regions were determined. Then we used MatInspector for quantification of TFBSs common to all input sequences. The percentage of retention of putative TFBSs was calculated comparing the number of a given TFBS in the promoter to that from the conserved blocks in both zebrafish and fugu promoters.

Results

Promoter activity analysis and prediction of transcription factor binding sites in zebrafish runx3

To investigate the activity of the promoter regions (P1 and P2) of zebrafish *runx3*, we performed luciferase assays following the transient transfection of the human osteosarcoma U2OS cells and rat C6 glioma cells (Fig. 1). The U2OS cell line was shown to express low levels of RUNX3 (Lai and Mager, 2012) and it was previously reported that RUNX3 expression is significantly decreased in human glioma (Mei et al., 2011). We have used P1 (from -5094 to -17 of the TIS starting as MASN) and P2 (from
-3930 to -474 of the TIS starting as MHIPV) reporter constructs generated by inserting PCR fragments into the pGL3-basic vector (Simões, unpubl. results). Both the constructs exhibited higher luciferase activities than negative control of the pGL3-basic vector. The P2 promoter construct showed about 36-fold and 26-fold higher luciferase activities than pGL3-basic in U2OS and C6 cells respectively, while the P1 promoter construct showed about 7-fold and 5-fold higher activity than the empty vector in U2OS and C6 cells, respectively. Therefore, we expect that differences in the sequence of each promoter could affect their ability to function as a promoter.

In order to verify the relationship between sequence variation and promoter activity, we analyzed TFBSs in the zebrafish runx3 promoter regions by using TRANSFAC® Public 6.0. We observed a huge number of putative TFBSs in both promoters, some of which identified in both P1 and P2, while others specifically found either in P1 or P2 promoter regions. To identify from this list of TFBSs, which ones are more likely to be involved in the regulation of each promoter we decided to perform a comparative promoter analysis.

Comparison of zebrafish and fugu runx3 promoter regions

To identify the likely regulatory regions, we analyzed the conservation of the promoter regions of the zebrafish and fugu runx3 genes using the DBA (DNA Block Aligner) web server. The output of DBA not only identifies discrete conserved blocks but also classifies them into four levels of conservation (A-D category, A showing lowest (60-70%) and D showing highest (90-100%) conservation). Among the 5 kb promoter sequences upstream of the TIS, an average of ten per cent of the total length of the P1 promoter region from zebrafish and fugu could be aligned by DBA; 0.7%, 3.2%, 1.9%, and 3.9% being of the A-D category, respectively. For the P2 promoter region, only 3.3% was aligned by DBA; 0.5%, 0.9% and 1.9% being of the B-D categories,
respectively. We plotted the sequence conservation as a function of the distance from the zebrafish runx3 translation start sites (Fig. 2). Sequence conservation in the first 1000 bp was distinctly higher (Fig. 2C), a finding fully consistent with the typical pattern for protein coding genes (Conceição et al., 2009). Furthermore, in addition to being more abundant, conserved blocks in the first 1000 bp tended to be more conserved (i.e. Type D, with 90-100% sequence identity) in both promoters (Fig. 2). Interestingly, we observed that the P1 promoter region shows more conserved blocks (23 blocks) than the P2 promoter (eight blocks) (Table 1), suggesting that the P1 promoter sequence is more conserved compared with P2 and that there are more conserved cis-acting regulatory elements in the P1 than in the P2 promoter region.

