Dear Author/Editor,

Greetings, and thank you for publishing with SAGE Publications. Your article has been copyedited, and we have a few queries for you. Please respond to these queries when you submit your changes to the Production Editor.
Thank you for your time and effort.

Please assist us by clarifying the following queries:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Query</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Should “49.60” be “46.90” as under Participant Characteristics and in Table 1?</td>
</tr>
<tr>
<td>2</td>
<td>Should “24.4%” be “25.3%” and “150” be “151” as under Prevalence of OA?</td>
</tr>
<tr>
<td>3</td>
<td>Please confirm: values reversed (was “180.0°-178.5°”).</td>
</tr>
<tr>
<td>4</td>
<td>Please confirm edits to this caption.</td>
</tr>
<tr>
<td>5</td>
<td>Please confirm edits to this sentence.</td>
</tr>
<tr>
<td>6</td>
<td>Please confirm edits to this sentence.</td>
</tr>
<tr>
<td>7</td>
<td>Should “median” be “mean” as in Table 1? Also confirm that “Md” is “median” as edited throughout article.</td>
</tr>
<tr>
<td>8</td>
<td>Should “50” be “49” and “150” be “151”?</td>
</tr>
<tr>
<td>9</td>
<td>Please confirm: P value of “=1.000” changed to “>.999” here and elsewhere in article. Also, should “150” be “151”?</td>
</tr>
<tr>
<td>10</td>
<td>Should “.030” be “.010” as under footnote b in Table 3?</td>
</tr>
<tr>
<td>11</td>
<td>Please confirm edits to this sentence.</td>
</tr>
<tr>
<td>12</td>
<td>Should this be “.010” as under Prevalence of OA?</td>
</tr>
<tr>
<td>13</td>
<td>Should this be “.010” as under Prevalence of OA?</td>
</tr>
<tr>
<td>14</td>
<td>Please confirm: percentages reversed (was “20%-16%”).</td>
</tr>
<tr>
<td>15</td>
<td>Should this be “.010” as under footnote b in Table 3?</td>
</tr>
<tr>
<td>16</td>
<td>Confirm the correct Arliani et al study is cited here.</td>
</tr>
<tr>
<td>17</td>
<td>Please provide day of online publication.</td>
</tr>
</tbody>
</table>
Prevalence of Knee Osteoarthritis in 100 Athletically Active Veteran Soccer Players Compared With a Matched Group of 100 Military Personnel

COL Odysseas Paxinos,† MD, MSc, PhD, FACS, Alexandra Karavasili,‡ MD, MSc, Georgios Delimpasis,‡ MD, and Afroditi Stathi,§ PhD

Investigation performed at the 251 Hellenic Air Force General Hospital, Athens, Greece

Background: Although knee injuries in professional soccer (football) have been extensively studied, the prevalence of knee osteoarthritis (OA) in veteran players is not well documented.

Purpose: To investigate the prevalence of knee OA in retired professional soccer players in comparison with a group of athletically active military personnel.

Study Design: Cross-sectional study; Level of evidence, 3.

Methods: A group of 100 veteran Greek soccer players aged 35 to 55 years (mean ±SD age, 49.60 ± 5.9 years) were examined for knee OA and were administered the Knee injury and Osteoarthritis Outcome Score (KOOS) questionnaire. A matched group of 100 athletically active military personnel served as a comparison group.

Results: The sonographic prevalence of OA was significantly higher in the veteran soccer group (52%) than in the military group (33%) (n = 200; P = .010). This difference remained significant even after excluding participants with a history of knee surgery (44.1% vs 24.4%, respectively) (n = 150; P = .010). Femoral cartilage thickness was similar between the 2 groups (P = .473), while altered knee alignment had no effect on the prevalence of OA (P = .740). With the exception of perceived pain being more prevalent in the military group, there were no other statistically significant differences between the 2 groups in KOOS values.

Conclusion: Veteran soccer players had a higher sonographic prevalence of knee OA but better pain scores than a matched group of athletically active military personnel.

