Sagittal Kinematics of Mobile Unicompartmental Knee Replacement in Anterior Cruciate Ligament Deficient Knees

Elise C Pegg 1, Francesco Mancuso 2, Mona Alinejad 1, Bernard H van Duren 1, John J O’Connor 3, David W Murray 1, Hemant G Pandit 1

(1) Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
(2) Orthopaedics and Traumatology Unit, San Donà di Piave General Hospital, Venice, Italy.
(3) Department of Engineering Science, University of Oxford, Oxford, United Kingdom

Corresponding Author:
Dr Elise C Pegg
Botnar Research Centre,
Nuffield Orthopaedic Centre,
Windmill Road,
Oxford, OX3 7LD
Tel: +44 1865 227663
Fax: +44 1865 227966
Email: elise.pegg@ndorms.ox.ac.uk

Abstract Word Count: 249 words
Main text word count: 3490 words
Abstract

Background

There is a greater risk of tibial component loosening when mobile unicompartmental knee replacement is performed in anterior cruciate ligament deficient knees. We previously reported on a cohort of anterior cruciate ligament deficient patients (n=46) who had undergone surgery, but no difference was found in implant survivorship at mean 5 year follow-up. The purpose this study was to examine the kinematic behaviour of a subcohort of these patients.

Methods

The kinematic behaviour of anterior cruciate deficient knees (n=16) after mobile unicompartmental knee replacement was compared to matched intact knees (n=16). Sagittal plane knee fluoroscopy was taken while patients performed step-up and forward lunge exercises. The patellar tendon angle, knee flexion angle and implant position was calculated for each video frame.

Findings

The patellar tendon angle was 5° lower in the deficient group, indicating greater anterior tibial translation compared to the intact group between 30 and 40 degrees of flexion. Large variability, particularly from 40-60 degrees of flexion, was observed in the bearing position of the deficient group, which may represent different coping mechanisms. The deficient group took 38% longer to perform the exercises.

Interpretation

Kinematic differences were found between the deficient and intact knees after mobile unicompartmental knee replacement; but these kinematic changes do not seem to affect the medium-term clinical outcome. Whether these altered knee kinematics will have a clinical impact is as yet undetermined, but more long-term outcome data is required before mobile unicompartmental knee replacement can be recommended for an anterior cruciate ligament deficient patient.

Keywords

Unicompartmental knee replacement; Anterior cruciate ligament; Knee kinematics; Function; Patellar Tendon Angle
1. Introduction

Anterior cruciate ligament (ACL) deficiency is considered a contra-indication for mobile Unicompartmental Knee Replacement (UKR). Goodfellow et al. in the primary series of the medial Oxford UKR on 103 knees found an association between early implant failure and an absence of the ACL, in particular loosening of the tibial component was commonly observed [21]; a later study on 301 knees also showed reduced survivorship in ACL deficient knees over a 7 year follow-up period [22]. Both Deschamps et al. [14] and Böhm et al. [8] reported similar findings with fixed bearing unicompartmental prostheses, where patients with an absent ACL represented a large proportion of the failures (41% [8]) involving aseptic loosening and tibial subluxation. As a result of these findings, mobile-bearing UKR in patients with a deficient ACL is rarely performed and consequently there are few published studies on such patients.

However, there is some evidence that a UKR can be successful in an ACL-deficient knee. Engh et al. performed a prospective study on 72 patients with ACL-deficiency (but who had reported no knee instability) who underwent fixed-bearing UKR [16]; their results showed no difference in survivorship at a mean follow-up of 6 years. Boissonneault et al. analysed an ACL-deficient patient group retrospectively who had undergone mobile UKR. No differences in survivorship, implant slope or patient reported outcome measures were found at a mean follow-up of 5 years [9]. The reason why these findings contradict those reported by Goodfellow et al. and Böhm et al. is not fully understood. Engh et al. and Boissonneault et al. both hypothesise that the differences could be due to modified operative technique and/or patient selection.