Analysis of regulatory elements using MatInspector

To analyze the conservation of the cis elements between the zebrafish and fugu 5 kb runx3 promoter regions, the zebrafish promoter sequences and the set of identified conserved blocks present within the zebrafish and fugu promoters were compared for TFBSs. Our comparison reveals the conservation of multiple potential cis elements between fugu and zebrafish promoters. Although TFBSs are abundant in all sequences assessed, relatively few show conservation between zebrafish and fugu. Thus, for zebrafish, this criterion reduces the 3478 TFBSs in the P1 promoter sequence to only 142 in the conserved blocks, and the 8544 TFBSs in the P2 promoter sequence to only 104 in the conserved blocks. Thus, by identifying and analysing only conserved blocks, an average of 96% and 99% of all TFBSs in, respectively, the P1 and P2 promoter regions were eliminated (Fig. 3). Likewise, this approach also substantially reduces the number of TF families implicated in runx3 regulation, (from 170 to 66 (a reduction of 61 %) and from 175 to 49 (a reduction of 72 %), in P1 and P2 promoters, respectively).
To determine whether our comparative screening of TFBSs was likely to have identified TFs (Table 1) with roles in *runx3* regulation, we searched our lists for the presence of TFs previously characterized as regulating *RUNX3*. Key roles have been shown for signal transducer and activator of transcription STAT (Park et al., 2010), Sp1 transcription factor /TEA domain family member 2 (Sp1/ETF) (Bangsow et al., 2001), T helper transcription factor (Th-POK) (Egawa et al., 2009), CBF1/Suppressor of Hairless/Lag1 (CSL) (Fu et al., 2011), interferon regulatory factor 4 (IRF4) (Cao et al., 2010), E-twenty-six (Ets1) (Zamisch et al., 2009), cAMP-response element-binding protein (Creb) (Lim et al., 2011), microphthalmia-associated transcription factor (Mitf) (Hoek et al., 2008), Twist subfamily of class B bHLH transcription factors (Scl/Tal1) (Landry et al., 2008), Brn POU domain factor (Brn3a) (Dykes et al., 2010; 2011), recombination signal binding protein-J kappa (Rbpj) (Fu et al., 2011) and runt-related transcription factors (Runx) (Drissi et al., 2000) in regulation of mammalian *RUNX3*. Of these eight TFs, Ets1, Stat, Creb, Mitf, Scl, Brn3a, Rbpj and Runx show conserved binding sites in the conserved sequence blocks in the *runx3* promoter sequences analysed here, consistent with them having a functional role in the regulation of *runx3* in fish. These TFs are then prime candidates for future functional studies assessing their ability to bind to and regulate activity of *runx3 in vivo*.

Discussion

In the present study we provide evidence for the transcriptional activity of zebrafish *runx3* promoters in two different cell lines, using *in vitro* transient transfection experiments. These findings support an earlier report from our laboratory (Simões, unpubl. results). To gain insight into the regulatory mechanism of the *runx3* gene, the sequences of the genomic fragments (named P1 and P2) were analyzed *in silico* for
potential recognition sites to transcription factors. Our analysis identified numerous
putative cis-regulatory elements that may serve as targets for sequence-specific
enhancer/silencer transcription factors.