Keywords: aging athlete; knee; diagnostic ultrasound imaging; football (soccer)
and Osteoarthritis Outcome Score (KOOS), developed by Roos and coworkers,61 has been proven to have excellent reliability and validity and has now been translated and validated in many languages51-53,60 including Greek.48

The aim of this study was to compare the sonographic prevalence of knee OA and the perceived functional status of retired Greek male professional soccer players with a matched group of male active-duty military personnel, which is a generally healthy population engaged in physical training from early adulthood and continuously involved in various sports in later life.39,40 We hypothesized that (1) the prevalence of sonographically diagnosed OA would be higher in retired soccer players and (2) the retired soccer players’ KOOS values would be worse than the respective values of the military group.

METHODS

A cross-sectional study was designed to investigate the sonographic prevalence of knee OA in 100 male former professional soccer players versus a control group of 100 male active-duty Hellenic Air Force military personnel. The study was granted approval by the Research Department of the 251 Hellenic Air Force General Hospital and the Research and Ethics Approval Committee of the Department for Health at the University of Bath.

Invitation letters and flyers were sent to various soccer clubs and military bases of the Hellenic Air Force, and consenting volunteers were given appointments for a sonographic examination. Inclusion criteria for the group of retired professional soccer players were men aged between 35 and 55 years, participation for at least 5 years in national soccer championships, and no history of recent knee trauma during the previous 6 months. The upper age limit was considered to be a safe distance from the geriatric milestone of 65 years and its associated degenerative lesions. The same criteria without the soccer career requirement applied to the group of active-duty military personnel.

One hundred twenty retired soccer players participated in the study, from which 20 were excluded because of incomplete questionnaires (n = 7), recent knee injuries (n = 4), or being older than 55 years (n = 9). A total of 110 military personnel were examined, of whom 10 did not fulfill the inclusion criteria because of recent knee injuries (n = 6) or being older than 55 years (n = 4). Twenty other military volunteers who were part of the initial pilot study were also excluded because their data were incomplete (missing clinical examinations, trochlea thickness measurements, and KOOS questionnaires).

Participants initially completed a questionnaire focusing on medical and sporting history and the Greek version of the KOOS. A complete clinical examination of the knees, focused on knee alignment, ligamentous instability, effusion, and local tenderness, was then performed. Continuous variables recorded were height, weight, body mass index (BMI), years of sporting or soccer activity, and KOOS values. Knee alignment was clinically measured using a goniometer because this method has good correlation with the radiographic measurement.36 Alignment was recorded as either normal (178.5°-180.0°) or abnormal (varus or valgus) based on published normative values.47 All other data were recorded as dichotomous categorical variables.

An ultrasound examination of the knee was performed according to published guidelines,26,40,46 with the participant supine on the examination table with both knees resting in 30° of flexion on a prefabricated foam support using a portable ultrasound unit (Mindray M5; Mindray DS USA Inc) and a linear array transducer (10 MHz). The assessment for osteophytes, defined as cortical protrusions at the joint margins, was performed using medial and lateral middle longitudinal scan positions of the knee compartments (Figure 1). Synovial effusion was defined as a displaceable and compressible anechoic or hypoechoic area with no Doppler signal and more than 4 mm in height in a longitudinal scan of the suprapatellar area of the knee (Figure 2). When significant effusion (>4 mm) and/or osteophytes were found during the ultrasound examination, the participant was considered to have imaging evidence of OA. Cartilage thickness, defined as the distance in millimeters from the hyperechoic soft tissue–cartilage interface to the hyperechoic cartilage-bone interface, was measured in 3 different parts of the femoral trochlea (3 distinct points of the femoral trochlea: the middle third of the lateral part, the middle third of the medial part, and the deepest point of the trochlear groove with the transducer over the patella in a transverse plane and the knee flexed to 120°) (Figure 3). Cartilage thickness was recorded but not used as a criterion of OA because it has moderate validity4 and there is mixed evidence on the association with pain or functional scores.7,12 Sonographic findings were recorded either as dichotomous (presence or absence of effusion and osteophytes) or scale (cartilage thickness in millimeters). All data recorded were stored into an Excel file (Microsoft Corp) using a unique participant identifier that related the various data of a participant under complete anonymity.