Studies examining ACL-deficient patients who have not undergone knee replacement have found significantly different knee kinetics and kinematics during stair-climbing [10,31,27,1,41], walking [10,7,33,26,28], and squatting [13] activities. Although there is some controversy in the literature regarding particular differences, the majority of authors agree on the following observations for patients with ACL-deficient knees:

- The affected knees have greater anterior tibial translation from 0-30 degrees of flexion [27,1]
- Patients perform activities with a reduced quadriceps force and a decreased external knee flexion moment [10,7,33,28,4]; some studies suggest this is also time-dependent [26,40]
- Patients have increased activity in the vastus lateralis component of the quadriceps muscle, reducing overall internal rotational forces on the knee [10,26]
Patients take longer to perform activities [41,31]

The use of fluoroscopy to assess the knee kinematics in the sagittal plane of the knee is an established technique for UKR [34,35]. The majority of knee motion occurs in the sagittal plane, and patellar motion represents information on both the translation of the femur relative to the tibia, and the patellar relative to the femur [29]. In particular, the patellar tendon angle (PTA) has been used to represent knee kinematics.

The PTA is influenced by two main factors; the geometrical shape of the femur on which the patellar articulates (which is therefore dependent on flexion angle), and the anterior-posterior position of the femur on the tibia [43,20]. By comparing the PTA at each flexion angle of different groups, it is possible to quantify differences in anterior-posterior positioning and movement reproducibility. The PTA also has the particular advantage of not being significantly influenced by internal/external rotation of the knee; studies have shown that 20 degrees of rotation only causes a 1° change in the measured PTA [36]. Also of importance to UKR knee kinematics is knowledge of how the medial compartment in particular translates; it is possible to determine this through assessment of the medial femoral implant position relative to the tibial implant (bearing position measurement) [34].

The goal of this study was to examine a subset of the cohort of ACL-deficient (ACLD) knees studied by Boissonneault et al. [9] who had undergone mobile medial UKR, and compare their knee kinematics to a matched cohort of ACL-intact (ACLI) knees using sagittal plane video fluoroscopy. The hypothesis examined in this study was that there is a difference in PTA, and bearing position, in ACLD knees compared with ACLI knees throughout flexion.

2. Methods

2.1 Patient Selection

This study was approved by the Oxford Research Ethics Committee B (13/SC/008). The patient group consisted of patients with ACL-deficient knees who had undergone Phase III Oxford UKR (Biomet UK Healthcare Ltd., Swindon, UK) between January 2000 and June 2011. ACL-deficient patients were defined as those with either no ACL, or had an ACL where less than 50% of the fibres were intact and it was functionally inactive (as determined from an intra-operative positive pivot-shift test). Although ACL-deficiency is considered a contra-indication for mobile unicompartmental knee replacement, in unusual cases the procedure
has been performed in ACL-deficient knees in our centre, mostly at the request of the patient; detailed information on this particular cohort of patients has been previously published [9].

The control group was found by matching the participating ACL-deficient patients to ACL-intact patients for age, sex, and follow-up time since UKR surgery. All patients included in the study were; willing and able to give informed consent and had undergone a medial Oxford UKR performed by a senior surgeon. Patients were excluded from the study if; they were physically unable to perform either activity, the Oxford UKR had been revised, they had undergone total hip replacement, they were under 18 years of age, or they were part of another conflicting research study.

The resultant cohorts consisted of 16 ACL-deficient and 16 ACL-intact knees; no significant difference was found in terms of age, follow-up time or sex (Table 1). To ensure sufficient participants for the study, a power calculation was performed. The calculated minimum required sample size was 12 for each group, assuming a measurement standard deviation (SD) of 3.3° [34], a clinically significant difference of 4° [32], a power of 0.8, and 5% significance.

2.2. Patient-Reported Outcome Measures (PROMs)

After consent and prior to the fluoroscopy assessment, all participants were asked to complete three questionnaires; the Oxford Knee Score (OKS) [12], the Tegner Activity Score [44], and a Visual Analogue Scale (VAS) Pain score between 0 and 100, where 100 is the worst pain imaginable [42].