We have then used the DBA algorithm to obtain comparative alignment between
zebrafish and fugu runx3 promoter regions in order to detect conserved sequence blocks
and then used MatInspector to determine putative TFBSs in those blocks, so as to enrich
for likely functionally relevant TFBSs. Our in silico analysis of zebrafish runx3 P1 and
P2 promoter regions provides important clues as to factors likely to be involved in
regulation of runx3 expression. Although MatInspector can find most true positive
TFBS matches in a promoter region (Cartharius et al., 2005), not all sites found are
necessarily functional in a particular biological context. A first step in examining
functionality is a comparative promoter analysis. The alignment obtained with DBA
was then assessed for conserved TFBSs by DiAlignTF, a combination of MatInspector
with the multiple alignment program DiAlign (Morgenstern et al., 1998). DiAlignTF
displays TFBSs located at the same position within the alignment and then it can be
used to reduce the list of potential TFBSs to the most likely functional matches. From
the data obtained it was possible to identify the sites most likely involved in regulating
expression of runx3 in zebrafish. While a number of pathways regulating RUNX
activity have been delineated, transcription factors binding to RUNX promoters are only
beginning to be identified. From the list of 86 putative TFBSs families retained after the
comparative analysis, CREB (family V$CREB) (Lim et al., 2011), Mitf (family
V$MITF) (Hoek et al., 2008), Brn3a (family V$BRNF) (Dykes et al., 2010; 2011),
Rbp-j (family V$RBPF) (Fu et al., 2011), Scl/Tal1 (family V$HAND) (Landry et al.,
2008), Ets1 (family V$ETSF) (Zamisch et al., 2009), Stat (family V$STAT) (Park et al.,
2010) and Runx (family V$HAML) (Drissi et al., 2000; Spender et al., 2005) are
described in the literature as regulating *RUNX3*. In addition to these data indicating likely conservation of a regulatory function for these TFs between mammals and fish, our *in silico* analysis identified a number of novel potential regulatory TFs for the zebrafish *runx3* promoters (Fig. 3). As described in Materials and Methods, several TFs were found to be retained within the conserved blocks (between zebrafish and fugu promoters) analysed. By focusing only on those, we selected a set having a retained score of 15% or higher (see Fig. 3), which included Brn-5 POU domain factors (family V$BRN5$), Cas interacting zinc finger (family V$SCIZF$), Runx or Human acute myelogenous leukemia factors (family V$SHAML$), PAX-4/PAX-6 paired domain binding sites (family V$SPAX6$), Spalt-like transcription factor 2 (family V$SAL2$) and Sterol regulatory element binding proteins (family V$SREB$) for P1 promoter and TFIIB or RNA polymerase II transcription factor II B (family O$TF2B$) for P2 promoter. Interestingly, available data links some of these with either skeletal or neuronal development. In the context of the P1 promoter, five of these TFs have a function in neurogenesis and two in skeletogenesis. Brn-5 POU domain factors (Brn-5) is expressed in many central nervous system (CNS) neuron populations and may function as a transcriptional regulator involved in specifying the mature phenotype of CNS neurons (Cui and Bulleit, 1998). Spalt-like transcription factor 2 (Sall2) also plays a role in neuronal development (Pincheira et al., 2009) and is the only member of the family suggested to act as a tumor suppressor (Li et al., 2001; Ma et al., 2001). Sterol regulatory element binding protein 2 (Srebp2) was shown to interact with the *acetoacetyl-CoA synthetase (AACS)* promoter and knockdown experiments showed that SREBP-2 regulates *AACS* expression during neurite outgrowth in the neuroblastoma Neuro-2a cell line (Hasegawa et al., 2012). Paired box 6 (Pax6) also is expressed during neurogenesis (Gan et al., 2013), and it functions as a transcription factor with a major
role in eye and brain development from Drosophila to humans (Callaerts et al., 1999; van Heyningen and Williamson, 2002). Lleras-Forero et al. (2013) showed CNS Pax6b expression in zebrafish. The human acute myelogenous leukemia factors (Ham1; also known as a runt-related Runx/AML protein) function as context-dependent transcription factors during developmental processes such as hematopoiesis, neurogenesis, and osteogenesis (Westendorf and Hiebert, 1999). Runx expression was shown in subtypes of dorsal root ganglion (DRG) neurons, suggesting their involvement in lamina-specific afferent differentiation and maturation (Inoue et al., 2003) and Runx2 and Runx3 have also been shown to regulate chondrocyte differentiation and maturation (Yoshida et al., 2004; Komori, 2005). In zebrafish, we have shown that Runx2 was able to transactivate the promoter of osteocalcin, an osteoblastic marker gene (Pinto et al., 2005), as well as the promoter of collagen Xα1, a chondrocyte marker gene (Simões et al., 2006). Zebrafish runx3 expression was observed in neuronal tissues including the trigeminal ganglia and Rohon-Beard neurons (Kalev-Zylinska et al., 2003) and also in the craniofacial region (Flores et al., 2006). Cas-interacting zinc finger protein (CIZ) is one of the suppressors of BMP signalling in osteoblastic differentiation (Shen et al., 2002). Besides these last two highly conserved TFBSs, our data show the occurrence in the conserved sequences of binding sites for many more TFs that are described as having a role in skeletogenesis. These factors include NF-kB (Wu et al., 2011), NF-YB (Chen et al., 2009), NFATc1 (Lambertini et al., 2008), Ets-1 (Wenke et al., 2006), and Sox5 and Sox9 (Yang et al., 2011). Curiously, all these TFBSs are only detected in the P1 promoter and not in the P2 promoter.

Of the two putative TFBSs more conserved in the P2 promoter, that for the odd-skipped related (Osr) zinc finger transcription factor is notable since it was suggested to be involved in bone formation (Kawai et al., 2007). The other relates to TFIIB, a
component of the basal transcription complex. Several other TFs identified in our
analysis for the P2 promoter are known to play critical roles in zebrafish development,
e.g. *dlx* (distal-less homeodomain; family V$DLXF) genes play a key role in the
patterning of the forebrain, in peripheral structures of the head, and in the fins
(Akimenko et al., 1994); *mef2* (myocyte enhancer factor 2; family V$MEF2) genes are
essential for heart development (Hinits et al., 2012) and in cranial neural crest for proper
head skeletal patterning (Miller et al., 2007); CREB (cAMP response element-binding
protein; family V$CREB) have a role in neural development (Dworkin et al., 2007);
Nkx6 (NK6 homeobox; family V$NKX6) proteins specify one zebrafish primary
motoneuron subtype (Hutchinson et al., 2007); Pax3 (paired box 3; family V$PAX3) is
induced early during neural development in progenitors of the dorsal spinal cord
(Moore et al., 2013), and Six3 (sine oculis homeobox homolog 3; family V$SIX3) are
involved in the left-right brain patterning (Inbal et al., 2007).

Since it is known that all Runx protein family members bind to the same DNA core
sequence, their temporal and/or spatial expression has to be tightly regulated. Other
investigators have reported that the two promoter regions, P1 and P2, regulate Runx3
expression in a cell type-specific manner (Bangsow et al., 2001; Egawa, 2009). In mice
Soung et al. (2007) showed that both Runx3 isoforms are expressed and regulated
during chondrocyte differentiation, while Yoshida et al. (2004) showed that Runx3
mRNA was detected in both CD8+ and CD4+ T cells, but only the CD8+ population
expressed the P1 transcript isoform and detectable levels of RUNX3.