Statistical analysis was performed using SPSS Statistics for Macintosh (version 22.0; IBM Corp). Preliminary testing for the normality of distribution and multivariate outliers, including the Kolmogorov-Smirnov statistic and Mahalanobis distance for age, BMI, and KOOS values, found violations of assumptions, and a nonparametric Mann-Whitney U test was selected to test for differences between the 2 groups (AQ: 5). Assumption testing found no serious violations for the femoral cartilage thickness data, and multivariate analysis of variance was performed to investigate differences between the 2 groups only for this measurement (AQ: 6). Dichotomous variables were tested for association using the χ² test for independence with Yates continuity correction. The ϕ correlation coefficient was also computed to evaluate the association between the variables. Significance was set at α = .05.

RESULTS

Participant Characteristics

The mean (±SD) age of the soccer player group was 46.90 ± 5.9 years, with a BMI of 26.72 ± 4.1 kg/m², while the respective values for the military group were 45.26 ± 5.7
Figure 1. Medial knee sonographic assessment and probe position. (A) Probe position in the medial compartment. The knee rests at 30° of flexion on a prefabricated wedge foam. (B) Ultrasound of the medial compartment in a soccer player with osteoarthritis. Osteophytes of the tibial (*) and femoral (**) sides of the medial compartment, defined as cortical protrusions of the articular margin. [AQ: 4]

Figure 2. Knee effusion and probe position. (A) Probe position in the suprapatellar compartment. The probe is directly above the patella in the middle line. (B) Ultrasound of knee effusion (measured length: 2.5 cm) in a soccer player with osteoarthritis. Any effusion larger than 4 mm was considered evidence of osteoarthritis.

Figure 3. Femoral trochlea cartilage measurements and probe position. (A) Probe position for trochlea measurements. The knee is flexed to 120°, and the probe is directly above the patella in the transverse plane. (B) Ultrasound of the femoral trochlea. Cartilage thickness was measured at 3 distinct points of the femoral trochlea: the middle third of the lateral facet (Lat 1/3), the middle third of the medial facet (Med 1/3), and the deepest point of the trochlear groove (Mid).
years and 27.27 ± 3.0 kg/m². The soccer players (median age, 46.5 years) were, on average, a year and a half older than the military service members (median age, 45.0 years), and this was statistically significant (U = 1,890, P = .010). A Mann-Whitney U test for independent samples revealed no significant difference for BMI (26.72 [soccer] vs 27.27 [military] kg/m²; P = .492). A history of knee surgery was more frequent in the soccer group (32%) compared with the military group (17%). This difference was statistically significant (χ²(1, n = 200) = 5.298, P = .021, ϕ = .174). Both groups were actively exercising with the same frequency per week (mean, 2.4 times/week; P = .144). Although many military volunteers played soccer as their main sporting activity, there was a clear difference between the 2 groups for years playing soccer (median [AQ: 7], 20.52 [soccer] vs 4.31 [military] years; U = 412.5, P = .000). Table 1 summarizes the characteristics of the participants.

Lower Leg Alignment

Only varus knee deformity (<178.5°) was considered because of its clinical significance⁸,⁶²,⁷⁰ and the rarity of valgus knee or foot pronation in both groups. A varus knee deformity was clinically evident in 25% of soccer players and in 22% of military personnel. This difference was not statistically significant (χ²(1, n = 200) = 0.111, P = .739, ϕ = .035) even after excluding the 50 participants with a history of knee surgery (χ²(1, n = 150) = 0.231, P = .631, ϕ = .055) [AQ: 8]. No difference in the prevalence of OA was found between participants with normal or varus knees (χ²(1, n = 200) = 0.000, P > .999, ϕ = .001) even when the surgically treated participants were excluded (χ²(1, n = 150) = 0.110, P = .740, ϕ = .043) [AQ: 9].

Femoral Cartilage Thickness

The femoral cartilage thickness in the 3 sites of measurement for each leg is shown in Table 2. Multivariate analysis of variance was performed to investigate differences between the 2 groups. The Levene test was not significant for any of the femoral cartilage measurements, and because the assumption of the equality of variances was not violated, significance was set at α = .05. No statistically significant differences were noted between the 2 groups for any of the 3 cartilage measurement sites (F(6,191) = 0.932, P = .473, Wilks λ = .972, partial η² = .028). The same result (no difference) was found even after all the participants who had a history of knee surgery were removed from the analysis (F(6,141) = 0.429, P = .859, Wilks λ = .982, partial η² = .018).