2.3. Video Fluoroscopy

Video fluoroscopy of each knee in the sagittal plane was recorded during two activities; step-up and a forward lunge. The step up activity was chosen because; it is a functional activity which is commonly performed, it has been shown to cause large strains within the ACL (~2.8% [18]) and a high flexion moment within the knee [3], it covers a large flexion range, and it requires significant quadriceps force which causes an anterior tibial translation force up to 60 degrees of flexion and internal tibial rotation [10]. The forward lunge activity was chosen because; it is a weight-bearing activity performed at flexion angles above 90° and it has been shown to involve minimal ACL strain [18] and therefore can provide information on indicate indirect adaptations to the deficiency, such as muscular differences.
A strict protocol was followed to instruct the patients how to perform the exercises. The clinician first gave a verbal description of the exercise to the patient, the clinician then demonstrated the exercise, after which the patient was asked to duplicate the activity at a speed comfortable to them and given the opportunity to ask any questions. Subsequently, the fluoroscopy video was captured while the patient performed the exercise.

At the start of the step-up activity the foot of the leg being assessed was positioned on the step and the foot of the contralateral leg was on the floor. The patient was then asked to step up onto the step but to keep their contralateral leg positioned behind them so it was outside the field of the fluoroscope (Figure 1a). The step height was varied to ensure the leg was at 90 degrees of flexion at the start of the activity enabling consistency for different leg lengths. Patients were told they could stabilise themselves using a handrail with the arm contralateral to the knee being examined if they wished; the patients were asked to keep their other arm positioned behind their back. No other instructions were given to the patients; the goal was to ensure the patients moved as naturally as possible.

At the start of the forward lunge activity on the step, the patient was in a similar position to the step-up activity, but the foot of the contralateral leg was farther back (Figure 1b). Patients were asked to lower their trunk so their knee flexed while keeping their assessed knee in the field of the fluoroscopy. As before, patients were told they could stabilise themselves using a handrail if they wished.

After each fluoroscopy, a static radiograph was taken of a reference grid, consisting of two Perspex sheets with radio-opaque markers at known locations, positioned in the same location as the patient knee during the video capture.

2.4. Fluoroscopy Video Analysis

Using MATLAB software (version 7.10, MathWorks Inc. MA, USA) each video was separated into frames and each image was analysed separately. Pin-cushion and barrel distortions were quantified from the position of the calibration grid marker balls in the radiograph (calculation performed with the validated MATLAB “cp2tform” function which uses a weighted least-squares method [23]). The distortion correction was then applied to all frames within the video.

A custom MATLAB user-interface was created to enable the user to select anatomical landmark points in each frame; this data was then used to calculate the knee flexion angle (KFA), PTA and bearing position (BP). The KFA was the angle between the femoral axis [38] (Figure 2, line A) and the tibial axis [15] (Figure 2, line B),
the PTA was the angle between the patellar-tendon axis (Figure 2, line C) and the tibial axis (Figure 2, line B).
The spherical femoral component was used to calculate the scale by fitting a circle to 10 selected points surrounding the component. It was necessary to measure the BP indirectly due to the radiolucency of the polyethylene; therefore, it was assumed that the centre of curvature of the upper bearing surface would coincide with that of the femoral component surface because the surfaces are conforming. The BP was quantified as the distance from the tibial tray keel midpoint to the projected point of the femoral component centre on the tray keel (Figure 2, distance D). Anterior movement was denoted as positive and posterior movement as negative.
The duration of each video in seconds was also recorded as a measure of how long the patient took to perform the exercise.

2.5. Statistics

Differences in patient outcome scores between the two groups were assessed using a paired non-parametric Wilcoxon signed-rank test. An independent samples non-parametric test (Mann-Whitney U test) was performed to examine differences in the PTA and BP for the groups at each flexion angle. The same test was used to assess differences in the time taken to perform the exercise. Cohen’s d effect sizes were also calculated for each test.