Comparison of the zebrafish runx2b proximal promoter sequence that we identified and
cloned previously (Pinto et al., 2005) with both those of zebrafish runx3 showed some
common consensus binding motifs, namely for NFAT, CREB, RUNX, and CBF1. They
are thus possible candidates for regulating expression of runx3. Of interest are the two
putative RUNX-binding sites present in the P1 regulatory region of all three RUNX genes, at the beginning of the 5’UTR, perfectly conserved in mammals. These RUNX-binding sites were previously shown by independent studies to have an effect on the transcriptional regulation of RUNX genes, either positively or negatively, through the binding of RUNX proteins (Levanon et al, 1998; Ducy et al, 1999; Drissi et al, 2000; Bangsow et al, 2001; Levanon and Groner, 2004; Spender et al, 2005). In the present analysis we also found two Runx-binding sites in the runx3 P1 promoter that are conserved between zebrafish and fugu. Taken together this may indicate important regulatory roles such as cross-regulation and/or auto-regulation.

In conclusion, our comparative in silico analysis of zebrafish runx3 gene promoter regions, using the DBA and DiAlignTF softwares, predicts strong candidates TFBSs likely to contribute to regulation of runx3 transcription. These TFBSs include binding sites for TFs already known from work in mammals as transcriptional regulators of Runx3, but also include novel TFs. Thus, our data likely provide a powerful tool to guide future dissection of runx3 transcriptional regulation in vitro and/or in vivo.

Acknowledgments

NC and BS are supported, respectively, by post-doctoral and PhD grants from FCT (SFRH/BPD/48206/2008 and SFRH/BD/38083/2007). This research was partially supported by the European Regional Development Fund (ERDF) through the COMPETE - Operational Competitiveness Program and national funds through FCT – Foundation for Science and Technology, under the project “PEst-C/MAR/LA0015/2011.”
References:

Dalcq, J.; Pasque, V.; Ghaye, A.; Larbuisson, A.; Motte, P.; Martial, J. A.; Muller, M., 2012: RUNX3, EGR1 and SOX9B form a regulatory cascade required to

Author's address:
Natércia Conceição, CCMAR-University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
E-mail: nconcei@ualg.pt
Figure 1. Relative transcriptional activity of zebrafish runx3 promoter constructs (P1 and P2) in U2OS and C6 cell lines. The results represent the ratio between firefly and Renilla luciferase determined. The mean and the SD for at least three independent transfections are shown. pGL3-Basic is the empty vector which lacks eukaryotic promoter and enhancer sequences and served as a control.

Figure 2. Distribution of percentage of base-pairs located in block A, B, C, or D located in zebrafish and fugu promoters, for each of five 1000 bp segments spanning up to -5000 bp upstream of translation initiation site (TIS) in (a) P1, (b) P2 and (c) P1 and P2 runx3 promoter regions.

Figure 3. Retention of putative TFBSs after comparative analysis. For each TF listed along the x-axis, corresponding bars represent the percentage (y-axis) of putative TFBSs originally identified by MatInspector that also survived after DiAlignTF comparative analysis. The dashed line indicates the minimum percent chosen to consider TFBSs as most frequent.

Figure 4. Representation of a DBA block obtained from the alignment of P1 (a) and P2 (a’) runx3 promoter regions between zebrafish (Dr) and fugu (Fr) and overview of TFBS families detected by DiAlignTF on the conserved blocks analysed for P1 (b) and P2 (b’) promoters. (a, a’) Examples of an alignment of one of the 23 blocks obtained for P1 and 8 blocks obtained for P2 using the DBA software. The block position in the respective promoter sequence is shown, considering the A of the translation initiation codon as +1. The block type (type B and type C) is also represented as a bold letter next
to the consensus sequence identified between the two blocks. (b, b’) Overview of the TFBS conserved in the block showed as (a) or (a’), respectively for P1 or P2, detected by MatInspector using DiAlignTF program. Only upper-case letters are considered to be aligned. The colour code for each specific TFBS is shown above the alignment.

Table 1. Transcription factor families conserved in each block obtained from the alignment of P1 and P2 runx3 promoter regions between zebrafish (Dr) and fugu (Fr).

Supplementary Figure S1. TFBS families detected by DiAlignTF that are common in all conserved blocks obtained from the alignment of runx3 P1 (a) and P2 (b) promoter regions between zebrafish and fugu. In each block is represented the alignment obtained by DBA software (upper alignment) and the DiAlignTF output (lower alignment) showing the TFBSs conserved in each block. The colour code for each specific TFBS is shown above the alignment.