KOOS Analysis

The Greek version of the KOOS has been shown to have good internal consistency with Cronbach α for each subscale of the questionnaire: between 0.6 and 0.8⁶⁸ The Cronbach α coefficient for the current study was .955, suggesting excellent internal consistency. Both groups reported a good functional status as reflected in the high values recorded in all the KOOS subscales (Table 3). A Mann-Whitney U test for independent samples revealed no significant difference between the 2 groups for the subscales of symptoms (P = .615), activities of daily living (ADL) (P = .720), sport (P = .245), and quality of life (QoL) (P = .930). There was a statistically significant difference in the pain subscale (U = 4.157, P = .030 [AQ: 10]), with the soccer players having a better value (median, 93.0; n = 100) than the military participants (median, 88.9; n = 100).

Prevalence of OA

The overall prevalence of sonographically diagnosed OA in this study was 42.5%. The group prevalence was 52% for the soccer players and 33% for the military group (Figure 4). A χ² test for independence (with Yates continuity correction) indicated a significant association (P = .010) between a professional soccer career and ultrasound findings of OA, although the ϕ correlation coefficient indicated a small effect (χ²(1, n = 200) = 6.63, P = .010, ϕ = .192). To control for the statistically significant difference in knee surgeries between the 2 groups (32% [soccer] vs 17% [military]; P = .010), a separate χ² analysis was performed after excluding the 49 participants with a history of knee surgery in any leg (32 soccer players and 17 military personnel). The ultrasound prevalence of OA remained higher in the soccer group (44.1%) compared with the military

TABLE 1

<table>
<thead>
<tr>
<th>Participant Characteristics</th>
<th>Soccer Group</th>
<th>Military Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>46.90 ± 5.9</td>
<td>45.26 ± 5.7</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>26.72 ± 4.1</td>
<td>27.27 ± 3.0</td>
</tr>
<tr>
<td>Varus alignment, %</td>
<td>25</td>
<td>22</td>
</tr>
<tr>
<td>Exercise, times/wk</td>
<td>2.15 ± 1.9</td>
<td>2.58 ± 1.7</td>
</tr>
<tr>
<td>Soccer experience, y</td>
<td>20.52 ± 7.4</td>
<td>4.31 ± 8.6</td>
</tr>
<tr>
<td>Surgery, %</td>
<td>32</td>
<td>17</td>
</tr>
</tbody>
</table>

*Values are reported as mean ± SD unless otherwise indicated.

TABLE 2

<table>
<thead>
<tr>
<th>Femoral Cartilage Thickness</th>
<th>Soccer Group</th>
<th>Military Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left knee, mm</td>
<td>Lat 1/3</td>
<td>2.52 ± 0.51</td>
</tr>
<tr>
<td></td>
<td>Mid</td>
<td>3.07 ± 0.67</td>
</tr>
<tr>
<td></td>
<td>Med 1/3</td>
<td>2.72 ± 0.53</td>
</tr>
<tr>
<td>Right knee, mm</td>
<td>Lat 1/3</td>
<td>2.57 ± 0.58</td>
</tr>
<tr>
<td></td>
<td>Mid</td>
<td>3.19 ± 0.83</td>
</tr>
<tr>
<td></td>
<td>Med 1/3</td>
<td>2.85 ± 0.75</td>
</tr>
</tbody>
</table>

*Values are reported as mean ± SD (95% CI). Femoral cartilage thickness was measured at 3 distinct points of the femoral trochea: the middle third of the lateral facet (Lat 1/3), the middle third of the medial facet (Med 1/3), and the deepest point of the trochea groove (Mid). All measurements were made with the transducer perpendicular over the patella with the knee in 120° of flexion.
group (25.3%), and this difference was also statistically significant ($\chi^2(1, n = 151) = 5.917, P = .010, \phi = .198$). When the analysis was performed using only participants with a history of knee surgery, there was no significant difference in the prevalence of OA between the 2 groups (68.8% [soccer] vs 70.6% [military]; $P > .999$). However, the prevalence of OA was significantly higher in the operated compared with the nonoperated participants of the same group (68.8% vs 44.1%, respectively, for soccer players [$\chi^2(1, n = 100) = 5.290, P = .021, \phi = .230$] and 70.6% vs 25.3%, respectively, for military personnel [$\chi^2(1, n = 100) = 13.008, P = .000, \phi = .362$]).

