A stability/instability trichotomy for non-negative Lur’e systems*

Adam Bill 1, Chris Guiver 2, Hartmut Logemann 1 and Stuart Townley 2

Abstract—We identify a stability/instability trichotomy for a class of non-negative continuous-time Lur’e systems. Asymptotic as well as input-to-state stability concepts (ISS) are considered. The presented trichotomy rests on Perron-Frobenius theory, absolute stability theory and recent ISS results for Lur’e systems.

I. INTRODUCTION

Let \(A = (a_{ij}) \in \mathbb{R}^{n \times n} \) and \(b, c \in \mathbb{R}^n \) and consider the corresponding single-input single-output non-negative linear system

\[
\dot{x} = Ax + bu, \quad x(0) = \xi \in \mathbb{R}^n_+, \quad y = c^T x.
\]

We assume that

(A1) \(A \) is Metzler, \(b, c \in \mathbb{R}^n_+ \) and \(b, c \neq 0 \) holds.

We recall that \(A = (a_{ij}) \) is Metzler if \(a_{ij} \geq 0 \) for \(i \neq j \) (all off-diagonal elements are non-negative).

System (1) is said to be non-negative if (A1) holds and \(u \geq 0 \). Non-negative systems of the form (1) occur naturally in biological, ecological and economic contexts.

We impose the following assumptions.

(A2) \(A \) is Hurwitz.

(A3) There exist non-negative numbers \(\alpha \) and \(\kappa \) such that \(\alpha I + A + \kappa bc^T \) is primitive.

Recall that (A3) means that the matrix \((\alpha I + A + \kappa bc^T)^k \) is a positive matrix for some \(k \in \mathbb{N} \).

In the following, let \(G \) denote the transfer function of (1), that is, \(G(s) := c^T (sI - A)^{-1} b \).

Lemma 1.1: Assume that (A1)-(A3) hold. Then \(G(0) > 0 \) and \(\|G\|_{\infty} = G(0) \).

A proof of Lemma 1.1 can be found in [1].

Applying nonlinear non-negative feedback \(u = f(y) \) to (1), where \(f: \mathbb{R}_+ \to \mathbb{R}_+ \) is locally Lipschitz, leads to the following non-negative Lur’e system

\[
\dot{x} = Ax + bf(c^T x), \quad x(0) = \xi \in \mathbb{R}^n_+.
\]

We assume that the following assumption holds.

(A4) \(f: \mathbb{R}_+ \to \mathbb{R}_+ \) is locally Lipschitz and \(f(0) = 0 \).

II. LYAPUNOV STABILITY RESULTS

In this section, we present results which describe the stability/instability properties in each of three cases, where “stability” is interpreted in the sense of Lyapunov.

Let \(x(\cdot; \xi) \) denote the unique maximally defined forward solution of (2) with maximal interval of existence \([0, \omega\xi]\), where \(0 < \omega\xi \leq \infty \).

The proposition below relates to Case 1. It follows from well known results in absolute stability theory, see, for example, [3].

Proposition 2.1: Assume that (A1)-(A4) hold.

(a) If \(f(z)/z \leq p \) for all \(z > 0 \), then the equilibrium \(0 \) is stable in the large in the sense that there exists \(\Gamma \geq 1 \) such that, for every \(\xi \in \mathbb{R}^n_+ \), \(\omega\xi = \infty \) and

\[
\|x(t; \xi)\| \leq \Gamma \|\xi\| \quad \forall t \geq 0.
\]
(b) If \(f(z)/z < p \) for all \(z > 0 \), then the equilibrium 0 is globally asymptotically stable. In particular, for every \(\xi \in \mathbb{R}_+^n \), \(\omega_\xi = \infty \) and \(x(t; \xi) \to 0 \) as \(t \to \infty \).

(c) If \(\sup_{z > 0} f(z)/z < p \), then the equilibrium 0 is globally exponentially stable, that is, there exist \(N \geq 1 \) and \(\nu > 0 \) such that, for every \(\xi \in \mathbb{R}_+^n \), \(\omega_\xi = \infty \) and

\[
\|x(t; \xi)\| \leq N e^{-\nu t} \|\xi\| \quad \forall t \geq 0.
\]

In Case 2, the solutions of (2) diverge to \(\infty \) for every non-zero initial condition. More precisely, we have the following result.

Theorem 2.2: Assume that \((A1)-(A4) \) hold and let \(\inf_{z > 0} f(z)/z > p \). Let \(\xi \in \mathbb{R}_+^n \), \(\xi \neq 0 \), be such that the solution \(x(t; \xi) \) exists for all \(t \geq 0 \). Then

\[
\lim_{t \to \infty} x_i(t; \xi) = \infty \quad \forall i \in \{1, \ldots, n\},
\]

where \(x_i(t; \xi) \) denotes the \(i \)-th component of \(x(t; \xi) \).

We proceed to consider Case 3.

Theorem 2.3: Assume that \((A1)-(A4) \) hold.