Two repeats of the measurements from 6 knees for each activity were made to calculate the intra-observer reliability [5]. The intra-observer correlation coefficient was found using a two-way mixed model with single measures. All statistical calculations were performed using the statistical software environment R (version 2.15.1, www.r-project.org).

3. Results

No significant difference was found in the OKS, the pre-operative to post-operative change in OKS, the Tegner Activity Score or the VAS Pain score, between the ACLD and the ACLI groups (Table 2). The intraclass correlation coefficient was 0.968 for the PTA measurements, and 0.964 for the BP measurements. Analysis of the videos revealed that the ACLD group took significantly longer than the ACLI group to perform both the step-up (30.7% longer, Table 5) and the forward lunge (45.0% longer, Table 5) activities (Figure 5).

The PTA reduced almost linearly with increasing knee flexion angle. The mean PTA was 5° lower for the ACLD group at 30-40 degrees of flexion and the difference between the groups was significant (Figure 3, Table 3). Significant reductions in the PTA for the ACLD group were also observed at 60 degrees of flexion during the step-up activity, and for the forward lunge activity at 100 and 110 degrees of flexion.
The bearing moved posteriorly on average with extension during the step-up exercise (Figure 4). The BP in the ACLD group had a 95% confidence interval of over 15 mm between 40 and 60 degrees of flexion. This contrasted with the relatively low range of results in the ACLI group, where the confidence interval did not exceed 2 mm. The position of the bearing was shown to be patient dependent (p=0.038); indicating that some patients tended to be anterior/posterior throughout flexion. Throughout the forward lunge exercise the ACLD group bearings were significantly more anterior on average compared to the ACLI group (Table 4). The bearing in both groups moved posteriorly with increasing flexion angle during the forward lunge exercise, which was opposite to the step-up activity.

4. Discussion

The purpose of this study was to examine the hypothesis that the sagittal plane knee kinematics after UKR in an ACL-deficient knee is different to an ACL-intact knee. The results have shown that there are differences in the PTA and the BP in ACLD knees, and it is important to examine the meaning of these findings.

The approximately linear reduction of PTA with flexion angle observed in this study, reaching zero approximately 80 degrees, correlates well with previous studies on knee kinematics in healthy knees after mobile bearing UKR for both intact and reconstructed ligaments [34,35]. Work by Gill and O’Connor found that the linear reduction of PTA with flexion angle was a combination of roll back of the femur (accounts for a third of the change) and the changing shape of femur in articulation with the patella (accounts for two thirds of the change) [20].

At both 30 and 40 degrees of flexion the PTA was significantly reduced in the ACLD group. The PTA gives an indication of the position of the femur on the tibia in the mid-sagittal plane. The 5° relative difference in PTA between the groups indicates the tibia was more anterior relative to the femur in the ACLD group at that particular flexion angle during the step-up exercise [34].

The additional 5° reduction in the PTA at 30-40 degrees of flexion observed in this study for ACLD knees after UKR has not been previously reported. However, ACLD knees in general, which have not undergone mobile UKR, have been shown to have increased tibial translation at 30 degrees of flexion, which would correlate with a reduction in PTA [27,1]. Nearer extension, the forward pull of the patellar tendon (Figure 3) would be resisted by stretch of the ACL in the ACLI group but not in the ACLD group. Fleming et al. found that during a step-up exercise, the strain within the ACL is maximal at approximately 20 degrees of flexion [18], supporting the
theory that the increased tibial translation is due to the ACL deficiency. Differences diminish close to full
extension where the quadriceps and ACL forces would be expected to be smallest [24].

At higher flexion angles the hamstrings are more effective at counteracting anterior tibial translation, therefore
differences between the ACL-deficient and ACL-intact groups during the forward lunge activity would not be
expected [27,30,39]. However, significant differences were observed between the groups at 60, 100 and 100
degrees of flexion. At these flexion angles the influence of the ACL on anterior-posterior positioning of the
knee would be small [18], therefore cannot be directly due to differences in anterior cruciate ligament function.