DISCUSSION

This study investigated the prevalence of premature knee OA in retired Greek male professional soccer players. A comparison group of active-duty military personnel was used because evidence on the real prevalence of OA in veteran athletes for comparison is still sparse. Military personnel are engaged in strenuous physical activity from adolescent years and tend to stay athleticism active in later stages of life. The military has been proposed as a good model to study the epidemiology of OA in younger ages because when adjusted for age, it has a similar incidence of OA with that of the general population (incidence of 7.86 per 1000 person-years for the military compared with 7.19 for civilians).

There was a statistically significant difference in age ($P = .010$) between the 2 groups, with the soccer veterans (median, 46.5 years) being one and a half years older than their military counterparts (median, 45.0 years). However, this age difference is considered small in everyday clinical practice, given that an increased prevalence of knee OA (30%) is expected in people over the age of 63 years. Body weight and altered knee alignment are known risk factors for knee OA. In this study, no statistically significant difference in BMI ($P = .492$) and knee axis alignment ($P = .739$) was found between the 2 groups to confound the effect of soccer. Mild physical activity is considered to have a beneficial effect on knee OA, while strenuous sports are considered possible risk factors.

Both groups in the present study devoted the same amount of time per week for exercise and sports, and no statistically significant difference was found in training time ($P = .144$) to consider current exercise as a separate risk factor. Surgery for knee trauma has been shown to increase the risk of knee OA. Because volunteers with a history of injury or surgery of the knee were not excluded from this study, the possibility for bias in sample selection exists, given that previously injured athletes may be more willing to seek medical attention than healthy persons. However, the exclusion of previously injured athletes would have distorted the real prevalence of OA.

Previous studies have used radiographs for epidemiological studies of arthritis in healthy persons. However, this methodology has logistic disadvantages such as the availability of imaging facilities and raises ethical concerns such as exposure to clinically unjustified irradiation. The European Society of Radiology greatly advises the reduction of radiographs in clinical practice, and techniques to reduce the radiation dose of a knee radiograph by 37% have been recently reported. Diagnostic ultrasound of the knee is noninvasive, has no radiation hazard, and provides useful information for both the presence of osteophytes and effusion and the condition of soft tissues and cartilage.

The ultrasound examination in this study focused on the presence of osteophytes and joint effusion because these features were found to have high interrater reliability for use in the community. Ultrasonography has been shown to have moderate to excellent validity for the detection of osteophytes and effusion and moderate validity for femoral cartilage thickness. There is mixed evidence in the literature on the association of femoral trochlea cartilage thickness with pain or functional scores, with some studies reporting no association and other studies reporting some association. Although femoral trochlea cartilage erosion is a significant finding in knee OA involving the patellofemoral joint, no statistically significant differences were noted between the 2 groups ($P = .473$) even after excluding all participants with a history of knee surgery ($P = .859$). Because no significant differences were noted and the...
validity of this finding is moderate,1,27 the cartilage thickness measurements are reported in our results but were not considered for the analysis of OA prevalence.

The overall prevalence of OA in this study was 42.5% (defined as documented effusion >4 mm and/or presence of osteophytes). The group prevalence was 52% for soccer players and 33% for military personnel, and this difference was statistically significant ($P = .010$). Because previous knee surgery was significantly ($P = .020$ [AQ: 12]) more common in the soccer group (32%) compared with the military group (17%), a separate analysis of prevalence was performed after the exclusion of surgically treated knees in both groups. The difference in OA prevalence in nonoperated participants remained significant (44.1% [soccer] vs 25.3% [military]; $P = .001$ [AQ: 13]). No difference was noted when the 2 groups were compared using only previously operated participants ($P > .999$).

The data available in the literature on the prevalence of OA are limited and variable. In a recent meta-analysis, the authors reported that after adjusting for injuries of the knee, soccer players had only a slightly increased risk of knee OA.56,66 Drawer and Fuller16 have reported a prevalence of self-reported knee OA between 19% and 21.3% in a group of veteran soccer players with a mean age of 47.6 years. Turner and colleagues73 reported a prevalence of self-reported knee OA between 20% and 26% in a group with a mean age of 49.2 years. However, 3 other studies with the same mean age (49.2 years) that documented the presence of knee OA based on radiographs reported a higher prevalence (60%-80%).4,20,35 The overall prevalence in soccer players in the current study (52%) falls between the values reported from studies that used only questionnaires (16%-20% [AQ: 14]) and studies that used radiographs (60%-80%). Given that the age range of soccer players in this study is comparable with the age range reported in similar studies, this difference in prevalence may be explained in part by the recording method (self-reported vs objective findings).