(a) If there exists \(y^* > 0 \) such that \(f(y^*) = py^* \) and

\[
\frac{f(z) - f(y^*)}{z - y^*} \leq p \quad \forall z \geq 0, \quad z \neq y^*
\]

then \(x^* = -pA^{-1}by^* \in \mathbb{R}_+^n \) is an equilibrium of (2) and \(x^* \) is stable in the large in the sense that there exists \(\Gamma \geq 1 \) such that, for every \(\xi \in \mathbb{R}_+^n \), \(\omega_\xi = \infty \) and

\[
\|x(t; \xi) - x^*\| \leq \Gamma \|\xi - x^*\| \quad \forall t \geq 0.
\]

(b) If there exists \(y^* > 0 \) such that \(f(y^*) = py^* \) and

\[
\frac{f(z) - f(y^*)}{z - y^*} < p \quad \forall z > 0, \quad z \neq y^*
\]

then \(0 \) and \(x^* = -pA^{-1}by^* \in \mathbb{R}_+^n \) are the only equilibria of (2) and \(x^* \) is globally asymptotically stable in the sense that \(x^* \) is stable in the large (see statement (a) of this theorem) and, for every \(\xi \in \mathbb{R}_+^n \) such that \(\xi \neq 0 \), \(\omega_\xi = \infty \) and \(x(t; \xi) \to x^* \) as \(t \to \infty \).

(c) If there exists \(y^* > 0 \) such that \(f(y^*) = py^* \),

\[
\frac{f(z) - f(y^*)}{z - y^*} < p \quad \forall z > 0, \quad z \neq y^*
\]

and

\[
\limsup_{y \to y^*} \frac{f(z) - f(y^*)}{z - y^*} < p,
\]

and if

\[
\liminf_{z \to 0^+} \frac{f(z)}{z} > p,
\]

then \(0 \) and \(x^* = -pA^{-1}by^* \in \mathbb{R}_+^n \) are the only equilibria of (2) and \(x^* \) is “semi-globally” exponentially stable in the sense that, for every compact set \(K \subset \mathbb{R}_+^n \) with \(0 \notin K \), there exists \(N \geq 1 \) and \(\nu > 0 \) such that, for every \(\xi \in K \), \(\omega_\xi = \infty \) and

\[
\|x(t; \xi) - x^*\| \leq N e^{-\nu t} \|\xi - x^*\| \quad \forall t \geq 0.
\]

(d) If (3) holds and there exists \(y^* > 0 \) such that \(f(y^*) = py^* \) and, for every \(\varepsilon > 0 \),

\[
\sup_{z > \varepsilon, z \neq y^*} \frac{f(z) - f(y^*)}{z - y^*} < p,
\]

then \(0 \) and \(x^* = -pA^{-1}by^* \in \mathbb{R}_+^n \) are the only equilibria of (2) and \(x^* \) is “quasi-globally” exponentially stable in the sense that, for every \(\delta > 0 \) there exist \(N \geq 1 \) and \(\nu > 0 \) such that, for every \(\xi \in \mathbb{R}_+^n \) with \(\|\xi\| \geq \delta \), \(\omega_\xi = \infty \) and

\[
\|x(t; \xi) - x^*\| \leq Ne^{-\nu t} \|\xi - x^*\| \quad \forall t \geq 0.
\]

We remark that “global” exponential stability of \(x^* \) (in the sense that there exist \(N \geq 1 \) and \(\nu > 0 \) such that (4) is satisfied for all \(\xi \in \mathbb{R}_+^n \) with \(\xi \neq 0 \)) does not hold. This is an immediate consequence of the following result which follows from continuity properties of the flow generated by the Lur’e system (2).

Proposition 2.4: Assume that \((A1)-(A4) \) hold and that there exists \(y^* > 0 \) such that \(f(y^*) = py^* \). Then, for every sequence \((t_n) \in \mathbb{R}_+ \) with \(t_n \to \infty \) as \(n \to \infty \), there exists a sequence \((\xi_n) \) in \(\mathbb{R}_+^n \) with \(\xi_n \neq 0 \) and \(\xi_n \to 0 \) as \(n \to \infty \) and such that

\[
\lim_{n \to \infty} \frac{\|x(t_n; \xi_n) - x^*\|}{\|\xi_n - x^*\|} = 1,
\]

where \(x^* = -pA^{-1}by^* \).

Discrete-time results similar to statement (b) of Proposition 2.1, Theorem 2.2 and statement (b) of Theorem 2.3 can be found in [7].

Proofs of the results in Section II can be found in [1].

III. INPUT-TO-STATE STABILITY RESULTS

Finally, we investigate the stability behaviour of (2) subject to non-negative disturbances, that is, we analyze input-to-state stability (ISS) properties of the forced Lur’e system

\[
\dot{x} = Ax + b(f(x^T x) + d), \quad x(0) = \xi \in \mathbb{R}_+^n,
\]

where \(d : \mathbb{R}_+ \to \mathbb{R}_+ \) is locally essentially bounded. The unique maximally defined forward solution of (5) is denoted by \(x(\cdot; \xi, d) \).