It has been proposed that patients after ACL injury often develop different compensatory mechanisms to restore
stability to the knee. One method is to use the hamstrings for stability; ACLD patients have been shown to have
increased hamstring muscle activation [2] and to use their hamstrings more often during an activity [6].
Alternatively ACLD patients can adopt a quadriceps avoidance gait thus reducing the resultant anterior tibial
force. The quadriceps can be avoided by either walking with a reduced knee flexion angle during midstance, or
leaning forward with the trunk to decrease the strain placed on the quadriceps during midstance [37]. As
patients were given no restriction or advice on their trunk position, or flexion angle when performing the
activities, it is possible that the differences observed at 60, 100 and 110 degrees of flexion are a result of these
different compensatory mechanisms.

During the step-up activity, a large degree of variation was observed in the BP between 40 and 60 degrees of
flexion for the ACLD patient group. It is possible that the variation observed was a result of different
mechanisms for coping with ACL-deficiency in the ACLD patient group. In the ACLD group the bearing
translated 4.5 mm anteriorly on average as the knee flexed from 0-90 degrees of flexion; this could also be
considered 4.5 mm posterior tibial translation. During step up, we would expect the quadriceps force to be
maximal at 90 degrees of flexion and to diminish as the knee extends. In flexion, posterior translation of the
tibia relative to the femur induced by the posteriorly directed patellar tendon (Figure 4) would be resisted by the
stretch of the PCL. Thus, there were smaller differences in BP between the ACLD and ACLI groups at higher
flexion angles, each with an intact PCL [25].

The ACLD patient group took longer to perform the exercises than the ACLI group in this study, this finding
correlates with other studies on ACLD knees [31,41]. Some studies have suggested this is due to the loss of
proprioception from the ACL, and that consequently some patients adapt by using more guarded movements to
maintain knee stability [41,11].
The present study has some limitations. An important limitation of this study was that only the sagittal plane of the knee was examined, thus knee rotation was not quantified. ACL-deficiency has been shown to have a significant influence on internal rotation [45] and there may have been rotational differences between the groups which were undetected. Furthermore, the measurements of the fluoroscope images were performed by only one person which could have introduced some bias; however, the intra-observer reliability results indicated good repeatability and the values observed correlated well with published data. It is possible that trunk lean had an effect on the results of this study as patients were not instructed to keep their back straight but were asked to move as naturally as possible. Efforts were made to match the patient groups, but patients were not matched for body mass, pre-operative PROMs, or for tibial slope; it is therefore possible that these variables may have influenced the data. Within the ACL-deficient group, the patients had varying degrees of ACL-deficiency (fragmented/absent) but it was not possible to examine the influence of this given the sample size; however, whether the ACL is absent or fragmented, neither can provide tibial constraint.

5. Conclusions

The main findings from this study can be summarised as follows:

- ACL-deficient patients after UKR have different knee kinematics compared to ACL-intact patients
- Differences were particularly noticeable during step-up ranging from 30 to 60 degrees of flexion and it is possible that muscle imbalance and/or loss of proprioception may be a factor.
- The ACL-deficient group took significantly more time to perform the activities.
- Large variation in bearing position was observed for ACLD patients
Overall, the kinematics of the ACLD knees were closer to healthy knees than reported data for total knee replacement devices, but were not as similar to healthy knees than ACL-reconstructed UKR knees [34].

It is unknown exactly what impact the different kinematics observed in ACL-deficient patients after UKR will have clinically, but based on these results it would be advised to avoid performing the procedure in ACL-deficient patients until the significance of these results are better understood and longer term outcome data for this cohort is reported.

Acknowledgements

The authors would like to thank the Oxford University Hospitals Trust for sponsoring this study, the radiographers at the Nuffield Orthopaedic Centre for their invaluable assistance, as well as Jo Brown (Research Administrator), Cathy Jenkins (Research Physiotherapist), Bhavesh Popat (Medical Student) and Adam Boissoneault (Medical Student). Most of all, we would like to thank the participants of the study, without whom this work would not have been possible.