The underreporting of OA may suggest that veteran athletes tend to underestimate the significance of osteoarthritic symptoms such as pain or dysfunction. The underestimation of pain in the retired athlete group is evident in the results of the KOOS questionnaire in which the only difference in functional scores between the 2 groups was in the pain subscale. Soccer veterans had significantly better scores than their military counterparts ($P = .030$ [AQ: 15]), despite the fact that they had more knee surgeries or OA findings and exercised the same amount of time per week during the time period of this study. This finding initially confused us as advanced OA is usually associated with more pain.56 The only plausible explanation is an increased pain tolerance or altered pain perception in the professional athlete group. Intense athletic activity is considered to lead to behavioral and emotional changes, increasing pain tolerance in athletes compared with population controls.54,71 Another issue that could possibly contribute to the lower levels of reported pain is the fact that players tend to underestimate and forget previous trauma. A study in soccer players found that they were able to recall at a later time only about one-third of the actual injuries that have been recorded by their physicians.30

There are only 2 studies that provide normative data for the KOOS value of the general population: one study with a random selection of a population sample (aged 18-84 years) in Sweden52 and one with young (mean age, 19 years) American military recruits.11 In the current study, both groups had lower values compared with the much younger military recruits of the American study. The mean KOOS values of the soccer veterans in the present study were lower in comparison to the published Swedish values for the age range of 35 to 54 years in all subscales: pain (86.03 vs 87.4, respectively), symptoms (84.28 vs 89.1, respectively), ADL (90.29 vs 95.2, respectively), sport (75.29 vs 86.4, respectively), and QoL (77.57 vs 83.6, respectively). The military group also had lower values compared with the published Swedish values in all the subscales: pain (84.79 vs 87.4, respectively), symptoms (83.29 vs 89.1, respectively), ADL (88.41 vs 95.2, respectively), sport (71.88 vs 86.4, respectively), and QoL (73.69 vs 83.6, respectively). In a recent study from Brazil that looked into the prevalence of OA in a similarly aged (30-55 years) group of former professional soccer players, KOOS values were slightly higher for all subscales compared with our study, despite a higher radiographic evidence of OA in that study (66% vs 52%, respectively).6 [AQ: 16]

Strengths and Limitations

To our knowledge, this is the first study to use ultrasound to record the prevalence of OA in veteran soccer players. All clinical and sonographic examinations in this study were performed by an orthopaedic surgeon trained in musculoskeletal ultrasound under the supervision of a specialist radiologist, ensuring high interrater reliability.1 While ultrasound may detect osteophytes and effusion, the ultrasound evaluation in this study did not detect weightbearing joint space narrowing of the tibiofemoral compartment, subchondral sclerosis, or subchondral cystic changes, which are other common radiographic features of OA. The recruitment process might have been influenced by selection bias because the opportunity for a medical consultation may have attracted more symptomatic patients to participate in this study. The inclusion of participants with a known previous knee injury may also have affected the prevalence, despite that this had no effect on the differences between a group of veteran soccer players compared with a group of athletically active military personnel. This study provides an estimate of KOOS values of these 2 distinctive groups, but a bigger sample size is required to provide normative values for military personnel and retired athletes of this age. This study adds more evidence to the limited literature of possible adverse effects of a professional soccer career on the knee.

CONCLUSION

This is the first study to use ultrasound to investigate the prevalence of knee OA among veteran soccer players. The findings suggest that there is a significantly higher prevalence of knee OA in veteran soccer players compared with athletically active military personnel. Veteran soccer
players might have higher pain tolerance thresholds as a result of years of intense training and frequent injuries and may underestimate the development of OA. This study may raise the need for the better education of veteran players by their respective soccer associations on the significance of knee OA for quality of life and for the need for medical advice. Clinicians should use a selection of both objective and subjective methods to detect knee OA in veteran athletes because pain perception may be altered in some people. Diagnostic knee ultrasound is a useful non-ionizing modality for this purpose.

REFERENCES