For an overview of ISS theory, the reader is referred to [6]. We recall some terminology and notation relating to comparison functions. Let \(K \) denote the set of all continuous functions \(\varphi : \mathbb{R}_+ \to \mathbb{R}_+ \) such that \(\varphi(0) = 0 \) and \(\varphi \) is strictly increasing. Moreover, define \(K_\infty := \{ \varphi \in K : \lim_{s \to \infty} \varphi(s) = \infty \} \). We denote by \(K \) the set of functions in two variables \(\psi : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}_+ \) with the following properties: \(\psi(\cdot, t) \in K \) for all \(t \geq 0 \), and \(\psi(s, \cdot) \) is nonincreasing with \(\lim_{s \to \infty} \psi(s, t) = 0 \) for all \(s \geq 0 \).

The following proposition is a consequence of recent ISS results for Lur’e systems, see [4], [5].

Proposition 3.1: Assume that \((A1)-(A4) \) hold. If there exists \(\rho \in K_\infty \) such that

\[
f(z) \leq pz - \rho(z) \quad \forall z \geq 0,
\]
then the equilibrium 0 of the unforced Lur’e system (2) is ISS in the sense that there exist \(\psi \in KL \) and \(\phi \in K \) such that for all \(\xi \in \mathbb{R}_+^n \) and all non-negative \(d \in L_{loc}^\infty(\mathbb{R}_+) \),
\[
 x(\cdot; \xi, d) \text{ is defined on } \mathbb{R}_+ \text{ and }
 \|x(t; \xi, d)\| \leq \psi(\|\xi\|, t) + \phi(\|d\|_{L^\infty(0, t)}) \quad \forall \ t \geq 0.
\]
The following theorem shows that, under suitable assumptions, the equilibrium \(x^* \) has stability properties which are similar to ISS.

Theorem 3.2: Assume that (A1)-(A4) hold and that there exists \(y^* > 0 \) such that \(f(y^*) = py^* \) and
\[
 \left| \frac{f(z) - f(y^*)}{z - y^*} \right| < p \quad \forall \ z > 0, \ z \neq y^*, \quad (6)
\]
Furthermore, assume that (3) holds and
\[
 pz - f(z) \to \infty \quad \text{as} \quad z \to \infty. \quad (7)
\]

Then \(0 \) and \(x^* = -pA^{-1}by^* \in \mathbb{R}_+^n \) are the only equilibria of the unforced Lur’e system (2) and \(x^* \) is “quasi ISS” in the sense that, for every \(\delta > 0 \), there exist \(\psi \in KL \) and \(\phi \in K \) such that for all \(\xi \in \mathbb{R}_+^n \) with \(\|\xi\| \geq \delta \) and all non-negative \(d \in L_{loc}^\infty(\mathbb{R}_+) \), \(x(\cdot; \xi, d) \) is defined on \(\mathbb{R}_+ \) and
\[
 \|x(t; \xi, d) - x^*\| \leq \psi(\|\xi - x^*\|, t) + \phi(\|d\|_{L^\infty(0, t)}) \quad \forall \ t \geq 0.
\]

To relate the conditions (6) and (7) to those in Proposition 3.1, we note that if (6) and (7) hold, then, for every \(\varepsilon > 0 \), there exists \(\rho \in \mathcal{K}_\infty \) such that
\[
 |f(z) - f(y^*)| \leq p|z - y^*| - \rho(|z - y^*|) \quad \forall \ z \geq \varepsilon, \ z \neq y^*.
\]
The proof of Theorem 3.2 is based on Proposition 3.1 and the following lemma.

Lemma 3.3: Assume that (A1)-(A4) hold. If (3) is satisfied and there exists \(y^* > 0 \) such that \(f(y^*) = py^* \) and (6) holds, then, for every \(\delta > 0 \), there exist constants \(\eta > 0 \) and \(\tau \geq 0 \) such that for all \(\xi \in \mathbb{R}_+^n \) with \(\|\xi\| \geq \delta \) and all non-negative \(d \in L_{loc}^\infty(\mathbb{R}_+) \), \(x(\cdot; \xi, d) \) is defined on \(\mathbb{R}_+ \) and
\[
 c^T x(t; \xi, d) \geq \eta \quad \forall \ t \geq \tau.
\]
This lemma also plays a key role in the proof of statements (b)-(d) of Theorem 2.3 (with disturbance \(d = 0 \)). Detailed proofs of Proposition 3.1, Theorem 3.2 and Lemma 3.3 can be found in [1].

Finally, it follows from Proposition 2.4 that “global” ISS of \(x^* \) (in the sense that there exist \(\psi \in KL \) and \(\phi \in K \) such that (8) is satisfied for all \(\xi \in \mathbb{R}_+^n \) with \(\xi \neq 0 \) and all non-negative \(d \in L_{loc}^\infty(\mathbb{R}_+) \)) does not hold.

REFERENCES