References

Table and Figure Captions

<table>
<thead>
<tr>
<th>Number of Knees</th>
<th>ACLD</th>
<th>ACLI</th>
<th>p-value</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Patients</td>
<td>16</td>
<td>16</td>
<td>0.80</td>
<td>0.11</td>
</tr>
<tr>
<td>Mean Age [years (range)]</td>
<td>67.0 (50-87)</td>
<td>68.3 (49-86)</td>
<td>0.82</td>
<td>0.11</td>
</tr>
<tr>
<td>Mean Follow-up Time [years (range)]</td>
<td>6.3 (1.3-12.8)</td>
<td>6.0 (2.6-11.0)</td>
<td>0.82</td>
<td>0.11</td>
</tr>
<tr>
<td>Gender</td>
<td>12 male, 2 female</td>
<td>12 male, 1 female</td>
<td>0.32</td>
<td></td>
</tr>
</tbody>
</table>

Table 1. Age, time to follow-up and sex of the ACLD and ACLI patient cohorts. Differences in the cohorts were found to be not significant.

<table>
<thead>
<tr>
<th>Oxford Knee Score (range)</th>
<th>ACLD</th>
<th>ACLI</th>
<th>p-value</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in Oxford Knee Score (range)</td>
<td>40.7 (20-48)</td>
<td>42.3 (32-48)</td>
<td>0.35</td>
<td>0.25</td>
</tr>
<tr>
<td>Tegner Activity Score (range)</td>
<td>15.9 (2-33)</td>
<td>12.9 (2-27)</td>
<td>0.57</td>
<td>0.42</td>
</tr>
<tr>
<td>VAS Pain Score (range)</td>
<td>3.2 (2-5)</td>
<td>2.8 (0-5)</td>
<td>0.15</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Table 2. Patient-recorded outcome scores for the ACLD and ACLI groups; differences between groups were not significant.

<table>
<thead>
<tr>
<th>KFA (degrees)</th>
<th>PTA (degrees)</th>
<th>p-value</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step-up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>14.30</td>
<td>16.13</td>
<td>0.074</td>
</tr>
<tr>
<td>10</td>
<td>13.83</td>
<td>14.60</td>
<td>0.291</td>
</tr>
<tr>
<td>20</td>
<td>10.17</td>
<td>11.79</td>
<td>0.101</td>
</tr>
<tr>
<td>30</td>
<td>4.64</td>
<td>9.88</td>
<td>1.061e-6</td>
</tr>
<tr>
<td>40</td>
<td>3.76</td>
<td>8.25</td>
<td>1.669e-3</td>
</tr>
<tr>
<td>50</td>
<td>4.21</td>
<td>5.84</td>
<td>0.094</td>
</tr>
<tr>
<td>60</td>
<td>0.91</td>
<td>3.48</td>
<td>0.007</td>
</tr>
<tr>
<td>70</td>
<td>0.98</td>
<td>1.70</td>
<td>0.864</td>
</tr>
<tr>
<td>80</td>
<td>-0.38</td>
<td>-0.86</td>
<td>0.844</td>
</tr>
<tr>
<td>90</td>
<td>-3.24</td>
<td>-2.87</td>
<td>0.753</td>
</tr>
<tr>
<td>Knee Bend</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>-3.59</td>
<td>-3.64</td>
<td>0.994</td>
</tr>
<tr>
<td>100</td>
<td>-5.05</td>
<td>-5.62</td>
<td>0.043</td>
</tr>
<tr>
<td>110</td>
<td>-9.87</td>
<td>-7.76</td>
<td>1.211e-6</td>
</tr>
<tr>
<td>120</td>
<td>-8.87</td>
<td>-9.58</td>
<td>0.657</td>
</tr>
<tr>
<td>130</td>
<td>-13.09</td>
<td>-14.35</td>
<td>0.785</td>
</tr>
</tbody>
</table>

Table 3. Statistical analysis of differences in the patellar tendon angle (PTA) between the ACLD and ACLI patient groups for the step-up and forward lunge exercise at different knee flexion angles (KFA). Lines highlighted in grey represent a p value below 0.05.
Table 4. Statistical analysis of the differences in bearing position (BP) between the ACLD and ACLI patient groups for the step-up and forward lunge exercise at different knee flexion angles (KFA). Lines highlighted in grey represent a p value below 0.05.

<table>
<thead>
<tr>
<th>KFA (degrees)</th>
<th>BP (mm)</th>
<th>p-value</th>
<th>Effect size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACLD</td>
<td>ACLI</td>
<td></td>
</tr>
<tr>
<td>Step-up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-5.57</td>
<td>-6.24</td>
<td>0.838</td>
</tr>
<tr>
<td>10</td>
<td>-3.44</td>
<td>-5.75</td>
<td>0.011</td>
</tr>
<tr>
<td>20</td>
<td>-6.71</td>
<td>-7.45</td>
<td>0.034</td>
</tr>
<tr>
<td>30</td>
<td>-4.73</td>
<td>-7.62</td>
<td>0.009</td>
</tr>
<tr>
<td>40</td>
<td>-3.36</td>
<td>-5.08</td>
<td>0.112</td>
</tr>
<tr>
<td>50</td>
<td>-6.24</td>
<td>-5.22</td>
<td>0.080</td>
</tr>
<tr>
<td>60</td>
<td>-2.71</td>
<td>-3.92</td>
<td>0.393</td>
</tr>
<tr>
<td>70</td>
<td>-1.22</td>
<td>-2.33</td>
<td>0.005</td>
</tr>
<tr>
<td>80</td>
<td>-1.08</td>
<td>-2.57</td>
<td>0.008</td>
</tr>
<tr>
<td>90</td>
<td>-1.13</td>
<td>-2.95</td>
<td>7.483e-5</td>
</tr>
<tr>
<td>Knee Bend</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>-1.31</td>
<td>-3.14</td>
<td>4.134e-9</td>
</tr>
<tr>
<td>100</td>
<td>-1.53</td>
<td>-3.34</td>
<td>1.032e-8</td>
</tr>
<tr>
<td>110</td>
<td>-2.91</td>
<td>-3.08</td>
<td>0.026</td>
</tr>
<tr>
<td>120</td>
<td>-4.02</td>
<td>-7.95</td>
<td>5.722e-5</td>
</tr>
<tr>
<td>130</td>
<td>-9.88</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 5. Comparison of the mean time required to perform the forward lunge and step-up exercise for the different patient groups. Lines highlighted in grey represent a p value below 0.05.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Intraclass Correlation Coefficient</th>
<th>Lower CI</th>
<th>Upper CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTA</td>
<td>0.968</td>
<td>0.945</td>
<td>0.982</td>
</tr>
<tr>
<td>BP</td>
<td>0.964</td>
<td>0.931</td>
<td>0.981</td>
</tr>
</tbody>
</table>

Table 6. Intraclass Correlation Coefficient values calculated for the PTA and BP, where two repeats were performed by one rater. The upper and lower confidence intervals (CI) for the coefficients are presented.
Figure 1. Illustration of (a) the step-up activity and (b) the deep forward lunge activity. Graphics created with PoseTool3D software (www.alienthink.com/posttool.blogspot.html).
Figure 2. Landmark points selected by the user (black dots) enabled calculation of the femoral (A) and tibial (B) axes used to calculate the flexion angle, the patellar tendon axis (C) used to calculate the patellar tendon angle, and the bearing position (D).

Figure 3. Relationship between patellar tendon angle and knee flexion angle for the step-up (0-90°) and forward lunge (90-130°) exercises; results for the ACLD and ACLI patient groups were compared. The shaded areas indicate the 95% confidence intervals.
Figure 4. Relationship between bearing position and knee flexion angle for the step-up and forward lunge exercises; results for the ACLD and ACLI patient groups were compared. The shaded areas indicate the 95% confidence intervals. Positive BP denotes anterior bearing position, negative BP denotes posterior positioning.

Figure 5. Boxplot of the time taken for the ACLD and the ACLI patient groups to perform the exercises; data shown is for both the step-up and the forward lunge results combined.